Home | History | Annotate | Download | only in IR
      1 //===- llvm/Use.h - Definition of the Use class -----------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// This defines the Use class.  The Use class represents the operand of an
     12 /// instruction or some other User instance which refers to a Value.  The Use
     13 /// class keeps the "use list" of the referenced value up to date.
     14 ///
     15 /// Pointer tagging is used to efficiently find the User corresponding to a Use
     16 /// without having to store a User pointer in every Use. A User is preceded in
     17 /// memory by all the Uses corresponding to its operands, and the low bits of
     18 /// one of the fields (Prev) of the Use class are used to encode offsets to be
     19 /// able to find that User given a pointer to any Use. For details, see:
     20 ///
     21 ///   http://www.llvm.org/docs/ProgrammersManual.html#UserLayout
     22 ///
     23 //===----------------------------------------------------------------------===//
     24 
     25 #ifndef LLVM_IR_USE_H
     26 #define LLVM_IR_USE_H
     27 
     28 #include "llvm-c/Types.h"
     29 #include "llvm/ADT/PointerIntPair.h"
     30 #include "llvm/Support/CBindingWrapping.h"
     31 #include "llvm/Support/Compiler.h"
     32 
     33 namespace llvm {
     34 
     35 template <typename> struct simplify_type;
     36 class User;
     37 class Value;
     38 
     39 /// \brief A Use represents the edge between a Value definition and its users.
     40 ///
     41 /// This is notionally a two-dimensional linked list. It supports traversing
     42 /// all of the uses for a particular value definition. It also supports jumping
     43 /// directly to the used value when we arrive from the User's operands, and
     44 /// jumping directly to the User when we arrive from the Value's uses.
     45 ///
     46 /// The pointer to the used Value is explicit, and the pointer to the User is
     47 /// implicit. The implicit pointer is found via a waymarking algorithm
     48 /// described in the programmer's manual:
     49 ///
     50 ///   http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm
     51 ///
     52 /// This is essentially the single most memory intensive object in LLVM because
     53 /// of the number of uses in the system. At the same time, the constant time
     54 /// operations it allows are essential to many optimizations having reasonable
     55 /// time complexity.
     56 class Use {
     57 public:
     58   Use(const Use &U) = delete;
     59 
     60   /// \brief Provide a fast substitute to std::swap<Use>
     61   /// that also works with less standard-compliant compilers
     62   void swap(Use &RHS);
     63 
     64   /// Pointer traits for the UserRef PointerIntPair. This ensures we always
     65   /// use the LSB regardless of pointer alignment on different targets.
     66   struct UserRefPointerTraits {
     67     static inline void *getAsVoidPointer(User *P) { return P; }
     68 
     69     static inline User *getFromVoidPointer(void *P) {
     70       return (User *)P;
     71     }
     72 
     73     enum { NumLowBitsAvailable = 1 };
     74   };
     75 
     76   // A type for the word following an array of hung-off Uses in memory, which is
     77   // a pointer back to their User with the bottom bit set.
     78   using UserRef = PointerIntPair<User *, 1, unsigned, UserRefPointerTraits>;
     79 
     80   /// Pointer traits for the Prev PointerIntPair. This ensures we always use
     81   /// the two LSBs regardless of pointer alignment on different targets.
     82   struct PrevPointerTraits {
     83     static inline void *getAsVoidPointer(Use **P) { return P; }
     84 
     85     static inline Use **getFromVoidPointer(void *P) {
     86       return (Use **)P;
     87     }
     88 
     89     enum { NumLowBitsAvailable = 2 };
     90   };
     91 
     92 private:
     93   /// Destructor - Only for zap()
     94   ~Use() {
     95     if (Val)
     96       removeFromList();
     97   }
     98 
     99   enum PrevPtrTag { zeroDigitTag, oneDigitTag, stopTag, fullStopTag };
    100 
    101   /// Constructor
    102   Use(PrevPtrTag tag) { Prev.setInt(tag); }
    103 
    104 public:
    105   friend class Value;
    106 
    107   operator Value *() const { return Val; }
    108   Value *get() const { return Val; }
    109 
    110   /// \brief Returns the User that contains this Use.
    111   ///
    112   /// For an instruction operand, for example, this will return the
    113   /// instruction.
    114   User *getUser() const LLVM_READONLY;
    115 
    116   inline void set(Value *Val);
    117 
    118   inline Value *operator=(Value *RHS);
    119   inline const Use &operator=(const Use &RHS);
    120 
    121   Value *operator->() { return Val; }
    122   const Value *operator->() const { return Val; }
    123 
    124   Use *getNext() const { return Next; }
    125 
    126   /// \brief Return the operand # of this use in its User.
    127   unsigned getOperandNo() const;
    128 
    129   /// \brief Initializes the waymarking tags on an array of Uses.
    130   ///
    131   /// This sets up the array of Uses such that getUser() can find the User from
    132   /// any of those Uses.
    133   static Use *initTags(Use *Start, Use *Stop);
    134 
    135   /// \brief Destroys Use operands when the number of operands of
    136   /// a User changes.
    137   static void zap(Use *Start, const Use *Stop, bool del = false);
    138 
    139 private:
    140   const Use *getImpliedUser() const LLVM_READONLY;
    141 
    142   Value *Val = nullptr;
    143   Use *Next;
    144   PointerIntPair<Use **, 2, PrevPtrTag, PrevPointerTraits> Prev;
    145 
    146   void setPrev(Use **NewPrev) { Prev.setPointer(NewPrev); }
    147 
    148   void addToList(Use **List) {
    149     Next = *List;
    150     if (Next)
    151       Next->setPrev(&Next);
    152     setPrev(List);
    153     *List = this;
    154   }
    155 
    156   void removeFromList() {
    157     Use **StrippedPrev = Prev.getPointer();
    158     *StrippedPrev = Next;
    159     if (Next)
    160       Next->setPrev(StrippedPrev);
    161   }
    162 };
    163 
    164 /// \brief Allow clients to treat uses just like values when using
    165 /// casting operators.
    166 template <> struct simplify_type<Use> {
    167   using SimpleType = Value *;
    168 
    169   static SimpleType getSimplifiedValue(Use &Val) { return Val.get(); }
    170 };
    171 template <> struct simplify_type<const Use> {
    172   using SimpleType = /*const*/ Value *;
    173 
    174   static SimpleType getSimplifiedValue(const Use &Val) { return Val.get(); }
    175 };
    176 
    177 // Create wrappers for C Binding types (see CBindingWrapping.h).
    178 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(Use, LLVMUseRef)
    179 
    180 } // end namespace llvm
    181 
    182 #endif // LLVM_IR_USE_H
    183