Home | History | Annotate | Download | only in Analysis
      1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Shared implementation of BlockFrequency for IR and Machine Instructions.
     11 // See the documentation below for BlockFrequencyInfoImpl for details.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
     16 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
     17 
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/GraphTraits.h"
     20 #include "llvm/ADT/Optional.h"
     21 #include "llvm/ADT/PostOrderIterator.h"
     22 #include "llvm/ADT/SmallVector.h"
     23 #include "llvm/ADT/Twine.h"
     24 #include "llvm/ADT/iterator_range.h"
     25 #include "llvm/IR/BasicBlock.h"
     26 #include "llvm/Support/BlockFrequency.h"
     27 #include "llvm/Support/BranchProbability.h"
     28 #include "llvm/Support/DOTGraphTraits.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/Format.h"
     32 #include "llvm/Support/ScaledNumber.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include <algorithm>
     35 #include <cassert>
     36 #include <cstddef>
     37 #include <cstdint>
     38 #include <deque>
     39 #include <iterator>
     40 #include <limits>
     41 #include <list>
     42 #include <string>
     43 #include <utility>
     44 #include <vector>
     45 
     46 #define DEBUG_TYPE "block-freq"
     47 
     48 namespace llvm {
     49 
     50 class BranchProbabilityInfo;
     51 class Function;
     52 class Loop;
     53 class LoopInfo;
     54 class MachineBasicBlock;
     55 class MachineBranchProbabilityInfo;
     56 class MachineFunction;
     57 class MachineLoop;
     58 class MachineLoopInfo;
     59 
     60 namespace bfi_detail {
     61 
     62 struct IrreducibleGraph;
     63 
     64 // This is part of a workaround for a GCC 4.7 crash on lambdas.
     65 template <class BT> struct BlockEdgesAdder;
     66 
     67 /// \brief Mass of a block.
     68 ///
     69 /// This class implements a sort of fixed-point fraction always between 0.0 and
     70 /// 1.0.  getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
     71 /// 1.0.
     72 ///
     73 /// Masses can be added and subtracted.  Simple saturation arithmetic is used,
     74 /// so arithmetic operations never overflow or underflow.
     75 ///
     76 /// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
     77 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
     78 /// quite, maximum precision).
     79 ///
     80 /// Masses can be scaled by \a BranchProbability at maximum precision.
     81 class BlockMass {
     82   uint64_t Mass = 0;
     83 
     84 public:
     85   BlockMass() = default;
     86   explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
     87 
     88   static BlockMass getEmpty() { return BlockMass(); }
     89 
     90   static BlockMass getFull() {
     91     return BlockMass(std::numeric_limits<uint64_t>::max());
     92   }
     93 
     94   uint64_t getMass() const { return Mass; }
     95 
     96   bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
     97   bool isEmpty() const { return !Mass; }
     98 
     99   bool operator!() const { return isEmpty(); }
    100 
    101   /// \brief Add another mass.
    102   ///
    103   /// Adds another mass, saturating at \a isFull() rather than overflowing.
    104   BlockMass &operator+=(BlockMass X) {
    105     uint64_t Sum = Mass + X.Mass;
    106     Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum;
    107     return *this;
    108   }
    109 
    110   /// \brief Subtract another mass.
    111   ///
    112   /// Subtracts another mass, saturating at \a isEmpty() rather than
    113   /// undeflowing.
    114   BlockMass &operator-=(BlockMass X) {
    115     uint64_t Diff = Mass - X.Mass;
    116     Mass = Diff > Mass ? 0 : Diff;
    117     return *this;
    118   }
    119 
    120   BlockMass &operator*=(BranchProbability P) {
    121     Mass = P.scale(Mass);
    122     return *this;
    123   }
    124 
    125   bool operator==(BlockMass X) const { return Mass == X.Mass; }
    126   bool operator!=(BlockMass X) const { return Mass != X.Mass; }
    127   bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
    128   bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
    129   bool operator<(BlockMass X) const { return Mass < X.Mass; }
    130   bool operator>(BlockMass X) const { return Mass > X.Mass; }
    131 
    132   /// \brief Convert to scaled number.
    133   ///
    134   /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
    135   /// gives slightly above 0.0.
    136   ScaledNumber<uint64_t> toScaled() const;
    137 
    138   void dump() const;
    139   raw_ostream &print(raw_ostream &OS) const;
    140 };
    141 
    142 inline BlockMass operator+(BlockMass L, BlockMass R) {
    143   return BlockMass(L) += R;
    144 }
    145 inline BlockMass operator-(BlockMass L, BlockMass R) {
    146   return BlockMass(L) -= R;
    147 }
    148 inline BlockMass operator*(BlockMass L, BranchProbability R) {
    149   return BlockMass(L) *= R;
    150 }
    151 inline BlockMass operator*(BranchProbability L, BlockMass R) {
    152   return BlockMass(R) *= L;
    153 }
    154 
    155 inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
    156   return X.print(OS);
    157 }
    158 
    159 } // end namespace bfi_detail
    160 
    161 template <> struct isPodLike<bfi_detail::BlockMass> {
    162   static const bool value = true;
    163 };
    164 
    165 /// \brief Base class for BlockFrequencyInfoImpl
    166 ///
    167 /// BlockFrequencyInfoImplBase has supporting data structures and some
    168 /// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
    169 /// the block type (or that call such algorithms) are skipped here.
    170 ///
    171 /// Nevertheless, the majority of the overall algorithm documention lives with
    172 /// BlockFrequencyInfoImpl.  See there for details.
    173 class BlockFrequencyInfoImplBase {
    174 public:
    175   using Scaled64 = ScaledNumber<uint64_t>;
    176   using BlockMass = bfi_detail::BlockMass;
    177 
    178   /// \brief Representative of a block.
    179   ///
    180   /// This is a simple wrapper around an index into the reverse-post-order
    181   /// traversal of the blocks.
    182   ///
    183   /// Unlike a block pointer, its order has meaning (location in the
    184   /// topological sort) and it's class is the same regardless of block type.
    185   struct BlockNode {
    186     using IndexType = uint32_t;
    187 
    188     IndexType Index = std::numeric_limits<uint32_t>::max();
    189 
    190     BlockNode() = default;
    191     BlockNode(IndexType Index) : Index(Index) {}
    192 
    193     bool operator==(const BlockNode &X) const { return Index == X.Index; }
    194     bool operator!=(const BlockNode &X) const { return Index != X.Index; }
    195     bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
    196     bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
    197     bool operator<(const BlockNode &X) const { return Index < X.Index; }
    198     bool operator>(const BlockNode &X) const { return Index > X.Index; }
    199 
    200     bool isValid() const { return Index <= getMaxIndex(); }
    201 
    202     static size_t getMaxIndex() {
    203        return std::numeric_limits<uint32_t>::max() - 1;
    204     }
    205   };
    206 
    207   /// \brief Stats about a block itself.
    208   struct FrequencyData {
    209     Scaled64 Scaled;
    210     uint64_t Integer;
    211   };
    212 
    213   /// \brief Data about a loop.
    214   ///
    215   /// Contains the data necessary to represent a loop as a pseudo-node once it's
    216   /// packaged.
    217   struct LoopData {
    218     using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>;
    219     using NodeList = SmallVector<BlockNode, 4>;
    220     using HeaderMassList = SmallVector<BlockMass, 1>;
    221 
    222     LoopData *Parent;            ///< The parent loop.
    223     bool IsPackaged = false;     ///< Whether this has been packaged.
    224     uint32_t NumHeaders = 1;     ///< Number of headers.
    225     ExitMap Exits;               ///< Successor edges (and weights).
    226     NodeList Nodes;              ///< Header and the members of the loop.
    227     HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
    228     BlockMass Mass;
    229     Scaled64 Scale;
    230 
    231     LoopData(LoopData *Parent, const BlockNode &Header)
    232       : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
    233 
    234     template <class It1, class It2>
    235     LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
    236              It2 LastOther)
    237         : Parent(Parent), Nodes(FirstHeader, LastHeader) {
    238       NumHeaders = Nodes.size();
    239       Nodes.insert(Nodes.end(), FirstOther, LastOther);
    240       BackedgeMass.resize(NumHeaders);
    241     }
    242 
    243     bool isHeader(const BlockNode &Node) const {
    244       if (isIrreducible())
    245         return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
    246                                   Node);
    247       return Node == Nodes[0];
    248     }
    249 
    250     BlockNode getHeader() const { return Nodes[0]; }
    251     bool isIrreducible() const { return NumHeaders > 1; }
    252 
    253     HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
    254       assert(isHeader(B) && "this is only valid on loop header blocks");
    255       if (isIrreducible())
    256         return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
    257                Nodes.begin();
    258       return 0;
    259     }
    260 
    261     NodeList::const_iterator members_begin() const {
    262       return Nodes.begin() + NumHeaders;
    263     }
    264 
    265     NodeList::const_iterator members_end() const { return Nodes.end(); }
    266     iterator_range<NodeList::const_iterator> members() const {
    267       return make_range(members_begin(), members_end());
    268     }
    269   };
    270 
    271   /// \brief Index of loop information.
    272   struct WorkingData {
    273     BlockNode Node;           ///< This node.
    274     LoopData *Loop = nullptr; ///< The loop this block is inside.
    275     BlockMass Mass;           ///< Mass distribution from the entry block.
    276 
    277     WorkingData(const BlockNode &Node) : Node(Node) {}
    278 
    279     bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
    280 
    281     bool isDoubleLoopHeader() const {
    282       return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
    283              Loop->Parent->isHeader(Node);
    284     }
    285 
    286     LoopData *getContainingLoop() const {
    287       if (!isLoopHeader())
    288         return Loop;
    289       if (!isDoubleLoopHeader())
    290         return Loop->Parent;
    291       return Loop->Parent->Parent;
    292     }
    293 
    294     /// \brief Resolve a node to its representative.
    295     ///
    296     /// Get the node currently representing Node, which could be a containing
    297     /// loop.
    298     ///
    299     /// This function should only be called when distributing mass.  As long as
    300     /// there are no irreducible edges to Node, then it will have complexity
    301     /// O(1) in this context.
    302     ///
    303     /// In general, the complexity is O(L), where L is the number of loop
    304     /// headers Node has been packaged into.  Since this method is called in
    305     /// the context of distributing mass, L will be the number of loop headers
    306     /// an early exit edge jumps out of.
    307     BlockNode getResolvedNode() const {
    308       auto L = getPackagedLoop();
    309       return L ? L->getHeader() : Node;
    310     }
    311 
    312     LoopData *getPackagedLoop() const {
    313       if (!Loop || !Loop->IsPackaged)
    314         return nullptr;
    315       auto L = Loop;
    316       while (L->Parent && L->Parent->IsPackaged)
    317         L = L->Parent;
    318       return L;
    319     }
    320 
    321     /// \brief Get the appropriate mass for a node.
    322     ///
    323     /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
    324     /// has been packaged), returns the mass of its pseudo-node.  If it's a
    325     /// node inside a packaged loop, it returns the loop's mass.
    326     BlockMass &getMass() {
    327       if (!isAPackage())
    328         return Mass;
    329       if (!isADoublePackage())
    330         return Loop->Mass;
    331       return Loop->Parent->Mass;
    332     }
    333 
    334     /// \brief Has ContainingLoop been packaged up?
    335     bool isPackaged() const { return getResolvedNode() != Node; }
    336 
    337     /// \brief Has Loop been packaged up?
    338     bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
    339 
    340     /// \brief Has Loop been packaged up twice?
    341     bool isADoublePackage() const {
    342       return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
    343     }
    344   };
    345 
    346   /// \brief Unscaled probability weight.
    347   ///
    348   /// Probability weight for an edge in the graph (including the
    349   /// successor/target node).
    350   ///
    351   /// All edges in the original function are 32-bit.  However, exit edges from
    352   /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
    353   /// space in general.
    354   ///
    355   /// In addition to the raw weight amount, Weight stores the type of the edge
    356   /// in the current context (i.e., the context of the loop being processed).
    357   /// Is this a local edge within the loop, an exit from the loop, or a
    358   /// backedge to the loop header?
    359   struct Weight {
    360     enum DistType { Local, Exit, Backedge };
    361     DistType Type = Local;
    362     BlockNode TargetNode;
    363     uint64_t Amount = 0;
    364 
    365     Weight() = default;
    366     Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
    367         : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
    368   };
    369 
    370   /// \brief Distribution of unscaled probability weight.
    371   ///
    372   /// Distribution of unscaled probability weight to a set of successors.
    373   ///
    374   /// This class collates the successor edge weights for later processing.
    375   ///
    376   /// \a DidOverflow indicates whether \a Total did overflow while adding to
    377   /// the distribution.  It should never overflow twice.
    378   struct Distribution {
    379     using WeightList = SmallVector<Weight, 4>;
    380 
    381     WeightList Weights;       ///< Individual successor weights.
    382     uint64_t Total = 0;       ///< Sum of all weights.
    383     bool DidOverflow = false; ///< Whether \a Total did overflow.
    384 
    385     Distribution() = default;
    386 
    387     void addLocal(const BlockNode &Node, uint64_t Amount) {
    388       add(Node, Amount, Weight::Local);
    389     }
    390 
    391     void addExit(const BlockNode &Node, uint64_t Amount) {
    392       add(Node, Amount, Weight::Exit);
    393     }
    394 
    395     void addBackedge(const BlockNode &Node, uint64_t Amount) {
    396       add(Node, Amount, Weight::Backedge);
    397     }
    398 
    399     /// \brief Normalize the distribution.
    400     ///
    401     /// Combines multiple edges to the same \a Weight::TargetNode and scales
    402     /// down so that \a Total fits into 32-bits.
    403     ///
    404     /// This is linear in the size of \a Weights.  For the vast majority of
    405     /// cases, adjacent edge weights are combined by sorting WeightList and
    406     /// combining adjacent weights.  However, for very large edge lists an
    407     /// auxiliary hash table is used.
    408     void normalize();
    409 
    410   private:
    411     void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
    412   };
    413 
    414   /// \brief Data about each block.  This is used downstream.
    415   std::vector<FrequencyData> Freqs;
    416 
    417   /// \brief Loop data: see initializeLoops().
    418   std::vector<WorkingData> Working;
    419 
    420   /// \brief Indexed information about loops.
    421   std::list<LoopData> Loops;
    422 
    423   /// \brief Virtual destructor.
    424   ///
    425   /// Need a virtual destructor to mask the compiler warning about
    426   /// getBlockName().
    427   virtual ~BlockFrequencyInfoImplBase() = default;
    428 
    429   /// \brief Add all edges out of a packaged loop to the distribution.
    430   ///
    431   /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
    432   /// successor edge.
    433   ///
    434   /// \return \c true unless there's an irreducible backedge.
    435   bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
    436                                Distribution &Dist);
    437 
    438   /// \brief Add an edge to the distribution.
    439   ///
    440   /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
    441   /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
    442   /// every edge should be a local edge (since all the loops are packaged up).
    443   ///
    444   /// \return \c true unless aborted due to an irreducible backedge.
    445   bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
    446                  const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
    447 
    448   LoopData &getLoopPackage(const BlockNode &Head) {
    449     assert(Head.Index < Working.size());
    450     assert(Working[Head.Index].isLoopHeader());
    451     return *Working[Head.Index].Loop;
    452   }
    453 
    454   /// \brief Analyze irreducible SCCs.
    455   ///
    456   /// Separate irreducible SCCs from \c G, which is an explict graph of \c
    457   /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
    458   /// Insert them into \a Loops before \c Insert.
    459   ///
    460   /// \return the \c LoopData nodes representing the irreducible SCCs.
    461   iterator_range<std::list<LoopData>::iterator>
    462   analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
    463                      std::list<LoopData>::iterator Insert);
    464 
    465   /// \brief Update a loop after packaging irreducible SCCs inside of it.
    466   ///
    467   /// Update \c OuterLoop.  Before finding irreducible control flow, it was
    468   /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
    469   /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
    470   /// up need to be removed from \a OuterLoop::Nodes.
    471   void updateLoopWithIrreducible(LoopData &OuterLoop);
    472 
    473   /// \brief Distribute mass according to a distribution.
    474   ///
    475   /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
    476   /// backedges and exits are stored in its entry in Loops.
    477   ///
    478   /// Mass is distributed in parallel from two copies of the source mass.
    479   void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
    480                       Distribution &Dist);
    481 
    482   /// \brief Compute the loop scale for a loop.
    483   void computeLoopScale(LoopData &Loop);
    484 
    485   /// Adjust the mass of all headers in an irreducible loop.
    486   ///
    487   /// Initially, irreducible loops are assumed to distribute their mass
    488   /// equally among its headers. This can lead to wrong frequency estimates
    489   /// since some headers may be executed more frequently than others.
    490   ///
    491   /// This adjusts header mass distribution so it matches the weights of
    492   /// the backedges going into each of the loop headers.
    493   void adjustLoopHeaderMass(LoopData &Loop);
    494 
    495   /// \brief Package up a loop.
    496   void packageLoop(LoopData &Loop);
    497 
    498   /// \brief Unwrap loops.
    499   void unwrapLoops();
    500 
    501   /// \brief Finalize frequency metrics.
    502   ///
    503   /// Calculates final frequencies and cleans up no-longer-needed data
    504   /// structures.
    505   void finalizeMetrics();
    506 
    507   /// \brief Clear all memory.
    508   void clear();
    509 
    510   virtual std::string getBlockName(const BlockNode &Node) const;
    511   std::string getLoopName(const LoopData &Loop) const;
    512 
    513   virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
    514   void dump() const { print(dbgs()); }
    515 
    516   Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
    517 
    518   BlockFrequency getBlockFreq(const BlockNode &Node) const;
    519   Optional<uint64_t> getBlockProfileCount(const Function &F,
    520                                           const BlockNode &Node) const;
    521   Optional<uint64_t> getProfileCountFromFreq(const Function &F,
    522                                              uint64_t Freq) const;
    523 
    524   void setBlockFreq(const BlockNode &Node, uint64_t Freq);
    525 
    526   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
    527   raw_ostream &printBlockFreq(raw_ostream &OS,
    528                               const BlockFrequency &Freq) const;
    529 
    530   uint64_t getEntryFreq() const {
    531     assert(!Freqs.empty());
    532     return Freqs[0].Integer;
    533   }
    534 };
    535 
    536 namespace bfi_detail {
    537 
    538 template <class BlockT> struct TypeMap {};
    539 template <> struct TypeMap<BasicBlock> {
    540   using BlockT = BasicBlock;
    541   using FunctionT = Function;
    542   using BranchProbabilityInfoT = BranchProbabilityInfo;
    543   using LoopT = Loop;
    544   using LoopInfoT = LoopInfo;
    545 };
    546 template <> struct TypeMap<MachineBasicBlock> {
    547   using BlockT = MachineBasicBlock;
    548   using FunctionT = MachineFunction;
    549   using BranchProbabilityInfoT = MachineBranchProbabilityInfo;
    550   using LoopT = MachineLoop;
    551   using LoopInfoT = MachineLoopInfo;
    552 };
    553 
    554 /// \brief Get the name of a MachineBasicBlock.
    555 ///
    556 /// Get the name of a MachineBasicBlock.  It's templated so that including from
    557 /// CodeGen is unnecessary (that would be a layering issue).
    558 ///
    559 /// This is used mainly for debug output.  The name is similar to
    560 /// MachineBasicBlock::getFullName(), but skips the name of the function.
    561 template <class BlockT> std::string getBlockName(const BlockT *BB) {
    562   assert(BB && "Unexpected nullptr");
    563   auto MachineName = "BB" + Twine(BB->getNumber());
    564   if (BB->getBasicBlock())
    565     return (MachineName + "[" + BB->getName() + "]").str();
    566   return MachineName.str();
    567 }
    568 /// \brief Get the name of a BasicBlock.
    569 template <> inline std::string getBlockName(const BasicBlock *BB) {
    570   assert(BB && "Unexpected nullptr");
    571   return BB->getName().str();
    572 }
    573 
    574 /// \brief Graph of irreducible control flow.
    575 ///
    576 /// This graph is used for determining the SCCs in a loop (or top-level
    577 /// function) that has irreducible control flow.
    578 ///
    579 /// During the block frequency algorithm, the local graphs are defined in a
    580 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
    581 /// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
    582 /// latter only has successor information.
    583 ///
    584 /// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
    585 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
    586 /// and it explicitly lists predecessors and successors.  The initialization
    587 /// that relies on \c MachineBasicBlock is defined in the header.
    588 struct IrreducibleGraph {
    589   using BFIBase = BlockFrequencyInfoImplBase;
    590 
    591   BFIBase &BFI;
    592 
    593   using BlockNode = BFIBase::BlockNode;
    594   struct IrrNode {
    595     BlockNode Node;
    596     unsigned NumIn = 0;
    597     std::deque<const IrrNode *> Edges;
    598 
    599     IrrNode(const BlockNode &Node) : Node(Node) {}
    600 
    601     using iterator = std::deque<const IrrNode *>::const_iterator;
    602 
    603     iterator pred_begin() const { return Edges.begin(); }
    604     iterator succ_begin() const { return Edges.begin() + NumIn; }
    605     iterator pred_end() const { return succ_begin(); }
    606     iterator succ_end() const { return Edges.end(); }
    607   };
    608   BlockNode Start;
    609   const IrrNode *StartIrr = nullptr;
    610   std::vector<IrrNode> Nodes;
    611   SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
    612 
    613   /// \brief Construct an explicit graph containing irreducible control flow.
    614   ///
    615   /// Construct an explicit graph of the control flow in \c OuterLoop (or the
    616   /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
    617   /// addBlockEdges to add block successors that have not been packaged into
    618   /// loops.
    619   ///
    620   /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
    621   /// user of this.
    622   template <class BlockEdgesAdder>
    623   IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
    624                    BlockEdgesAdder addBlockEdges) : BFI(BFI) {
    625     initialize(OuterLoop, addBlockEdges);
    626   }
    627 
    628   template <class BlockEdgesAdder>
    629   void initialize(const BFIBase::LoopData *OuterLoop,
    630                   BlockEdgesAdder addBlockEdges);
    631   void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
    632   void addNodesInFunction();
    633 
    634   void addNode(const BlockNode &Node) {
    635     Nodes.emplace_back(Node);
    636     BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
    637   }
    638 
    639   void indexNodes();
    640   template <class BlockEdgesAdder>
    641   void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
    642                 BlockEdgesAdder addBlockEdges);
    643   void addEdge(IrrNode &Irr, const BlockNode &Succ,
    644                const BFIBase::LoopData *OuterLoop);
    645 };
    646 
    647 template <class BlockEdgesAdder>
    648 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
    649                                   BlockEdgesAdder addBlockEdges) {
    650   if (OuterLoop) {
    651     addNodesInLoop(*OuterLoop);
    652     for (auto N : OuterLoop->Nodes)
    653       addEdges(N, OuterLoop, addBlockEdges);
    654   } else {
    655     addNodesInFunction();
    656     for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
    657       addEdges(Index, OuterLoop, addBlockEdges);
    658   }
    659   StartIrr = Lookup[Start.Index];
    660 }
    661 
    662 template <class BlockEdgesAdder>
    663 void IrreducibleGraph::addEdges(const BlockNode &Node,
    664                                 const BFIBase::LoopData *OuterLoop,
    665                                 BlockEdgesAdder addBlockEdges) {
    666   auto L = Lookup.find(Node.Index);
    667   if (L == Lookup.end())
    668     return;
    669   IrrNode &Irr = *L->second;
    670   const auto &Working = BFI.Working[Node.Index];
    671 
    672   if (Working.isAPackage())
    673     for (const auto &I : Working.Loop->Exits)
    674       addEdge(Irr, I.first, OuterLoop);
    675   else
    676     addBlockEdges(*this, Irr, OuterLoop);
    677 }
    678 
    679 } // end namespace bfi_detail
    680 
    681 /// \brief Shared implementation for block frequency analysis.
    682 ///
    683 /// This is a shared implementation of BlockFrequencyInfo and
    684 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
    685 /// blocks.
    686 ///
    687 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
    688 /// which is called the header.  A given loop, L, can have sub-loops, which are
    689 /// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
    690 /// consists of a single block that does not have a self-edge.)
    691 ///
    692 /// In addition to loops, this algorithm has limited support for irreducible
    693 /// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
    694 /// discovered on they fly, and modelled as loops with multiple headers.
    695 ///
    696 /// The headers of irreducible sub-SCCs consist of its entry blocks and all
    697 /// nodes that are targets of a backedge within it (excluding backedges within
    698 /// true sub-loops).  Block frequency calculations act as if a block is
    699 /// inserted that intercepts all the edges to the headers.  All backedges and
    700 /// entries point to this block.  Its successors are the headers, which split
    701 /// the frequency evenly.
    702 ///
    703 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
    704 /// separates mass distribution from loop scaling, and dithers to eliminate
    705 /// probability mass loss.
    706 ///
    707 /// The implementation is split between BlockFrequencyInfoImpl, which knows the
    708 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
    709 /// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
    710 /// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
    711 /// reverse-post order.  This gives two advantages:  it's easy to compare the
    712 /// relative ordering of two nodes, and maps keyed on BlockT can be represented
    713 /// by vectors.
    714 ///
    715 /// This algorithm is O(V+E), unless there is irreducible control flow, in
    716 /// which case it's O(V*E) in the worst case.
    717 ///
    718 /// These are the main stages:
    719 ///
    720 ///  0. Reverse post-order traversal (\a initializeRPOT()).
    721 ///
    722 ///     Run a single post-order traversal and save it (in reverse) in RPOT.
    723 ///     All other stages make use of this ordering.  Save a lookup from BlockT
    724 ///     to BlockNode (the index into RPOT) in Nodes.
    725 ///
    726 ///  1. Loop initialization (\a initializeLoops()).
    727 ///
    728 ///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
    729 ///     the algorithm.  In particular, store the immediate members of each loop
    730 ///     in reverse post-order.
    731 ///
    732 ///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
    733 ///
    734 ///     For each loop (bottom-up), distribute mass through the DAG resulting
    735 ///     from ignoring backedges and treating sub-loops as a single pseudo-node.
    736 ///     Track the backedge mass distributed to the loop header, and use it to
    737 ///     calculate the loop scale (number of loop iterations).  Immediate
    738 ///     members that represent sub-loops will already have been visited and
    739 ///     packaged into a pseudo-node.
    740 ///
    741 ///     Distributing mass in a loop is a reverse-post-order traversal through
    742 ///     the loop.  Start by assigning full mass to the Loop header.  For each
    743 ///     node in the loop:
    744 ///
    745 ///         - Fetch and categorize the weight distribution for its successors.
    746 ///           If this is a packaged-subloop, the weight distribution is stored
    747 ///           in \a LoopData::Exits.  Otherwise, fetch it from
    748 ///           BranchProbabilityInfo.
    749 ///
    750 ///         - Each successor is categorized as \a Weight::Local, a local edge
    751 ///           within the current loop, \a Weight::Backedge, a backedge to the
    752 ///           loop header, or \a Weight::Exit, any successor outside the loop.
    753 ///           The weight, the successor, and its category are stored in \a
    754 ///           Distribution.  There can be multiple edges to each successor.
    755 ///
    756 ///         - If there's a backedge to a non-header, there's an irreducible SCC.
    757 ///           The usual flow is temporarily aborted.  \a
    758 ///           computeIrreducibleMass() finds the irreducible SCCs within the
    759 ///           loop, packages them up, and restarts the flow.
    760 ///
    761 ///         - Normalize the distribution:  scale weights down so that their sum
    762 ///           is 32-bits, and coalesce multiple edges to the same node.
    763 ///
    764 ///         - Distribute the mass accordingly, dithering to minimize mass loss,
    765 ///           as described in \a distributeMass().
    766 ///
    767 ///     In the case of irreducible loops, instead of a single loop header,
    768 ///     there will be several. The computation of backedge masses is similar
    769 ///     but instead of having a single backedge mass, there will be one
    770 ///     backedge per loop header. In these cases, each backedge will carry
    771 ///     a mass proportional to the edge weights along the corresponding
    772 ///     path.
    773 ///
    774 ///     At the end of propagation, the full mass assigned to the loop will be
    775 ///     distributed among the loop headers proportionally according to the
    776 ///     mass flowing through their backedges.
    777 ///
    778 ///     Finally, calculate the loop scale from the accumulated backedge mass.
    779 ///
    780 ///  3. Distribute mass in the function (\a computeMassInFunction()).
    781 ///
    782 ///     Finally, distribute mass through the DAG resulting from packaging all
    783 ///     loops in the function.  This uses the same algorithm as distributing
    784 ///     mass in a loop, except that there are no exit or backedge edges.
    785 ///
    786 ///  4. Unpackage loops (\a unwrapLoops()).
    787 ///
    788 ///     Initialize each block's frequency to a floating point representation of
    789 ///     its mass.
    790 ///
    791 ///     Visit loops top-down, scaling the frequencies of its immediate members
    792 ///     by the loop's pseudo-node's frequency.
    793 ///
    794 ///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
    795 ///
    796 ///     Using the min and max frequencies as a guide, translate floating point
    797 ///     frequencies to an appropriate range in uint64_t.
    798 ///
    799 /// It has some known flaws.
    800 ///
    801 ///   - The model of irreducible control flow is a rough approximation.
    802 ///
    803 ///     Modelling irreducible control flow exactly involves setting up and
    804 ///     solving a group of infinite geometric series.  Such precision is
    805 ///     unlikely to be worthwhile, since most of our algorithms give up on
    806 ///     irreducible control flow anyway.
    807 ///
    808 ///     Nevertheless, we might find that we need to get closer.  Here's a sort
    809 ///     of TODO list for the model with diminishing returns, to be completed as
    810 ///     necessary.
    811 ///
    812 ///       - The headers for the \a LoopData representing an irreducible SCC
    813 ///         include non-entry blocks.  When these extra blocks exist, they
    814 ///         indicate a self-contained irreducible sub-SCC.  We could treat them
    815 ///         as sub-loops, rather than arbitrarily shoving the problematic
    816 ///         blocks into the headers of the main irreducible SCC.
    817 ///
    818 ///       - Entry frequencies are assumed to be evenly split between the
    819 ///         headers of a given irreducible SCC, which is the only option if we
    820 ///         need to compute mass in the SCC before its parent loop.  Instead,
    821 ///         we could partially compute mass in the parent loop, and stop when
    822 ///         we get to the SCC.  Here, we have the correct ratio of entry
    823 ///         masses, which we can use to adjust their relative frequencies.
    824 ///         Compute mass in the SCC, and then continue propagation in the
    825 ///         parent.
    826 ///
    827 ///       - We can propagate mass iteratively through the SCC, for some fixed
    828 ///         number of iterations.  Each iteration starts by assigning the entry
    829 ///         blocks their backedge mass from the prior iteration.  The final
    830 ///         mass for each block (and each exit, and the total backedge mass
    831 ///         used for computing loop scale) is the sum of all iterations.
    832 ///         (Running this until fixed point would "solve" the geometric
    833 ///         series by simulation.)
    834 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
    835   // This is part of a workaround for a GCC 4.7 crash on lambdas.
    836   friend struct bfi_detail::BlockEdgesAdder<BT>;
    837 
    838   using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
    839   using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
    840   using BranchProbabilityInfoT =
    841       typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT;
    842   using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
    843   using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
    844   using Successor = GraphTraits<const BlockT *>;
    845   using Predecessor = GraphTraits<Inverse<const BlockT *>>;
    846 
    847   const BranchProbabilityInfoT *BPI = nullptr;
    848   const LoopInfoT *LI = nullptr;
    849   const FunctionT *F = nullptr;
    850 
    851   // All blocks in reverse postorder.
    852   std::vector<const BlockT *> RPOT;
    853   DenseMap<const BlockT *, BlockNode> Nodes;
    854 
    855   using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
    856 
    857   rpot_iterator rpot_begin() const { return RPOT.begin(); }
    858   rpot_iterator rpot_end() const { return RPOT.end(); }
    859 
    860   size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
    861 
    862   BlockNode getNode(const rpot_iterator &I) const {
    863     return BlockNode(getIndex(I));
    864   }
    865   BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
    866 
    867   const BlockT *getBlock(const BlockNode &Node) const {
    868     assert(Node.Index < RPOT.size());
    869     return RPOT[Node.Index];
    870   }
    871 
    872   /// \brief Run (and save) a post-order traversal.
    873   ///
    874   /// Saves a reverse post-order traversal of all the nodes in \a F.
    875   void initializeRPOT();
    876 
    877   /// \brief Initialize loop data.
    878   ///
    879   /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
    880   /// each block to the deepest loop it's in, but we need the inverse.  For each
    881   /// loop, we store in reverse post-order its "immediate" members, defined as
    882   /// the header, the headers of immediate sub-loops, and all other blocks in
    883   /// the loop that are not in sub-loops.
    884   void initializeLoops();
    885 
    886   /// \brief Propagate to a block's successors.
    887   ///
    888   /// In the context of distributing mass through \c OuterLoop, divide the mass
    889   /// currently assigned to \c Node between its successors.
    890   ///
    891   /// \return \c true unless there's an irreducible backedge.
    892   bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
    893 
    894   /// \brief Compute mass in a particular loop.
    895   ///
    896   /// Assign mass to \c Loop's header, and then for each block in \c Loop in
    897   /// reverse post-order, distribute mass to its successors.  Only visits nodes
    898   /// that have not been packaged into sub-loops.
    899   ///
    900   /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
    901   /// \return \c true unless there's an irreducible backedge.
    902   bool computeMassInLoop(LoopData &Loop);
    903 
    904   /// \brief Try to compute mass in the top-level function.
    905   ///
    906   /// Assign mass to the entry block, and then for each block in reverse
    907   /// post-order, distribute mass to its successors.  Skips nodes that have
    908   /// been packaged into loops.
    909   ///
    910   /// \pre \a computeMassInLoops() has been called.
    911   /// \return \c true unless there's an irreducible backedge.
    912   bool tryToComputeMassInFunction();
    913 
    914   /// \brief Compute mass in (and package up) irreducible SCCs.
    915   ///
    916   /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
    917   /// of \c Insert), and call \a computeMassInLoop() on each of them.
    918   ///
    919   /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
    920   ///
    921   /// \pre \a computeMassInLoop() has been called for each subloop of \c
    922   /// OuterLoop.
    923   /// \pre \c Insert points at the last loop successfully processed by \a
    924   /// computeMassInLoop().
    925   /// \pre \c OuterLoop has irreducible SCCs.
    926   void computeIrreducibleMass(LoopData *OuterLoop,
    927                               std::list<LoopData>::iterator Insert);
    928 
    929   /// \brief Compute mass in all loops.
    930   ///
    931   /// For each loop bottom-up, call \a computeMassInLoop().
    932   ///
    933   /// \a computeMassInLoop() aborts (and returns \c false) on loops that
    934   /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
    935   /// re-enter \a computeMassInLoop().
    936   ///
    937   /// \post \a computeMassInLoop() has returned \c true for every loop.
    938   void computeMassInLoops();
    939 
    940   /// \brief Compute mass in the top-level function.
    941   ///
    942   /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
    943   /// compute mass in the top-level function.
    944   ///
    945   /// \post \a tryToComputeMassInFunction() has returned \c true.
    946   void computeMassInFunction();
    947 
    948   std::string getBlockName(const BlockNode &Node) const override {
    949     return bfi_detail::getBlockName(getBlock(Node));
    950   }
    951 
    952 public:
    953   BlockFrequencyInfoImpl() = default;
    954 
    955   const FunctionT *getFunction() const { return F; }
    956 
    957   void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
    958                  const LoopInfoT &LI);
    959 
    960   using BlockFrequencyInfoImplBase::getEntryFreq;
    961 
    962   BlockFrequency getBlockFreq(const BlockT *BB) const {
    963     return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
    964   }
    965 
    966   Optional<uint64_t> getBlockProfileCount(const Function &F,
    967                                           const BlockT *BB) const {
    968     return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB));
    969   }
    970 
    971   Optional<uint64_t> getProfileCountFromFreq(const Function &F,
    972                                              uint64_t Freq) const {
    973     return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq);
    974   }
    975 
    976   void setBlockFreq(const BlockT *BB, uint64_t Freq);
    977 
    978   Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
    979     return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
    980   }
    981 
    982   const BranchProbabilityInfoT &getBPI() const { return *BPI; }
    983 
    984   /// \brief Print the frequencies for the current function.
    985   ///
    986   /// Prints the frequencies for the blocks in the current function.
    987   ///
    988   /// Blocks are printed in the natural iteration order of the function, rather
    989   /// than reverse post-order.  This provides two advantages:  writing -analyze
    990   /// tests is easier (since blocks come out in source order), and even
    991   /// unreachable blocks are printed.
    992   ///
    993   /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
    994   /// we need to override it here.
    995   raw_ostream &print(raw_ostream &OS) const override;
    996 
    997   using BlockFrequencyInfoImplBase::dump;
    998   using BlockFrequencyInfoImplBase::printBlockFreq;
    999 
   1000   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
   1001     return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
   1002   }
   1003 };
   1004 
   1005 template <class BT>
   1006 void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
   1007                                            const BranchProbabilityInfoT &BPI,
   1008                                            const LoopInfoT &LI) {
   1009   // Save the parameters.
   1010   this->BPI = &BPI;
   1011   this->LI = &LI;
   1012   this->F = &F;
   1013 
   1014   // Clean up left-over data structures.
   1015   BlockFrequencyInfoImplBase::clear();
   1016   RPOT.clear();
   1017   Nodes.clear();
   1018 
   1019   // Initialize.
   1020   DEBUG(dbgs() << "\nblock-frequency: " << F.getName() << "\n================="
   1021                << std::string(F.getName().size(), '=') << "\n");
   1022   initializeRPOT();
   1023   initializeLoops();
   1024 
   1025   // Visit loops in post-order to find the local mass distribution, and then do
   1026   // the full function.
   1027   computeMassInLoops();
   1028   computeMassInFunction();
   1029   unwrapLoops();
   1030   finalizeMetrics();
   1031 }
   1032 
   1033 template <class BT>
   1034 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) {
   1035   if (Nodes.count(BB))
   1036     BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
   1037   else {
   1038     // If BB is a newly added block after BFI is done, we need to create a new
   1039     // BlockNode for it assigned with a new index. The index can be determined
   1040     // by the size of Freqs.
   1041     BlockNode NewNode(Freqs.size());
   1042     Nodes[BB] = NewNode;
   1043     Freqs.emplace_back();
   1044     BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
   1045   }
   1046 }
   1047 
   1048 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
   1049   const BlockT *Entry = &F->front();
   1050   RPOT.reserve(F->size());
   1051   std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
   1052   std::reverse(RPOT.begin(), RPOT.end());
   1053 
   1054   assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
   1055          "More nodes in function than Block Frequency Info supports");
   1056 
   1057   DEBUG(dbgs() << "reverse-post-order-traversal\n");
   1058   for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
   1059     BlockNode Node = getNode(I);
   1060     DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
   1061     Nodes[*I] = Node;
   1062   }
   1063 
   1064   Working.reserve(RPOT.size());
   1065   for (size_t Index = 0; Index < RPOT.size(); ++Index)
   1066     Working.emplace_back(Index);
   1067   Freqs.resize(RPOT.size());
   1068 }
   1069 
   1070 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
   1071   DEBUG(dbgs() << "loop-detection\n");
   1072   if (LI->empty())
   1073     return;
   1074 
   1075   // Visit loops top down and assign them an index.
   1076   std::deque<std::pair<const LoopT *, LoopData *>> Q;
   1077   for (const LoopT *L : *LI)
   1078     Q.emplace_back(L, nullptr);
   1079   while (!Q.empty()) {
   1080     const LoopT *Loop = Q.front().first;
   1081     LoopData *Parent = Q.front().second;
   1082     Q.pop_front();
   1083 
   1084     BlockNode Header = getNode(Loop->getHeader());
   1085     assert(Header.isValid());
   1086 
   1087     Loops.emplace_back(Parent, Header);
   1088     Working[Header.Index].Loop = &Loops.back();
   1089     DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
   1090 
   1091     for (const LoopT *L : *Loop)
   1092       Q.emplace_back(L, &Loops.back());
   1093   }
   1094 
   1095   // Visit nodes in reverse post-order and add them to their deepest containing
   1096   // loop.
   1097   for (size_t Index = 0; Index < RPOT.size(); ++Index) {
   1098     // Loop headers have already been mostly mapped.
   1099     if (Working[Index].isLoopHeader()) {
   1100       LoopData *ContainingLoop = Working[Index].getContainingLoop();
   1101       if (ContainingLoop)
   1102         ContainingLoop->Nodes.push_back(Index);
   1103       continue;
   1104     }
   1105 
   1106     const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
   1107     if (!Loop)
   1108       continue;
   1109 
   1110     // Add this node to its containing loop's member list.
   1111     BlockNode Header = getNode(Loop->getHeader());
   1112     assert(Header.isValid());
   1113     const auto &HeaderData = Working[Header.Index];
   1114     assert(HeaderData.isLoopHeader());
   1115 
   1116     Working[Index].Loop = HeaderData.Loop;
   1117     HeaderData.Loop->Nodes.push_back(Index);
   1118     DEBUG(dbgs() << " - loop = " << getBlockName(Header)
   1119                  << ": member = " << getBlockName(Index) << "\n");
   1120   }
   1121 }
   1122 
   1123 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
   1124   // Visit loops with the deepest first, and the top-level loops last.
   1125   for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
   1126     if (computeMassInLoop(*L))
   1127       continue;
   1128     auto Next = std::next(L);
   1129     computeIrreducibleMass(&*L, L.base());
   1130     L = std::prev(Next);
   1131     if (computeMassInLoop(*L))
   1132       continue;
   1133     llvm_unreachable("unhandled irreducible control flow");
   1134   }
   1135 }
   1136 
   1137 template <class BT>
   1138 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
   1139   // Compute mass in loop.
   1140   DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
   1141 
   1142   if (Loop.isIrreducible()) {
   1143     BlockMass Remaining = BlockMass::getFull();
   1144     for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
   1145       auto &Mass = Working[Loop.Nodes[H].Index].getMass();
   1146       Mass = Remaining * BranchProbability(1, Loop.NumHeaders - H);
   1147       Remaining -= Mass;
   1148     }
   1149     for (const BlockNode &M : Loop.Nodes)
   1150       if (!propagateMassToSuccessors(&Loop, M))
   1151         llvm_unreachable("unhandled irreducible control flow");
   1152 
   1153     adjustLoopHeaderMass(Loop);
   1154   } else {
   1155     Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
   1156     if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
   1157       llvm_unreachable("irreducible control flow to loop header!?");
   1158     for (const BlockNode &M : Loop.members())
   1159       if (!propagateMassToSuccessors(&Loop, M))
   1160         // Irreducible backedge.
   1161         return false;
   1162   }
   1163 
   1164   computeLoopScale(Loop);
   1165   packageLoop(Loop);
   1166   return true;
   1167 }
   1168 
   1169 template <class BT>
   1170 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
   1171   // Compute mass in function.
   1172   DEBUG(dbgs() << "compute-mass-in-function\n");
   1173   assert(!Working.empty() && "no blocks in function");
   1174   assert(!Working[0].isLoopHeader() && "entry block is a loop header");
   1175 
   1176   Working[0].getMass() = BlockMass::getFull();
   1177   for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
   1178     // Check for nodes that have been packaged.
   1179     BlockNode Node = getNode(I);
   1180     if (Working[Node.Index].isPackaged())
   1181       continue;
   1182 
   1183     if (!propagateMassToSuccessors(nullptr, Node))
   1184       return false;
   1185   }
   1186   return true;
   1187 }
   1188 
   1189 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
   1190   if (tryToComputeMassInFunction())
   1191     return;
   1192   computeIrreducibleMass(nullptr, Loops.begin());
   1193   if (tryToComputeMassInFunction())
   1194     return;
   1195   llvm_unreachable("unhandled irreducible control flow");
   1196 }
   1197 
   1198 /// \note This should be a lambda, but that crashes GCC 4.7.
   1199 namespace bfi_detail {
   1200 
   1201 template <class BT> struct BlockEdgesAdder {
   1202   using BlockT = BT;
   1203   using LoopData = BlockFrequencyInfoImplBase::LoopData;
   1204   using Successor = GraphTraits<const BlockT *>;
   1205 
   1206   const BlockFrequencyInfoImpl<BT> &BFI;
   1207 
   1208   explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
   1209       : BFI(BFI) {}
   1210 
   1211   void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
   1212                   const LoopData *OuterLoop) {
   1213     const BlockT *BB = BFI.RPOT[Irr.Node.Index];
   1214     for (const auto Succ : children<const BlockT *>(BB))
   1215       G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
   1216   }
   1217 };
   1218 
   1219 } // end namespace bfi_detail
   1220 
   1221 template <class BT>
   1222 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
   1223     LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
   1224   DEBUG(dbgs() << "analyze-irreducible-in-";
   1225         if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n";
   1226         else dbgs() << "function\n");
   1227 
   1228   using namespace bfi_detail;
   1229 
   1230   // Ideally, addBlockEdges() would be declared here as a lambda, but that
   1231   // crashes GCC 4.7.
   1232   BlockEdgesAdder<BT> addBlockEdges(*this);
   1233   IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
   1234 
   1235   for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
   1236     computeMassInLoop(L);
   1237 
   1238   if (!OuterLoop)
   1239     return;
   1240   updateLoopWithIrreducible(*OuterLoop);
   1241 }
   1242 
   1243 // A helper function that converts a branch probability into weight.
   1244 inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
   1245   return Prob.getNumerator();
   1246 }
   1247 
   1248 template <class BT>
   1249 bool
   1250 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
   1251                                                       const BlockNode &Node) {
   1252   DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
   1253   // Calculate probability for successors.
   1254   Distribution Dist;
   1255   if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
   1256     assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
   1257     if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
   1258       // Irreducible backedge.
   1259       return false;
   1260   } else {
   1261     const BlockT *BB = getBlock(Node);
   1262     for (const auto Succ : children<const BlockT *>(BB))
   1263       if (!addToDist(Dist, OuterLoop, Node, getNode(Succ),
   1264                      getWeightFromBranchProb(BPI->getEdgeProbability(BB, Succ))))
   1265         // Irreducible backedge.
   1266         return false;
   1267   }
   1268 
   1269   // Distribute mass to successors, saving exit and backedge data in the
   1270   // loop header.
   1271   distributeMass(Node, OuterLoop, Dist);
   1272   return true;
   1273 }
   1274 
   1275 template <class BT>
   1276 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
   1277   if (!F)
   1278     return OS;
   1279   OS << "block-frequency-info: " << F->getName() << "\n";
   1280   for (const BlockT &BB : *F) {
   1281     OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
   1282     getFloatingBlockFreq(&BB).print(OS, 5)
   1283         << ", int = " << getBlockFreq(&BB).getFrequency();
   1284     if (Optional<uint64_t> ProfileCount =
   1285         BlockFrequencyInfoImplBase::getBlockProfileCount(
   1286             *F->getFunction(), getNode(&BB)))
   1287       OS << ", count = " << ProfileCount.getValue();
   1288     OS << "\n";
   1289   }
   1290 
   1291   // Add an extra newline for readability.
   1292   OS << "\n";
   1293   return OS;
   1294 }
   1295 
   1296 // Graph trait base class for block frequency information graph
   1297 // viewer.
   1298 
   1299 enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
   1300 
   1301 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
   1302 struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
   1303   using GTraits = GraphTraits<BlockFrequencyInfoT *>;
   1304   using NodeRef = typename GTraits::NodeRef;
   1305   using EdgeIter = typename GTraits::ChildIteratorType;
   1306   using NodeIter = typename GTraits::nodes_iterator;
   1307 
   1308   uint64_t MaxFrequency = 0;
   1309 
   1310   explicit BFIDOTGraphTraitsBase(bool isSimple = false)
   1311       : DefaultDOTGraphTraits(isSimple) {}
   1312 
   1313   static std::string getGraphName(const BlockFrequencyInfoT *G) {
   1314     return G->getFunction()->getName();
   1315   }
   1316 
   1317   std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
   1318                                 unsigned HotPercentThreshold = 0) {
   1319     std::string Result;
   1320     if (!HotPercentThreshold)
   1321       return Result;
   1322 
   1323     // Compute MaxFrequency on the fly:
   1324     if (!MaxFrequency) {
   1325       for (NodeIter I = GTraits::nodes_begin(Graph),
   1326                     E = GTraits::nodes_end(Graph);
   1327            I != E; ++I) {
   1328         NodeRef N = *I;
   1329         MaxFrequency =
   1330             std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
   1331       }
   1332     }
   1333     BlockFrequency Freq = Graph->getBlockFreq(Node);
   1334     BlockFrequency HotFreq =
   1335         (BlockFrequency(MaxFrequency) *
   1336          BranchProbability::getBranchProbability(HotPercentThreshold, 100));
   1337 
   1338     if (Freq < HotFreq)
   1339       return Result;
   1340 
   1341     raw_string_ostream OS(Result);
   1342     OS << "color=\"red\"";
   1343     OS.flush();
   1344     return Result;
   1345   }
   1346 
   1347   std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
   1348                            GVDAGType GType, int layout_order = -1) {
   1349     std::string Result;
   1350     raw_string_ostream OS(Result);
   1351 
   1352     if (layout_order != -1)
   1353       OS << Node->getName() << "[" << layout_order << "] : ";
   1354     else
   1355       OS << Node->getName() << " : ";
   1356     switch (GType) {
   1357     case GVDT_Fraction:
   1358       Graph->printBlockFreq(OS, Node);
   1359       break;
   1360     case GVDT_Integer:
   1361       OS << Graph->getBlockFreq(Node).getFrequency();
   1362       break;
   1363     case GVDT_Count: {
   1364       auto Count = Graph->getBlockProfileCount(Node);
   1365       if (Count)
   1366         OS << Count.getValue();
   1367       else
   1368         OS << "Unknown";
   1369       break;
   1370     }
   1371     case GVDT_None:
   1372       llvm_unreachable("If we are not supposed to render a graph we should "
   1373                        "never reach this point.");
   1374     }
   1375     return Result;
   1376   }
   1377 
   1378   std::string getEdgeAttributes(NodeRef Node, EdgeIter EI,
   1379                                 const BlockFrequencyInfoT *BFI,
   1380                                 const BranchProbabilityInfoT *BPI,
   1381                                 unsigned HotPercentThreshold = 0) {
   1382     std::string Str;
   1383     if (!BPI)
   1384       return Str;
   1385 
   1386     BranchProbability BP = BPI->getEdgeProbability(Node, EI);
   1387     uint32_t N = BP.getNumerator();
   1388     uint32_t D = BP.getDenominator();
   1389     double Percent = 100.0 * N / D;
   1390     raw_string_ostream OS(Str);
   1391     OS << format("label=\"%.1f%%\"", Percent);
   1392 
   1393     if (HotPercentThreshold) {
   1394       BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
   1395       BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
   1396                                BranchProbability(HotPercentThreshold, 100);
   1397 
   1398       if (EFreq >= HotFreq) {
   1399         OS << ",color=\"red\"";
   1400       }
   1401     }
   1402 
   1403     OS.flush();
   1404     return Str;
   1405   }
   1406 };
   1407 
   1408 } // end namespace llvm
   1409 
   1410 #undef DEBUG_TYPE
   1411 
   1412 #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
   1413