Home | History | Annotate | Download | only in IR
      1 //===- ValueMap.h - Safe map from Values to data ----------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the ValueMap class.  ValueMap maps Value* or any subclass
     11 // to an arbitrary other type.  It provides the DenseMap interface but updates
     12 // itself to remain safe when keys are RAUWed or deleted.  By default, when a
     13 // key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new
     14 // mapping V2->target is added.  If V2 already existed, its old target is
     15 // overwritten.  When a key is deleted, its mapping is removed.
     16 //
     17 // You can override a ValueMap's Config parameter to control exactly what
     18 // happens on RAUW and destruction and to get called back on each event.  It's
     19 // legal to call back into the ValueMap from a Config's callbacks.  Config
     20 // parameters should inherit from ValueMapConfig<KeyT> to get default
     21 // implementations of all the methods ValueMap uses.  See ValueMapConfig for
     22 // documentation of the functions you can override.
     23 //
     24 //===----------------------------------------------------------------------===//
     25 
     26 #ifndef LLVM_IR_VALUEMAP_H
     27 #define LLVM_IR_VALUEMAP_H
     28 
     29 #include "llvm/ADT/DenseMap.h"
     30 #include "llvm/ADT/DenseMapInfo.h"
     31 #include "llvm/ADT/None.h"
     32 #include "llvm/ADT/Optional.h"
     33 #include "llvm/IR/TrackingMDRef.h"
     34 #include "llvm/IR/ValueHandle.h"
     35 #include "llvm/Support/Casting.h"
     36 #include "llvm/Support/Mutex.h"
     37 #include "llvm/Support/UniqueLock.h"
     38 #include <algorithm>
     39 #include <cassert>
     40 #include <cstddef>
     41 #include <iterator>
     42 #include <type_traits>
     43 #include <utility>
     44 
     45 namespace llvm {
     46 
     47 template<typename KeyT, typename ValueT, typename Config>
     48 class ValueMapCallbackVH;
     49 template<typename DenseMapT, typename KeyT>
     50 class ValueMapIterator;
     51 template<typename DenseMapT, typename KeyT>
     52 class ValueMapConstIterator;
     53 
     54 /// This class defines the default behavior for configurable aspects of
     55 /// ValueMap<>.  User Configs should inherit from this class to be as compatible
     56 /// as possible with future versions of ValueMap.
     57 template<typename KeyT, typename MutexT = sys::Mutex>
     58 struct ValueMapConfig {
     59   using mutex_type = MutexT;
     60 
     61   /// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's
     62   /// false, the ValueMap will leave the original mapping in place.
     63   enum { FollowRAUW = true };
     64 
     65   // All methods will be called with a first argument of type ExtraData.  The
     66   // default implementations in this class take a templated first argument so
     67   // that users' subclasses can use any type they want without having to
     68   // override all the defaults.
     69   struct ExtraData {};
     70 
     71   template<typename ExtraDataT>
     72   static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {}
     73   template<typename ExtraDataT>
     74   static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
     75 
     76   /// Returns a mutex that should be acquired around any changes to the map.
     77   /// This is only acquired from the CallbackVH (and held around calls to onRAUW
     78   /// and onDelete) and not inside other ValueMap methods.  NULL means that no
     79   /// mutex is necessary.
     80   template<typename ExtraDataT>
     81   static mutex_type *getMutex(const ExtraDataT &/*Data*/) { return nullptr; }
     82 };
     83 
     84 /// See the file comment.
     85 template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT>>
     86 class ValueMap {
     87   friend class ValueMapCallbackVH<KeyT, ValueT, Config>;
     88 
     89   using ValueMapCVH = ValueMapCallbackVH<KeyT, ValueT, Config>;
     90   using MapT = DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH>>;
     91   using MDMapT = DenseMap<const Metadata *, TrackingMDRef>;
     92   using ExtraData = typename Config::ExtraData;
     93 
     94   MapT Map;
     95   Optional<MDMapT> MDMap;
     96   ExtraData Data;
     97   bool MayMapMetadata = true;
     98 
     99 public:
    100   using key_type = KeyT;
    101   using mapped_type = ValueT;
    102   using value_type = std::pair<KeyT, ValueT>;
    103   using size_type = unsigned;
    104 
    105   explicit ValueMap(unsigned NumInitBuckets = 64)
    106       : Map(NumInitBuckets), Data() {}
    107   explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64)
    108       : Map(NumInitBuckets), Data(Data) {}
    109   ValueMap(const ValueMap &) = delete;
    110   ValueMap &operator=(const ValueMap &) = delete;
    111 
    112   bool hasMD() const { return bool(MDMap); }
    113   MDMapT &MD() {
    114     if (!MDMap)
    115       MDMap.emplace();
    116     return *MDMap;
    117   }
    118   Optional<MDMapT> &getMDMap() { return MDMap; }
    119 
    120   bool mayMapMetadata() const { return MayMapMetadata; }
    121   void enableMapMetadata() { MayMapMetadata = true; }
    122   void disableMapMetadata() { MayMapMetadata = false; }
    123 
    124   /// Get the mapped metadata, if it's in the map.
    125   Optional<Metadata *> getMappedMD(const Metadata *MD) const {
    126     if (!MDMap)
    127       return None;
    128     auto Where = MDMap->find(MD);
    129     if (Where == MDMap->end())
    130       return None;
    131     return Where->second.get();
    132   }
    133 
    134   using iterator = ValueMapIterator<MapT, KeyT>;
    135   using const_iterator = ValueMapConstIterator<MapT, KeyT>;
    136 
    137   inline iterator begin() { return iterator(Map.begin()); }
    138   inline iterator end() { return iterator(Map.end()); }
    139   inline const_iterator begin() const { return const_iterator(Map.begin()); }
    140   inline const_iterator end() const { return const_iterator(Map.end()); }
    141 
    142   bool empty() const { return Map.empty(); }
    143   size_type size() const { return Map.size(); }
    144 
    145   /// Grow the map so that it has at least Size buckets. Does not shrink
    146   void resize(size_t Size) { Map.resize(Size); }
    147 
    148   void clear() {
    149     Map.clear();
    150     MDMap.reset();
    151   }
    152 
    153   /// Return 1 if the specified key is in the map, 0 otherwise.
    154   size_type count(const KeyT &Val) const {
    155     return Map.find_as(Val) == Map.end() ? 0 : 1;
    156   }
    157 
    158   iterator find(const KeyT &Val) {
    159     return iterator(Map.find_as(Val));
    160   }
    161   const_iterator find(const KeyT &Val) const {
    162     return const_iterator(Map.find_as(Val));
    163   }
    164 
    165   /// lookup - Return the entry for the specified key, or a default
    166   /// constructed value if no such entry exists.
    167   ValueT lookup(const KeyT &Val) const {
    168     typename MapT::const_iterator I = Map.find_as(Val);
    169     return I != Map.end() ? I->second : ValueT();
    170   }
    171 
    172   // Inserts key,value pair into the map if the key isn't already in the map.
    173   // If the key is already in the map, it returns false and doesn't update the
    174   // value.
    175   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
    176     auto MapResult = Map.insert(std::make_pair(Wrap(KV.first), KV.second));
    177     return std::make_pair(iterator(MapResult.first), MapResult.second);
    178   }
    179 
    180   std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
    181     auto MapResult =
    182         Map.insert(std::make_pair(Wrap(KV.first), std::move(KV.second)));
    183     return std::make_pair(iterator(MapResult.first), MapResult.second);
    184   }
    185 
    186   /// insert - Range insertion of pairs.
    187   template<typename InputIt>
    188   void insert(InputIt I, InputIt E) {
    189     for (; I != E; ++I)
    190       insert(*I);
    191   }
    192 
    193   bool erase(const KeyT &Val) {
    194     typename MapT::iterator I = Map.find_as(Val);
    195     if (I == Map.end())
    196       return false;
    197 
    198     Map.erase(I);
    199     return true;
    200   }
    201   void erase(iterator I) {
    202     return Map.erase(I.base());
    203   }
    204 
    205   value_type& FindAndConstruct(const KeyT &Key) {
    206     return Map.FindAndConstruct(Wrap(Key));
    207   }
    208 
    209   ValueT &operator[](const KeyT &Key) {
    210     return Map[Wrap(Key)];
    211   }
    212 
    213   /// isPointerIntoBucketsArray - Return true if the specified pointer points
    214   /// somewhere into the ValueMap's array of buckets (i.e. either to a key or
    215   /// value in the ValueMap).
    216   bool isPointerIntoBucketsArray(const void *Ptr) const {
    217     return Map.isPointerIntoBucketsArray(Ptr);
    218   }
    219 
    220   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
    221   /// array.  In conjunction with the previous method, this can be used to
    222   /// determine whether an insertion caused the ValueMap to reallocate.
    223   const void *getPointerIntoBucketsArray() const {
    224     return Map.getPointerIntoBucketsArray();
    225   }
    226 
    227 private:
    228   // Takes a key being looked up in the map and wraps it into a
    229   // ValueMapCallbackVH, the actual key type of the map.  We use a helper
    230   // function because ValueMapCVH is constructed with a second parameter.
    231   ValueMapCVH Wrap(KeyT key) const {
    232     // The only way the resulting CallbackVH could try to modify *this (making
    233     // the const_cast incorrect) is if it gets inserted into the map.  But then
    234     // this function must have been called from a non-const method, making the
    235     // const_cast ok.
    236     return ValueMapCVH(key, const_cast<ValueMap*>(this));
    237   }
    238 };
    239 
    240 // This CallbackVH updates its ValueMap when the contained Value changes,
    241 // according to the user's preferences expressed through the Config object.
    242 template <typename KeyT, typename ValueT, typename Config>
    243 class ValueMapCallbackVH final : public CallbackVH {
    244   friend class ValueMap<KeyT, ValueT, Config>;
    245   friend struct DenseMapInfo<ValueMapCallbackVH>;
    246 
    247   using ValueMapT = ValueMap<KeyT, ValueT, Config>;
    248   using KeySansPointerT = typename std::remove_pointer<KeyT>::type;
    249 
    250   ValueMapT *Map;
    251 
    252   ValueMapCallbackVH(KeyT Key, ValueMapT *Map)
    253       : CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))),
    254         Map(Map) {}
    255 
    256   // Private constructor used to create empty/tombstone DenseMap keys.
    257   ValueMapCallbackVH(Value *V) : CallbackVH(V), Map(nullptr) {}
    258 
    259 public:
    260   KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); }
    261 
    262   void deleted() override {
    263     // Make a copy that won't get changed even when *this is destroyed.
    264     ValueMapCallbackVH Copy(*this);
    265     typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
    266     unique_lock<typename Config::mutex_type> Guard;
    267     if (M)
    268       Guard = unique_lock<typename Config::mutex_type>(*M);
    269     Config::onDelete(Copy.Map->Data, Copy.Unwrap());  // May destroy *this.
    270     Copy.Map->Map.erase(Copy);  // Definitely destroys *this.
    271   }
    272 
    273   void allUsesReplacedWith(Value *new_key) override {
    274     assert(isa<KeySansPointerT>(new_key) &&
    275            "Invalid RAUW on key of ValueMap<>");
    276     // Make a copy that won't get changed even when *this is destroyed.
    277     ValueMapCallbackVH Copy(*this);
    278     typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
    279     unique_lock<typename Config::mutex_type> Guard;
    280     if (M)
    281       Guard = unique_lock<typename Config::mutex_type>(*M);
    282 
    283     KeyT typed_new_key = cast<KeySansPointerT>(new_key);
    284     // Can destroy *this:
    285     Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key);
    286     if (Config::FollowRAUW) {
    287       typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy);
    288       // I could == Copy.Map->Map.end() if the onRAUW callback already
    289       // removed the old mapping.
    290       if (I != Copy.Map->Map.end()) {
    291         ValueT Target(std::move(I->second));
    292         Copy.Map->Map.erase(I);  // Definitely destroys *this.
    293         Copy.Map->insert(std::make_pair(typed_new_key, std::move(Target)));
    294       }
    295     }
    296   }
    297 };
    298 
    299 template<typename KeyT, typename ValueT, typename Config>
    300 struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config>> {
    301   using VH = ValueMapCallbackVH<KeyT, ValueT, Config>;
    302 
    303   static inline VH getEmptyKey() {
    304     return VH(DenseMapInfo<Value *>::getEmptyKey());
    305   }
    306 
    307   static inline VH getTombstoneKey() {
    308     return VH(DenseMapInfo<Value *>::getTombstoneKey());
    309   }
    310 
    311   static unsigned getHashValue(const VH &Val) {
    312     return DenseMapInfo<KeyT>::getHashValue(Val.Unwrap());
    313   }
    314 
    315   static unsigned getHashValue(const KeyT &Val) {
    316     return DenseMapInfo<KeyT>::getHashValue(Val);
    317   }
    318 
    319   static bool isEqual(const VH &LHS, const VH &RHS) {
    320     return LHS == RHS;
    321   }
    322 
    323   static bool isEqual(const KeyT &LHS, const VH &RHS) {
    324     return LHS == RHS.getValPtr();
    325   }
    326 };
    327 
    328 template<typename DenseMapT, typename KeyT>
    329 class ValueMapIterator :
    330     public std::iterator<std::forward_iterator_tag,
    331                          std::pair<KeyT, typename DenseMapT::mapped_type>,
    332                          ptrdiff_t> {
    333   using BaseT = typename DenseMapT::iterator;
    334   using ValueT = typename DenseMapT::mapped_type;
    335 
    336   BaseT I;
    337 
    338 public:
    339   ValueMapIterator() : I() {}
    340   ValueMapIterator(BaseT I) : I(I) {}
    341 
    342   BaseT base() const { return I; }
    343 
    344   struct ValueTypeProxy {
    345     const KeyT first;
    346     ValueT& second;
    347 
    348     ValueTypeProxy *operator->() { return this; }
    349 
    350     operator std::pair<KeyT, ValueT>() const {
    351       return std::make_pair(first, second);
    352     }
    353   };
    354 
    355   ValueTypeProxy operator*() const {
    356     ValueTypeProxy Result = {I->first.Unwrap(), I->second};
    357     return Result;
    358   }
    359 
    360   ValueTypeProxy operator->() const {
    361     return operator*();
    362   }
    363 
    364   bool operator==(const ValueMapIterator &RHS) const {
    365     return I == RHS.I;
    366   }
    367   bool operator!=(const ValueMapIterator &RHS) const {
    368     return I != RHS.I;
    369   }
    370 
    371   inline ValueMapIterator& operator++() {  // Preincrement
    372     ++I;
    373     return *this;
    374   }
    375   ValueMapIterator operator++(int) {  // Postincrement
    376     ValueMapIterator tmp = *this; ++*this; return tmp;
    377   }
    378 };
    379 
    380 template<typename DenseMapT, typename KeyT>
    381 class ValueMapConstIterator :
    382     public std::iterator<std::forward_iterator_tag,
    383                          std::pair<KeyT, typename DenseMapT::mapped_type>,
    384                          ptrdiff_t> {
    385   using BaseT = typename DenseMapT::const_iterator;
    386   using ValueT = typename DenseMapT::mapped_type;
    387 
    388   BaseT I;
    389 
    390 public:
    391   ValueMapConstIterator() : I() {}
    392   ValueMapConstIterator(BaseT I) : I(I) {}
    393   ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other)
    394     : I(Other.base()) {}
    395 
    396   BaseT base() const { return I; }
    397 
    398   struct ValueTypeProxy {
    399     const KeyT first;
    400     const ValueT& second;
    401     ValueTypeProxy *operator->() { return this; }
    402     operator std::pair<KeyT, ValueT>() const {
    403       return std::make_pair(first, second);
    404     }
    405   };
    406 
    407   ValueTypeProxy operator*() const {
    408     ValueTypeProxy Result = {I->first.Unwrap(), I->second};
    409     return Result;
    410   }
    411 
    412   ValueTypeProxy operator->() const {
    413     return operator*();
    414   }
    415 
    416   bool operator==(const ValueMapConstIterator &RHS) const {
    417     return I == RHS.I;
    418   }
    419   bool operator!=(const ValueMapConstIterator &RHS) const {
    420     return I != RHS.I;
    421   }
    422 
    423   inline ValueMapConstIterator& operator++() {  // Preincrement
    424     ++I;
    425     return *this;
    426   }
    427   ValueMapConstIterator operator++(int) {  // Postincrement
    428     ValueMapConstIterator tmp = *this; ++*this; return tmp;
    429   }
    430 };
    431 
    432 } // end namespace llvm
    433 
    434 #endif // LLVM_IR_VALUEMAP_H
    435