Home | History | Annotate | Download | only in IR
      1 //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the declarations of classes that represent "derived
     11 // types".  These are things like "arrays of x" or "structure of x, y, z" or
     12 // "function returning x taking (y,z) as parameters", etc...
     13 //
     14 // The implementations of these classes live in the Type.cpp file.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #ifndef LLVM_IR_DERIVEDTYPES_H
     19 #define LLVM_IR_DERIVEDTYPES_H
     20 
     21 #include "llvm/ADT/ArrayRef.h"
     22 #include "llvm/ADT/STLExtras.h"
     23 #include "llvm/ADT/StringRef.h"
     24 #include "llvm/IR/Type.h"
     25 #include "llvm/Support/Casting.h"
     26 #include "llvm/Support/Compiler.h"
     27 #include <cassert>
     28 #include <cstdint>
     29 
     30 namespace llvm {
     31 
     32 class Value;
     33 class APInt;
     34 class LLVMContext;
     35 
     36 /// Class to represent integer types. Note that this class is also used to
     37 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
     38 /// Int64Ty.
     39 /// @brief Integer representation type
     40 class IntegerType : public Type {
     41   friend class LLVMContextImpl;
     42 
     43 protected:
     44   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
     45     setSubclassData(NumBits);
     46   }
     47 
     48 public:
     49   /// This enum is just used to hold constants we need for IntegerType.
     50   enum {
     51     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
     52     MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
     53       ///< Note that bit width is stored in the Type classes SubclassData field
     54       ///< which has 24 bits. This yields a maximum bit width of 16,777,215
     55       ///< bits.
     56   };
     57 
     58   /// This static method is the primary way of constructing an IntegerType.
     59   /// If an IntegerType with the same NumBits value was previously instantiated,
     60   /// that instance will be returned. Otherwise a new one will be created. Only
     61   /// one instance with a given NumBits value is ever created.
     62   /// @brief Get or create an IntegerType instance.
     63   static IntegerType *get(LLVMContext &C, unsigned NumBits);
     64 
     65   /// @brief Get the number of bits in this IntegerType
     66   unsigned getBitWidth() const { return getSubclassData(); }
     67 
     68   /// Return a bitmask with ones set for all of the bits that can be set by an
     69   /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
     70   uint64_t getBitMask() const {
     71     return ~uint64_t(0UL) >> (64-getBitWidth());
     72   }
     73 
     74   /// Return a uint64_t with just the most significant bit set (the sign bit, if
     75   /// the value is treated as a signed number).
     76   uint64_t getSignBit() const {
     77     return 1ULL << (getBitWidth()-1);
     78   }
     79 
     80   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
     81   /// @returns a bit mask with ones set for all the bits of this type.
     82   /// @brief Get a bit mask for this type.
     83   APInt getMask() const;
     84 
     85   /// This method determines if the width of this IntegerType is a power-of-2
     86   /// in terms of 8 bit bytes.
     87   /// @returns true if this is a power-of-2 byte width.
     88   /// @brief Is this a power-of-2 byte-width IntegerType ?
     89   bool isPowerOf2ByteWidth() const;
     90 
     91   /// Methods for support type inquiry through isa, cast, and dyn_cast.
     92   static bool classof(const Type *T) {
     93     return T->getTypeID() == IntegerTyID;
     94   }
     95 };
     96 
     97 unsigned Type::getIntegerBitWidth() const {
     98   return cast<IntegerType>(this)->getBitWidth();
     99 }
    100 
    101 /// Class to represent function types
    102 ///
    103 class FunctionType : public Type {
    104   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
    105 
    106 public:
    107   FunctionType(const FunctionType &) = delete;
    108   FunctionType &operator=(const FunctionType &) = delete;
    109 
    110   /// This static method is the primary way of constructing a FunctionType.
    111   static FunctionType *get(Type *Result,
    112                            ArrayRef<Type*> Params, bool isVarArg);
    113 
    114   /// Create a FunctionType taking no parameters.
    115   static FunctionType *get(Type *Result, bool isVarArg);
    116 
    117   /// Return true if the specified type is valid as a return type.
    118   static bool isValidReturnType(Type *RetTy);
    119 
    120   /// Return true if the specified type is valid as an argument type.
    121   static bool isValidArgumentType(Type *ArgTy);
    122 
    123   bool isVarArg() const { return getSubclassData()!=0; }
    124   Type *getReturnType() const { return ContainedTys[0]; }
    125 
    126   using param_iterator = Type::subtype_iterator;
    127 
    128   param_iterator param_begin() const { return ContainedTys + 1; }
    129   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
    130   ArrayRef<Type *> params() const {
    131     return makeArrayRef(param_begin(), param_end());
    132   }
    133 
    134   /// Parameter type accessors.
    135   Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
    136 
    137   /// Return the number of fixed parameters this function type requires.
    138   /// This does not consider varargs.
    139   unsigned getNumParams() const { return NumContainedTys - 1; }
    140 
    141   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    142   static bool classof(const Type *T) {
    143     return T->getTypeID() == FunctionTyID;
    144   }
    145 };
    146 static_assert(alignof(FunctionType) >= alignof(Type *),
    147               "Alignment sufficient for objects appended to FunctionType");
    148 
    149 bool Type::isFunctionVarArg() const {
    150   return cast<FunctionType>(this)->isVarArg();
    151 }
    152 
    153 Type *Type::getFunctionParamType(unsigned i) const {
    154   return cast<FunctionType>(this)->getParamType(i);
    155 }
    156 
    157 unsigned Type::getFunctionNumParams() const {
    158   return cast<FunctionType>(this)->getNumParams();
    159 }
    160 
    161 /// Common super class of ArrayType, StructType and VectorType.
    162 class CompositeType : public Type {
    163 protected:
    164   explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
    165 
    166 public:
    167   /// Given an index value into the type, return the type of the element.
    168   Type *getTypeAtIndex(const Value *V) const;
    169   Type *getTypeAtIndex(unsigned Idx) const;
    170   bool indexValid(const Value *V) const;
    171   bool indexValid(unsigned Idx) const;
    172 
    173   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    174   static bool classof(const Type *T) {
    175     return T->getTypeID() == ArrayTyID ||
    176            T->getTypeID() == StructTyID ||
    177            T->getTypeID() == VectorTyID;
    178   }
    179 };
    180 
    181 /// Class to represent struct types. There are two different kinds of struct
    182 /// types: Literal structs and Identified structs.
    183 ///
    184 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
    185 /// always have a body when created.  You can get one of these by using one of
    186 /// the StructType::get() forms.
    187 ///
    188 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
    189 /// uniqued.  The names for identified structs are managed at the LLVMContext
    190 /// level, so there can only be a single identified struct with a given name in
    191 /// a particular LLVMContext.  Identified structs may also optionally be opaque
    192 /// (have no body specified).  You get one of these by using one of the
    193 /// StructType::create() forms.
    194 ///
    195 /// Independent of what kind of struct you have, the body of a struct type are
    196 /// laid out in memory consequtively with the elements directly one after the
    197 /// other (if the struct is packed) or (if not packed) with padding between the
    198 /// elements as defined by DataLayout (which is required to match what the code
    199 /// generator for a target expects).
    200 ///
    201 class StructType : public CompositeType {
    202   StructType(LLVMContext &C) : CompositeType(C, StructTyID) {}
    203 
    204   enum {
    205     /// This is the contents of the SubClassData field.
    206     SCDB_HasBody = 1,
    207     SCDB_Packed = 2,
    208     SCDB_IsLiteral = 4,
    209     SCDB_IsSized = 8
    210   };
    211 
    212   /// For a named struct that actually has a name, this is a pointer to the
    213   /// symbol table entry (maintained by LLVMContext) for the struct.
    214   /// This is null if the type is an literal struct or if it is a identified
    215   /// type that has an empty name.
    216   void *SymbolTableEntry = nullptr;
    217 
    218 public:
    219   StructType(const StructType &) = delete;
    220   StructType &operator=(const StructType &) = delete;
    221 
    222   /// This creates an identified struct.
    223   static StructType *create(LLVMContext &Context, StringRef Name);
    224   static StructType *create(LLVMContext &Context);
    225 
    226   static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
    227                             bool isPacked = false);
    228   static StructType *create(ArrayRef<Type *> Elements);
    229   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
    230                             StringRef Name, bool isPacked = false);
    231   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
    232   template <class... Tys>
    233   static typename std::enable_if<are_base_of<Type, Tys...>::value,
    234                                  StructType *>::type
    235   create(StringRef Name, Type *elt1, Tys *... elts) {
    236     assert(elt1 && "Cannot create a struct type with no elements with this");
    237     SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
    238     return create(StructFields, Name);
    239   }
    240 
    241   /// This static method is the primary way to create a literal StructType.
    242   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
    243                          bool isPacked = false);
    244 
    245   /// Create an empty structure type.
    246   static StructType *get(LLVMContext &Context, bool isPacked = false);
    247 
    248   /// This static method is a convenience method for creating structure types by
    249   /// specifying the elements as arguments. Note that this method always returns
    250   /// a non-packed struct, and requires at least one element type.
    251   template <class... Tys>
    252   static typename std::enable_if<are_base_of<Type, Tys...>::value,
    253                                  StructType *>::type
    254   get(Type *elt1, Tys *... elts) {
    255     assert(elt1 && "Cannot create a struct type with no elements with this");
    256     LLVMContext &Ctx = elt1->getContext();
    257     SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
    258     return llvm::StructType::get(Ctx, StructFields);
    259   }
    260 
    261   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
    262 
    263   /// Return true if this type is uniqued by structural equivalence, false if it
    264   /// is a struct definition.
    265   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
    266 
    267   /// Return true if this is a type with an identity that has no body specified
    268   /// yet. These prints as 'opaque' in .ll files.
    269   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
    270 
    271   /// isSized - Return true if this is a sized type.
    272   bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
    273 
    274   /// Return true if this is a named struct that has a non-empty name.
    275   bool hasName() const { return SymbolTableEntry != nullptr; }
    276 
    277   /// Return the name for this struct type if it has an identity.
    278   /// This may return an empty string for an unnamed struct type.  Do not call
    279   /// this on an literal type.
    280   StringRef getName() const;
    281 
    282   /// Change the name of this type to the specified name, or to a name with a
    283   /// suffix if there is a collision. Do not call this on an literal type.
    284   void setName(StringRef Name);
    285 
    286   /// Specify a body for an opaque identified type.
    287   void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
    288 
    289   template <typename... Tys>
    290   typename std::enable_if<are_base_of<Type, Tys...>::value, void>::type
    291   setBody(Type *elt1, Tys *... elts) {
    292     assert(elt1 && "Cannot create a struct type with no elements with this");
    293     SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
    294     setBody(StructFields);
    295   }
    296 
    297   /// Return true if the specified type is valid as a element type.
    298   static bool isValidElementType(Type *ElemTy);
    299 
    300   // Iterator access to the elements.
    301   using element_iterator = Type::subtype_iterator;
    302 
    303   element_iterator element_begin() const { return ContainedTys; }
    304   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
    305   ArrayRef<Type *> const elements() const {
    306     return makeArrayRef(element_begin(), element_end());
    307   }
    308 
    309   /// Return true if this is layout identical to the specified struct.
    310   bool isLayoutIdentical(StructType *Other) const;
    311 
    312   /// Random access to the elements
    313   unsigned getNumElements() const { return NumContainedTys; }
    314   Type *getElementType(unsigned N) const {
    315     assert(N < NumContainedTys && "Element number out of range!");
    316     return ContainedTys[N];
    317   }
    318 
    319   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    320   static bool classof(const Type *T) {
    321     return T->getTypeID() == StructTyID;
    322   }
    323 };
    324 
    325 StringRef Type::getStructName() const {
    326   return cast<StructType>(this)->getName();
    327 }
    328 
    329 unsigned Type::getStructNumElements() const {
    330   return cast<StructType>(this)->getNumElements();
    331 }
    332 
    333 Type *Type::getStructElementType(unsigned N) const {
    334   return cast<StructType>(this)->getElementType(N);
    335 }
    336 
    337 /// This is the superclass of the array and vector type classes. Both of these
    338 /// represent "arrays" in memory. The array type represents a specifically sized
    339 /// array, and the vector type represents a specifically sized array that allows
    340 /// for use of SIMD instructions. SequentialType holds the common features of
    341 /// both, which stem from the fact that both lay their components out in memory
    342 /// identically.
    343 class SequentialType : public CompositeType {
    344   Type *ContainedType;               ///< Storage for the single contained type.
    345   uint64_t NumElements;
    346 
    347 protected:
    348   SequentialType(TypeID TID, Type *ElType, uint64_t NumElements)
    349     : CompositeType(ElType->getContext(), TID), ContainedType(ElType),
    350       NumElements(NumElements) {
    351     ContainedTys = &ContainedType;
    352     NumContainedTys = 1;
    353   }
    354 
    355 public:
    356   SequentialType(const SequentialType &) = delete;
    357   SequentialType &operator=(const SequentialType &) = delete;
    358 
    359   uint64_t getNumElements() const { return NumElements; }
    360   Type *getElementType() const { return ContainedType; }
    361 
    362   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    363   static bool classof(const Type *T) {
    364     return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID;
    365   }
    366 };
    367 
    368 /// Class to represent array types.
    369 class ArrayType : public SequentialType {
    370   ArrayType(Type *ElType, uint64_t NumEl);
    371 
    372 public:
    373   ArrayType(const ArrayType &) = delete;
    374   ArrayType &operator=(const ArrayType &) = delete;
    375 
    376   /// This static method is the primary way to construct an ArrayType
    377   static ArrayType *get(Type *ElementType, uint64_t NumElements);
    378 
    379   /// Return true if the specified type is valid as a element type.
    380   static bool isValidElementType(Type *ElemTy);
    381 
    382   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    383   static bool classof(const Type *T) {
    384     return T->getTypeID() == ArrayTyID;
    385   }
    386 };
    387 
    388 uint64_t Type::getArrayNumElements() const {
    389   return cast<ArrayType>(this)->getNumElements();
    390 }
    391 
    392 /// Class to represent vector types.
    393 class VectorType : public SequentialType {
    394   VectorType(Type *ElType, unsigned NumEl);
    395 
    396 public:
    397   VectorType(const VectorType &) = delete;
    398   VectorType &operator=(const VectorType &) = delete;
    399 
    400   /// This static method is the primary way to construct an VectorType.
    401   static VectorType *get(Type *ElementType, unsigned NumElements);
    402 
    403   /// This static method gets a VectorType with the same number of elements as
    404   /// the input type, and the element type is an integer type of the same width
    405   /// as the input element type.
    406   static VectorType *getInteger(VectorType *VTy) {
    407     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    408     assert(EltBits && "Element size must be of a non-zero size");
    409     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
    410     return VectorType::get(EltTy, VTy->getNumElements());
    411   }
    412 
    413   /// This static method is like getInteger except that the element types are
    414   /// twice as wide as the elements in the input type.
    415   static VectorType *getExtendedElementVectorType(VectorType *VTy) {
    416     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    417     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
    418     return VectorType::get(EltTy, VTy->getNumElements());
    419   }
    420 
    421   /// This static method is like getInteger except that the element types are
    422   /// half as wide as the elements in the input type.
    423   static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
    424     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    425     assert((EltBits & 1) == 0 &&
    426            "Cannot truncate vector element with odd bit-width");
    427     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
    428     return VectorType::get(EltTy, VTy->getNumElements());
    429   }
    430 
    431   /// This static method returns a VectorType with half as many elements as the
    432   /// input type and the same element type.
    433   static VectorType *getHalfElementsVectorType(VectorType *VTy) {
    434     unsigned NumElts = VTy->getNumElements();
    435     assert ((NumElts & 1) == 0 &&
    436             "Cannot halve vector with odd number of elements.");
    437     return VectorType::get(VTy->getElementType(), NumElts/2);
    438   }
    439 
    440   /// This static method returns a VectorType with twice as many elements as the
    441   /// input type and the same element type.
    442   static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
    443     unsigned NumElts = VTy->getNumElements();
    444     return VectorType::get(VTy->getElementType(), NumElts*2);
    445   }
    446 
    447   /// Return true if the specified type is valid as a element type.
    448   static bool isValidElementType(Type *ElemTy);
    449 
    450   /// Return the number of bits in the Vector type.
    451   /// Returns zero when the vector is a vector of pointers.
    452   unsigned getBitWidth() const {
    453     return getNumElements() * getElementType()->getPrimitiveSizeInBits();
    454   }
    455 
    456   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    457   static bool classof(const Type *T) {
    458     return T->getTypeID() == VectorTyID;
    459   }
    460 };
    461 
    462 unsigned Type::getVectorNumElements() const {
    463   return cast<VectorType>(this)->getNumElements();
    464 }
    465 
    466 /// Class to represent pointers.
    467 class PointerType : public Type {
    468   explicit PointerType(Type *ElType, unsigned AddrSpace);
    469 
    470   Type *PointeeTy;
    471 
    472 public:
    473   PointerType(const PointerType &) = delete;
    474   PointerType &operator=(const PointerType &) = delete;
    475 
    476   /// This constructs a pointer to an object of the specified type in a numbered
    477   /// address space.
    478   static PointerType *get(Type *ElementType, unsigned AddressSpace);
    479 
    480   /// This constructs a pointer to an object of the specified type in the
    481   /// generic address space (address space zero).
    482   static PointerType *getUnqual(Type *ElementType) {
    483     return PointerType::get(ElementType, 0);
    484   }
    485 
    486   Type *getElementType() const { return PointeeTy; }
    487 
    488   /// Return true if the specified type is valid as a element type.
    489   static bool isValidElementType(Type *ElemTy);
    490 
    491   /// Return true if we can load or store from a pointer to this type.
    492   static bool isLoadableOrStorableType(Type *ElemTy);
    493 
    494   /// Return the address space of the Pointer type.
    495   inline unsigned getAddressSpace() const { return getSubclassData(); }
    496 
    497   /// Implement support type inquiry through isa, cast, and dyn_cast.
    498   static bool classof(const Type *T) {
    499     return T->getTypeID() == PointerTyID;
    500   }
    501 };
    502 
    503 unsigned Type::getPointerAddressSpace() const {
    504   return cast<PointerType>(getScalarType())->getAddressSpace();
    505 }
    506 
    507 } // end namespace llvm
    508 
    509 #endif // LLVM_IR_DERIVEDTYPES_H
    510