Home | History | Annotate | Download | only in Object
      1 //===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_OBJECT_ELFTYPES_H
     11 #define LLVM_OBJECT_ELFTYPES_H
     12 
     13 #include "llvm/ADT/ArrayRef.h"
     14 #include "llvm/ADT/StringRef.h"
     15 #include "llvm/BinaryFormat/ELF.h"
     16 #include "llvm/Object/Error.h"
     17 #include "llvm/Support/Endian.h"
     18 #include "llvm/Support/Error.h"
     19 #include <cassert>
     20 #include <cstdint>
     21 #include <cstring>
     22 #include <type_traits>
     23 
     24 namespace llvm {
     25 namespace object {
     26 
     27 using support::endianness;
     28 
     29 template <class ELFT> struct Elf_Ehdr_Impl;
     30 template <class ELFT> struct Elf_Shdr_Impl;
     31 template <class ELFT> struct Elf_Sym_Impl;
     32 template <class ELFT> struct Elf_Dyn_Impl;
     33 template <class ELFT> struct Elf_Phdr_Impl;
     34 template <class ELFT, bool isRela> struct Elf_Rel_Impl;
     35 template <class ELFT> struct Elf_Verdef_Impl;
     36 template <class ELFT> struct Elf_Verdaux_Impl;
     37 template <class ELFT> struct Elf_Verneed_Impl;
     38 template <class ELFT> struct Elf_Vernaux_Impl;
     39 template <class ELFT> struct Elf_Versym_Impl;
     40 template <class ELFT> struct Elf_Hash_Impl;
     41 template <class ELFT> struct Elf_GnuHash_Impl;
     42 template <class ELFT> struct Elf_Chdr_Impl;
     43 
     44 template <endianness E, bool Is64> struct ELFType {
     45 private:
     46   template <typename Ty>
     47   using packed = support::detail::packed_endian_specific_integral<Ty, E, 2>;
     48 
     49 public:
     50   static const endianness TargetEndianness = E;
     51   static const bool Is64Bits = Is64;
     52 
     53   using uint = typename std::conditional<Is64, uint64_t, uint32_t>::type;
     54   using Ehdr = Elf_Ehdr_Impl<ELFType<E, Is64>>;
     55   using Shdr = Elf_Shdr_Impl<ELFType<E, Is64>>;
     56   using Sym = Elf_Sym_Impl<ELFType<E, Is64>>;
     57   using Dyn = Elf_Dyn_Impl<ELFType<E, Is64>>;
     58   using Phdr = Elf_Phdr_Impl<ELFType<E, Is64>>;
     59   using Rel = Elf_Rel_Impl<ELFType<E, Is64>, false>;
     60   using Rela = Elf_Rel_Impl<ELFType<E, Is64>, true>;
     61   using Verdef = Elf_Verdef_Impl<ELFType<E, Is64>>;
     62   using Verdaux = Elf_Verdaux_Impl<ELFType<E, Is64>>;
     63   using Verneed = Elf_Verneed_Impl<ELFType<E, Is64>>;
     64   using Vernaux = Elf_Vernaux_Impl<ELFType<E, Is64>>;
     65   using Versym = Elf_Versym_Impl<ELFType<E, Is64>>;
     66   using Hash = Elf_Hash_Impl<ELFType<E, Is64>>;
     67   using GnuHash = Elf_GnuHash_Impl<ELFType<E, Is64>>;
     68   using Chdr = Elf_Chdr_Impl<ELFType<E, Is64>>;
     69   using DynRange = ArrayRef<Dyn>;
     70   using ShdrRange = ArrayRef<Shdr>;
     71   using SymRange = ArrayRef<Sym>;
     72   using RelRange = ArrayRef<Rel>;
     73   using RelaRange = ArrayRef<Rela>;
     74   using PhdrRange = ArrayRef<Phdr>;
     75 
     76   using Half = packed<uint16_t>;
     77   using Word = packed<uint32_t>;
     78   using Sword = packed<int32_t>;
     79   using Xword = packed<uint64_t>;
     80   using Sxword = packed<int64_t>;
     81   using Addr = packed<uint>;
     82   using Off = packed<uint>;
     83 };
     84 
     85 using ELF32LE = ELFType<support::little, false>;
     86 using ELF32BE = ELFType<support::big, false>;
     87 using ELF64LE = ELFType<support::little, true>;
     88 using ELF64BE = ELFType<support::big, true>;
     89 
     90 // Use an alignment of 2 for the typedefs since that is the worst case for
     91 // ELF files in archives.
     92 
     93 // Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
     94 template <endianness target_endianness> struct ELFDataTypeTypedefHelperCommon {
     95   using Elf_Half = support::detail::packed_endian_specific_integral<
     96       uint16_t, target_endianness, 2>;
     97   using Elf_Word = support::detail::packed_endian_specific_integral<
     98       uint32_t, target_endianness, 2>;
     99   using Elf_Sword = support::detail::packed_endian_specific_integral<
    100       int32_t, target_endianness, 2>;
    101   using Elf_Xword = support::detail::packed_endian_specific_integral<
    102       uint64_t, target_endianness, 2>;
    103   using Elf_Sxword = support::detail::packed_endian_specific_integral<
    104       int64_t, target_endianness, 2>;
    105 };
    106 
    107 template <class ELFT> struct ELFDataTypeTypedefHelper;
    108 
    109 /// ELF 32bit types.
    110 template <endianness TargetEndianness>
    111 struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, false>>
    112     : ELFDataTypeTypedefHelperCommon<TargetEndianness> {
    113   using value_type = uint32_t;
    114   using Elf_Addr = support::detail::packed_endian_specific_integral<
    115       value_type, TargetEndianness, 2>;
    116   using Elf_Off = support::detail::packed_endian_specific_integral<
    117       value_type, TargetEndianness, 2>;
    118 };
    119 
    120 /// ELF 64bit types.
    121 template <endianness TargetEndianness>
    122 struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, true>>
    123     : ELFDataTypeTypedefHelperCommon<TargetEndianness> {
    124   using value_type = uint64_t;
    125   using Elf_Addr = support::detail::packed_endian_specific_integral<
    126       value_type, TargetEndianness, 2>;
    127   using Elf_Off = support::detail::packed_endian_specific_integral<
    128       value_type, TargetEndianness, 2>;
    129 };
    130 
    131 // I really don't like doing this, but the alternative is copypasta.
    132 
    133 #define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)                                       \
    134   using Elf_Addr = typename ELFT::Addr;                                        \
    135   using Elf_Off = typename ELFT::Off;                                          \
    136   using Elf_Half = typename ELFT::Half;                                        \
    137   using Elf_Word = typename ELFT::Word;                                        \
    138   using Elf_Sword = typename ELFT::Sword;                                      \
    139   using Elf_Xword = typename ELFT::Xword;                                      \
    140   using Elf_Sxword = typename ELFT::Sxword;
    141 
    142 #define LLD_ELF_COMMA ,
    143 #define LLVM_ELF_IMPORT_TYPES(E, W)                                            \
    144   LLVM_ELF_IMPORT_TYPES_ELFT(ELFType<E LLD_ELF_COMMA W>)
    145 
    146 // Section header.
    147 template <class ELFT> struct Elf_Shdr_Base;
    148 
    149 template <endianness TargetEndianness>
    150 struct Elf_Shdr_Base<ELFType<TargetEndianness, false>> {
    151   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    152   Elf_Word sh_name;      // Section name (index into string table)
    153   Elf_Word sh_type;      // Section type (SHT_*)
    154   Elf_Word sh_flags;     // Section flags (SHF_*)
    155   Elf_Addr sh_addr;      // Address where section is to be loaded
    156   Elf_Off sh_offset;     // File offset of section data, in bytes
    157   Elf_Word sh_size;      // Size of section, in bytes
    158   Elf_Word sh_link;      // Section type-specific header table index link
    159   Elf_Word sh_info;      // Section type-specific extra information
    160   Elf_Word sh_addralign; // Section address alignment
    161   Elf_Word sh_entsize;   // Size of records contained within the section
    162 };
    163 
    164 template <endianness TargetEndianness>
    165 struct Elf_Shdr_Base<ELFType<TargetEndianness, true>> {
    166   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    167   Elf_Word sh_name;       // Section name (index into string table)
    168   Elf_Word sh_type;       // Section type (SHT_*)
    169   Elf_Xword sh_flags;     // Section flags (SHF_*)
    170   Elf_Addr sh_addr;       // Address where section is to be loaded
    171   Elf_Off sh_offset;      // File offset of section data, in bytes
    172   Elf_Xword sh_size;      // Size of section, in bytes
    173   Elf_Word sh_link;       // Section type-specific header table index link
    174   Elf_Word sh_info;       // Section type-specific extra information
    175   Elf_Xword sh_addralign; // Section address alignment
    176   Elf_Xword sh_entsize;   // Size of records contained within the section
    177 };
    178 
    179 template <class ELFT>
    180 struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
    181   using Elf_Shdr_Base<ELFT>::sh_entsize;
    182   using Elf_Shdr_Base<ELFT>::sh_size;
    183 
    184   /// @brief Get the number of entities this section contains if it has any.
    185   unsigned getEntityCount() const {
    186     if (sh_entsize == 0)
    187       return 0;
    188     return sh_size / sh_entsize;
    189   }
    190 };
    191 
    192 template <class ELFT> struct Elf_Sym_Base;
    193 
    194 template <endianness TargetEndianness>
    195 struct Elf_Sym_Base<ELFType<TargetEndianness, false>> {
    196   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    197   Elf_Word st_name;       // Symbol name (index into string table)
    198   Elf_Addr st_value;      // Value or address associated with the symbol
    199   Elf_Word st_size;       // Size of the symbol
    200   unsigned char st_info;  // Symbol's type and binding attributes
    201   unsigned char st_other; // Must be zero; reserved
    202   Elf_Half st_shndx;      // Which section (header table index) it's defined in
    203 };
    204 
    205 template <endianness TargetEndianness>
    206 struct Elf_Sym_Base<ELFType<TargetEndianness, true>> {
    207   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    208   Elf_Word st_name;       // Symbol name (index into string table)
    209   unsigned char st_info;  // Symbol's type and binding attributes
    210   unsigned char st_other; // Must be zero; reserved
    211   Elf_Half st_shndx;      // Which section (header table index) it's defined in
    212   Elf_Addr st_value;      // Value or address associated with the symbol
    213   Elf_Xword st_size;      // Size of the symbol
    214 };
    215 
    216 template <class ELFT>
    217 struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
    218   using Elf_Sym_Base<ELFT>::st_info;
    219   using Elf_Sym_Base<ELFT>::st_shndx;
    220   using Elf_Sym_Base<ELFT>::st_other;
    221   using Elf_Sym_Base<ELFT>::st_value;
    222 
    223   // These accessors and mutators correspond to the ELF32_ST_BIND,
    224   // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
    225   unsigned char getBinding() const { return st_info >> 4; }
    226   unsigned char getType() const { return st_info & 0x0f; }
    227   uint64_t getValue() const { return st_value; }
    228   void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
    229   void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
    230 
    231   void setBindingAndType(unsigned char b, unsigned char t) {
    232     st_info = (b << 4) + (t & 0x0f);
    233   }
    234 
    235   /// Access to the STV_xxx flag stored in the first two bits of st_other.
    236   /// STV_DEFAULT: 0
    237   /// STV_INTERNAL: 1
    238   /// STV_HIDDEN: 2
    239   /// STV_PROTECTED: 3
    240   unsigned char getVisibility() const { return st_other & 0x3; }
    241   void setVisibility(unsigned char v) {
    242     assert(v < 4 && "Invalid value for visibility");
    243     st_other = (st_other & ~0x3) | v;
    244   }
    245 
    246   bool isAbsolute() const { return st_shndx == ELF::SHN_ABS; }
    247 
    248   bool isCommon() const {
    249     return getType() == ELF::STT_COMMON || st_shndx == ELF::SHN_COMMON;
    250   }
    251 
    252   bool isDefined() const { return !isUndefined(); }
    253 
    254   bool isProcessorSpecific() const {
    255     return st_shndx >= ELF::SHN_LOPROC && st_shndx <= ELF::SHN_HIPROC;
    256   }
    257 
    258   bool isOSSpecific() const {
    259     return st_shndx >= ELF::SHN_LOOS && st_shndx <= ELF::SHN_HIOS;
    260   }
    261 
    262   bool isReserved() const {
    263     // ELF::SHN_HIRESERVE is 0xffff so st_shndx <= ELF::SHN_HIRESERVE is always
    264     // true and some compilers warn about it.
    265     return st_shndx >= ELF::SHN_LORESERVE;
    266   }
    267 
    268   bool isUndefined() const { return st_shndx == ELF::SHN_UNDEF; }
    269 
    270   bool isExternal() const {
    271     return getBinding() != ELF::STB_LOCAL;
    272   }
    273 
    274   Expected<StringRef> getName(StringRef StrTab) const;
    275 };
    276 
    277 template <class ELFT>
    278 Expected<StringRef> Elf_Sym_Impl<ELFT>::getName(StringRef StrTab) const {
    279   uint32_t Offset = this->st_name;
    280   if (Offset >= StrTab.size())
    281     return errorCodeToError(object_error::parse_failed);
    282   return StringRef(StrTab.data() + Offset);
    283 }
    284 
    285 /// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
    286 /// (.gnu.version). This structure is identical for ELF32 and ELF64.
    287 template <class ELFT>
    288 struct Elf_Versym_Impl {
    289   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    290   Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
    291 };
    292 
    293 /// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
    294 /// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
    295 template <class ELFT>
    296 struct Elf_Verdef_Impl {
    297   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    298   using Elf_Verdaux = Elf_Verdaux_Impl<ELFT>;
    299   Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
    300   Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
    301   Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
    302   Elf_Half vd_cnt;     // Number of Verdaux entries
    303   Elf_Word vd_hash;    // Hash of name
    304   Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
    305   Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
    306 
    307   /// Get the first Verdaux entry for this Verdef.
    308   const Elf_Verdaux *getAux() const {
    309     return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux);
    310   }
    311 };
    312 
    313 /// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
    314 /// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
    315 template <class ELFT>
    316 struct Elf_Verdaux_Impl {
    317   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    318   Elf_Word vda_name; // Version name (offset in string table)
    319   Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
    320 };
    321 
    322 /// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
    323 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
    324 template <class ELFT>
    325 struct Elf_Verneed_Impl {
    326   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    327   Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
    328   Elf_Half vn_cnt;     // Number of associated Vernaux entries
    329   Elf_Word vn_file;    // Library name (string table offset)
    330   Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
    331   Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
    332 };
    333 
    334 /// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
    335 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
    336 template <class ELFT>
    337 struct Elf_Vernaux_Impl {
    338   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    339   Elf_Word vna_hash;  // Hash of dependency name
    340   Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
    341   Elf_Half vna_other; // Version index, used in .gnu.version entries
    342   Elf_Word vna_name;  // Dependency name
    343   Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
    344 };
    345 
    346 /// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
    347 ///               table section (.dynamic) look like.
    348 template <class ELFT> struct Elf_Dyn_Base;
    349 
    350 template <endianness TargetEndianness>
    351 struct Elf_Dyn_Base<ELFType<TargetEndianness, false>> {
    352   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    353   Elf_Sword d_tag;
    354   union {
    355     Elf_Word d_val;
    356     Elf_Addr d_ptr;
    357   } d_un;
    358 };
    359 
    360 template <endianness TargetEndianness>
    361 struct Elf_Dyn_Base<ELFType<TargetEndianness, true>> {
    362   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    363   Elf_Sxword d_tag;
    364   union {
    365     Elf_Xword d_val;
    366     Elf_Addr d_ptr;
    367   } d_un;
    368 };
    369 
    370 /// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters.
    371 template <class ELFT>
    372 struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
    373   using Elf_Dyn_Base<ELFT>::d_tag;
    374   using Elf_Dyn_Base<ELFT>::d_un;
    375   using intX_t = typename std::conditional<ELFT::Is64Bits,
    376                                            int64_t, int32_t>::type;
    377   using uintX_t = typename std::conditional<ELFT::Is64Bits,
    378                                             uint64_t, uint32_t>::type;
    379   intX_t getTag() const { return d_tag; }
    380   uintX_t getVal() const { return d_un.d_val; }
    381   uintX_t getPtr() const { return d_un.d_ptr; }
    382 };
    383 
    384 template <endianness TargetEndianness>
    385 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
    386   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    387   static const bool IsRela = false;
    388   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
    389   Elf_Word r_info;   // Symbol table index and type of relocation to apply
    390 
    391   uint32_t getRInfo(bool isMips64EL) const {
    392     assert(!isMips64EL);
    393     return r_info;
    394   }
    395   void setRInfo(uint32_t R, bool IsMips64EL) {
    396     assert(!IsMips64EL);
    397     r_info = R;
    398   }
    399 
    400   // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
    401   // and ELF32_R_INFO macros defined in the ELF specification:
    402   uint32_t getSymbol(bool isMips64EL) const {
    403     return this->getRInfo(isMips64EL) >> 8;
    404   }
    405   unsigned char getType(bool isMips64EL) const {
    406     return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff);
    407   }
    408   void setSymbol(uint32_t s, bool IsMips64EL) {
    409     setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
    410   }
    411   void setType(unsigned char t, bool IsMips64EL) {
    412     setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
    413   }
    414   void setSymbolAndType(uint32_t s, unsigned char t, bool IsMips64EL) {
    415     this->setRInfo((s << 8) + t, IsMips64EL);
    416   }
    417 };
    418 
    419 template <endianness TargetEndianness>
    420 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, true>
    421     : public Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
    422   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    423   static const bool IsRela = true;
    424   Elf_Sword r_addend; // Compute value for relocatable field by adding this
    425 };
    426 
    427 template <endianness TargetEndianness>
    428 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
    429   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    430   static const bool IsRela = false;
    431   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
    432   Elf_Xword r_info;  // Symbol table index and type of relocation to apply
    433 
    434   uint64_t getRInfo(bool isMips64EL) const {
    435     uint64_t t = r_info;
    436     if (!isMips64EL)
    437       return t;
    438     // Mips64 little endian has a "special" encoding of r_info. Instead of one
    439     // 64 bit little endian number, it is a little endian 32 bit number followed
    440     // by a 32 bit big endian number.
    441     return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
    442            ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
    443   }
    444 
    445   void setRInfo(uint64_t R, bool IsMips64EL) {
    446     if (IsMips64EL)
    447       r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) |
    448                ((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56);
    449     else
    450       r_info = R;
    451   }
    452 
    453   // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
    454   // and ELF64_R_INFO macros defined in the ELF specification:
    455   uint32_t getSymbol(bool isMips64EL) const {
    456     return (uint32_t)(this->getRInfo(isMips64EL) >> 32);
    457   }
    458   uint32_t getType(bool isMips64EL) const {
    459     return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL);
    460   }
    461   void setSymbol(uint32_t s, bool IsMips64EL) {
    462     setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
    463   }
    464   void setType(uint32_t t, bool IsMips64EL) {
    465     setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
    466   }
    467   void setSymbolAndType(uint32_t s, uint32_t t, bool IsMips64EL) {
    468     this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL), IsMips64EL);
    469   }
    470 };
    471 
    472 template <endianness TargetEndianness>
    473 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, true>
    474     : public Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
    475   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    476   static const bool IsRela = true;
    477   Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
    478 };
    479 
    480 template <class ELFT>
    481 struct Elf_Ehdr_Impl {
    482   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    483   unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
    484   Elf_Half e_type;                       // Type of file (see ET_*)
    485   Elf_Half e_machine;   // Required architecture for this file (see EM_*)
    486   Elf_Word e_version;   // Must be equal to 1
    487   Elf_Addr e_entry;     // Address to jump to in order to start program
    488   Elf_Off e_phoff;      // Program header table's file offset, in bytes
    489   Elf_Off e_shoff;      // Section header table's file offset, in bytes
    490   Elf_Word e_flags;     // Processor-specific flags
    491   Elf_Half e_ehsize;    // Size of ELF header, in bytes
    492   Elf_Half e_phentsize; // Size of an entry in the program header table
    493   Elf_Half e_phnum;     // Number of entries in the program header table
    494   Elf_Half e_shentsize; // Size of an entry in the section header table
    495   Elf_Half e_shnum;     // Number of entries in the section header table
    496   Elf_Half e_shstrndx;  // Section header table index of section name
    497                         // string table
    498 
    499   bool checkMagic() const {
    500     return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
    501   }
    502 
    503   unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
    504   unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
    505 };
    506 
    507 template <endianness TargetEndianness>
    508 struct Elf_Phdr_Impl<ELFType<TargetEndianness, false>> {
    509   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    510   Elf_Word p_type;   // Type of segment
    511   Elf_Off p_offset;  // FileOffset where segment is located, in bytes
    512   Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
    513   Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
    514   Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
    515   Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
    516   Elf_Word p_flags;  // Segment flags
    517   Elf_Word p_align;  // Segment alignment constraint
    518 };
    519 
    520 template <endianness TargetEndianness>
    521 struct Elf_Phdr_Impl<ELFType<TargetEndianness, true>> {
    522   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    523   Elf_Word p_type;    // Type of segment
    524   Elf_Word p_flags;   // Segment flags
    525   Elf_Off p_offset;   // FileOffset where segment is located, in bytes
    526   Elf_Addr p_vaddr;   // Virtual Address of beginning of segment
    527   Elf_Addr p_paddr;   // Physical address of beginning of segment (OS-specific)
    528   Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
    529   Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
    530   Elf_Xword p_align;  // Segment alignment constraint
    531 };
    532 
    533 // ELFT needed for endianness.
    534 template <class ELFT>
    535 struct Elf_Hash_Impl {
    536   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    537   Elf_Word nbucket;
    538   Elf_Word nchain;
    539 
    540   ArrayRef<Elf_Word> buckets() const {
    541     return ArrayRef<Elf_Word>(&nbucket + 2, &nbucket + 2 + nbucket);
    542   }
    543 
    544   ArrayRef<Elf_Word> chains() const {
    545     return ArrayRef<Elf_Word>(&nbucket + 2 + nbucket,
    546                               &nbucket + 2 + nbucket + nchain);
    547   }
    548 };
    549 
    550 // .gnu.hash section
    551 template <class ELFT>
    552 struct Elf_GnuHash_Impl {
    553   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    554   Elf_Word nbuckets;
    555   Elf_Word symndx;
    556   Elf_Word maskwords;
    557   Elf_Word shift2;
    558 
    559   ArrayRef<Elf_Off> filter() const {
    560     return ArrayRef<Elf_Off>(reinterpret_cast<const Elf_Off *>(&shift2 + 1),
    561                              maskwords);
    562   }
    563 
    564   ArrayRef<Elf_Word> buckets() const {
    565     return ArrayRef<Elf_Word>(
    566         reinterpret_cast<const Elf_Word *>(filter().end()), nbuckets);
    567   }
    568 
    569   ArrayRef<Elf_Word> values(unsigned DynamicSymCount) const {
    570     return ArrayRef<Elf_Word>(buckets().end(), DynamicSymCount - symndx);
    571   }
    572 };
    573 
    574 // Compressed section headers.
    575 // http://www.sco.com/developers/gabi/latest/ch4.sheader.html#compression_header
    576 template <endianness TargetEndianness>
    577 struct Elf_Chdr_Impl<ELFType<TargetEndianness, false>> {
    578   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    579   Elf_Word ch_type;
    580   Elf_Word ch_size;
    581   Elf_Word ch_addralign;
    582 };
    583 
    584 template <endianness TargetEndianness>
    585 struct Elf_Chdr_Impl<ELFType<TargetEndianness, true>> {
    586   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    587   Elf_Word ch_type;
    588   Elf_Word ch_reserved;
    589   Elf_Xword ch_size;
    590   Elf_Xword ch_addralign;
    591 };
    592 
    593 // MIPS .reginfo section
    594 template <class ELFT>
    595 struct Elf_Mips_RegInfo;
    596 
    597 template <support::endianness TargetEndianness>
    598 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, false>> {
    599   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    600   Elf_Word ri_gprmask;     // bit-mask of used general registers
    601   Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
    602   Elf_Addr ri_gp_value;    // gp register value
    603 };
    604 
    605 template <support::endianness TargetEndianness>
    606 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, true>> {
    607   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    608   Elf_Word ri_gprmask;     // bit-mask of used general registers
    609   Elf_Word ri_pad;         // unused padding field
    610   Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
    611   Elf_Addr ri_gp_value;    // gp register value
    612 };
    613 
    614 // .MIPS.options section
    615 template <class ELFT> struct Elf_Mips_Options {
    616   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    617   uint8_t kind;     // Determines interpretation of variable part of descriptor
    618   uint8_t size;     // Byte size of descriptor, including this header
    619   Elf_Half section; // Section header index of section affected,
    620                     // or 0 for global options
    621   Elf_Word info;    // Kind-specific information
    622 
    623   Elf_Mips_RegInfo<ELFT> &getRegInfo() {
    624     assert(kind == ELF::ODK_REGINFO);
    625     return *reinterpret_cast<Elf_Mips_RegInfo<ELFT> *>(
    626         (uint8_t *)this + sizeof(Elf_Mips_Options));
    627   }
    628   const Elf_Mips_RegInfo<ELFT> &getRegInfo() const {
    629     return const_cast<Elf_Mips_Options *>(this)->getRegInfo();
    630   }
    631 };
    632 
    633 // .MIPS.abiflags section content
    634 template <class ELFT> struct Elf_Mips_ABIFlags {
    635   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    636   Elf_Half version;  // Version of the structure
    637   uint8_t isa_level; // ISA level: 1-5, 32, and 64
    638   uint8_t isa_rev;   // ISA revision (0 for MIPS I - MIPS V)
    639   uint8_t gpr_size;  // General purpose registers size
    640   uint8_t cpr1_size; // Co-processor 1 registers size
    641   uint8_t cpr2_size; // Co-processor 2 registers size
    642   uint8_t fp_abi;    // Floating-point ABI flag
    643   Elf_Word isa_ext;  // Processor-specific extension
    644   Elf_Word ases;     // ASEs flags
    645   Elf_Word flags1;   // General flags
    646   Elf_Word flags2;   // General flags
    647 };
    648 
    649 } // end namespace object.
    650 } // end namespace llvm.
    651 
    652 #endif // LLVM_OBJECT_ELFTYPES_H
    653