Home | History | Annotate | Download | only in Analysis
      1 //===- CallGraph.h - Build a Module's call graph ----------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// This file provides interfaces used to build and manipulate a call graph,
     12 /// which is a very useful tool for interprocedural optimization.
     13 ///
     14 /// Every function in a module is represented as a node in the call graph.  The
     15 /// callgraph node keeps track of which functions are called by the function
     16 /// corresponding to the node.
     17 ///
     18 /// A call graph may contain nodes where the function that they correspond to
     19 /// is null.  These 'external' nodes are used to represent control flow that is
     20 /// not represented (or analyzable) in the module.  In particular, this
     21 /// analysis builds one external node such that:
     22 ///   1. All functions in the module without internal linkage will have edges
     23 ///      from this external node, indicating that they could be called by
     24 ///      functions outside of the module.
     25 ///   2. All functions whose address is used for something more than a direct
     26 ///      call, for example being stored into a memory location will also have
     27 ///      an edge from this external node.  Since they may be called by an
     28 ///      unknown caller later, they must be tracked as such.
     29 ///
     30 /// There is a second external node added for calls that leave this module.
     31 /// Functions have a call edge to the external node iff:
     32 ///   1. The function is external, reflecting the fact that they could call
     33 ///      anything without internal linkage or that has its address taken.
     34 ///   2. The function contains an indirect function call.
     35 ///
     36 /// As an extension in the future, there may be multiple nodes with a null
     37 /// function.  These will be used when we can prove (through pointer analysis)
     38 /// that an indirect call site can call only a specific set of functions.
     39 ///
     40 /// Because of these properties, the CallGraph captures a conservative superset
     41 /// of all of the caller-callee relationships, which is useful for
     42 /// transformations.
     43 ///
     44 //===----------------------------------------------------------------------===//
     45 
     46 #ifndef LLVM_ANALYSIS_CALLGRAPH_H
     47 #define LLVM_ANALYSIS_CALLGRAPH_H
     48 
     49 #include "llvm/ADT/GraphTraits.h"
     50 #include "llvm/ADT/STLExtras.h"
     51 #include "llvm/IR/CallSite.h"
     52 #include "llvm/IR/Function.h"
     53 #include "llvm/IR/Intrinsics.h"
     54 #include "llvm/IR/PassManager.h"
     55 #include "llvm/IR/ValueHandle.h"
     56 #include "llvm/Pass.h"
     57 #include <cassert>
     58 #include <map>
     59 #include <memory>
     60 #include <utility>
     61 #include <vector>
     62 
     63 namespace llvm {
     64 
     65 class CallGraphNode;
     66 class Module;
     67 class raw_ostream;
     68 
     69 /// \brief The basic data container for the call graph of a \c Module of IR.
     70 ///
     71 /// This class exposes both the interface to the call graph for a module of IR.
     72 ///
     73 /// The core call graph itself can also be updated to reflect changes to the IR.
     74 class CallGraph {
     75   Module &M;
     76 
     77   using FunctionMapTy =
     78       std::map<const Function *, std::unique_ptr<CallGraphNode>>;
     79 
     80   /// \brief A map from \c Function* to \c CallGraphNode*.
     81   FunctionMapTy FunctionMap;
     82 
     83   /// \brief This node has edges to all external functions and those internal
     84   /// functions that have their address taken.
     85   CallGraphNode *ExternalCallingNode;
     86 
     87   /// \brief This node has edges to it from all functions making indirect calls
     88   /// or calling an external function.
     89   std::unique_ptr<CallGraphNode> CallsExternalNode;
     90 
     91   /// \brief Replace the function represented by this node by another.
     92   ///
     93   /// This does not rescan the body of the function, so it is suitable when
     94   /// splicing the body of one function to another while also updating all
     95   /// callers from the old function to the new.
     96   void spliceFunction(const Function *From, const Function *To);
     97 
     98   /// \brief Add a function to the call graph, and link the node to all of the
     99   /// functions that it calls.
    100   void addToCallGraph(Function *F);
    101 
    102 public:
    103   explicit CallGraph(Module &M);
    104   CallGraph(CallGraph &&Arg);
    105   ~CallGraph();
    106 
    107   void print(raw_ostream &OS) const;
    108   void dump() const;
    109 
    110   using iterator = FunctionMapTy::iterator;
    111   using const_iterator = FunctionMapTy::const_iterator;
    112 
    113   /// \brief Returns the module the call graph corresponds to.
    114   Module &getModule() const { return M; }
    115 
    116   inline iterator begin() { return FunctionMap.begin(); }
    117   inline iterator end() { return FunctionMap.end(); }
    118   inline const_iterator begin() const { return FunctionMap.begin(); }
    119   inline const_iterator end() const { return FunctionMap.end(); }
    120 
    121   /// \brief Returns the call graph node for the provided function.
    122   inline const CallGraphNode *operator[](const Function *F) const {
    123     const_iterator I = FunctionMap.find(F);
    124     assert(I != FunctionMap.end() && "Function not in callgraph!");
    125     return I->second.get();
    126   }
    127 
    128   /// \brief Returns the call graph node for the provided function.
    129   inline CallGraphNode *operator[](const Function *F) {
    130     const_iterator I = FunctionMap.find(F);
    131     assert(I != FunctionMap.end() && "Function not in callgraph!");
    132     return I->second.get();
    133   }
    134 
    135   /// \brief Returns the \c CallGraphNode which is used to represent
    136   /// undetermined calls into the callgraph.
    137   CallGraphNode *getExternalCallingNode() const { return ExternalCallingNode; }
    138 
    139   CallGraphNode *getCallsExternalNode() const {
    140     return CallsExternalNode.get();
    141   }
    142 
    143   //===---------------------------------------------------------------------
    144   // Functions to keep a call graph up to date with a function that has been
    145   // modified.
    146   //
    147 
    148   /// \brief Unlink the function from this module, returning it.
    149   ///
    150   /// Because this removes the function from the module, the call graph node is
    151   /// destroyed.  This is only valid if the function does not call any other
    152   /// functions (ie, there are no edges in it's CGN).  The easiest way to do
    153   /// this is to dropAllReferences before calling this.
    154   Function *removeFunctionFromModule(CallGraphNode *CGN);
    155 
    156   /// \brief Similar to operator[], but this will insert a new CallGraphNode for
    157   /// \c F if one does not already exist.
    158   CallGraphNode *getOrInsertFunction(const Function *F);
    159 };
    160 
    161 /// \brief A node in the call graph for a module.
    162 ///
    163 /// Typically represents a function in the call graph. There are also special
    164 /// "null" nodes used to represent theoretical entries in the call graph.
    165 class CallGraphNode {
    166 public:
    167   /// \brief A pair of the calling instruction (a call or invoke)
    168   /// and the call graph node being called.
    169   using CallRecord = std::pair<WeakTrackingVH, CallGraphNode *>;
    170 
    171 public:
    172   using CalledFunctionsVector = std::vector<CallRecord>;
    173 
    174   /// \brief Creates a node for the specified function.
    175   inline CallGraphNode(Function *F) : F(F) {}
    176 
    177   CallGraphNode(const CallGraphNode &) = delete;
    178   CallGraphNode &operator=(const CallGraphNode &) = delete;
    179 
    180   ~CallGraphNode() {
    181     assert(NumReferences == 0 && "Node deleted while references remain");
    182   }
    183 
    184   using iterator = std::vector<CallRecord>::iterator;
    185   using const_iterator = std::vector<CallRecord>::const_iterator;
    186 
    187   /// \brief Returns the function that this call graph node represents.
    188   Function *getFunction() const { return F; }
    189 
    190   inline iterator begin() { return CalledFunctions.begin(); }
    191   inline iterator end() { return CalledFunctions.end(); }
    192   inline const_iterator begin() const { return CalledFunctions.begin(); }
    193   inline const_iterator end() const { return CalledFunctions.end(); }
    194   inline bool empty() const { return CalledFunctions.empty(); }
    195   inline unsigned size() const { return (unsigned)CalledFunctions.size(); }
    196 
    197   /// \brief Returns the number of other CallGraphNodes in this CallGraph that
    198   /// reference this node in their callee list.
    199   unsigned getNumReferences() const { return NumReferences; }
    200 
    201   /// \brief Returns the i'th called function.
    202   CallGraphNode *operator[](unsigned i) const {
    203     assert(i < CalledFunctions.size() && "Invalid index");
    204     return CalledFunctions[i].second;
    205   }
    206 
    207   /// \brief Print out this call graph node.
    208   void dump() const;
    209   void print(raw_ostream &OS) const;
    210 
    211   //===---------------------------------------------------------------------
    212   // Methods to keep a call graph up to date with a function that has been
    213   // modified
    214   //
    215 
    216   /// \brief Removes all edges from this CallGraphNode to any functions it
    217   /// calls.
    218   void removeAllCalledFunctions() {
    219     while (!CalledFunctions.empty()) {
    220       CalledFunctions.back().second->DropRef();
    221       CalledFunctions.pop_back();
    222     }
    223   }
    224 
    225   /// \brief Moves all the callee information from N to this node.
    226   void stealCalledFunctionsFrom(CallGraphNode *N) {
    227     assert(CalledFunctions.empty() &&
    228            "Cannot steal callsite information if I already have some");
    229     std::swap(CalledFunctions, N->CalledFunctions);
    230   }
    231 
    232   /// \brief Adds a function to the list of functions called by this one.
    233   void addCalledFunction(CallSite CS, CallGraphNode *M) {
    234     assert(!CS.getInstruction() || !CS.getCalledFunction() ||
    235            !CS.getCalledFunction()->isIntrinsic() ||
    236            !Intrinsic::isLeaf(CS.getCalledFunction()->getIntrinsicID()));
    237     CalledFunctions.emplace_back(CS.getInstruction(), M);
    238     M->AddRef();
    239   }
    240 
    241   void removeCallEdge(iterator I) {
    242     I->second->DropRef();
    243     *I = CalledFunctions.back();
    244     CalledFunctions.pop_back();
    245   }
    246 
    247   /// \brief Removes the edge in the node for the specified call site.
    248   ///
    249   /// Note that this method takes linear time, so it should be used sparingly.
    250   void removeCallEdgeFor(CallSite CS);
    251 
    252   /// \brief Removes all call edges from this node to the specified callee
    253   /// function.
    254   ///
    255   /// This takes more time to execute than removeCallEdgeTo, so it should not
    256   /// be used unless necessary.
    257   void removeAnyCallEdgeTo(CallGraphNode *Callee);
    258 
    259   /// \brief Removes one edge associated with a null callsite from this node to
    260   /// the specified callee function.
    261   void removeOneAbstractEdgeTo(CallGraphNode *Callee);
    262 
    263   /// \brief Replaces the edge in the node for the specified call site with a
    264   /// new one.
    265   ///
    266   /// Note that this method takes linear time, so it should be used sparingly.
    267   void replaceCallEdge(CallSite CS, CallSite NewCS, CallGraphNode *NewNode);
    268 
    269 private:
    270   friend class CallGraph;
    271 
    272   Function *F;
    273 
    274   std::vector<CallRecord> CalledFunctions;
    275 
    276   /// \brief The number of times that this CallGraphNode occurs in the
    277   /// CalledFunctions array of this or other CallGraphNodes.
    278   unsigned NumReferences = 0;
    279 
    280   void DropRef() { --NumReferences; }
    281   void AddRef() { ++NumReferences; }
    282 
    283   /// \brief A special function that should only be used by the CallGraph class.
    284   void allReferencesDropped() { NumReferences = 0; }
    285 };
    286 
    287 /// \brief An analysis pass to compute the \c CallGraph for a \c Module.
    288 ///
    289 /// This class implements the concept of an analysis pass used by the \c
    290 /// ModuleAnalysisManager to run an analysis over a module and cache the
    291 /// resulting data.
    292 class CallGraphAnalysis : public AnalysisInfoMixin<CallGraphAnalysis> {
    293   friend AnalysisInfoMixin<CallGraphAnalysis>;
    294 
    295   static AnalysisKey Key;
    296 
    297 public:
    298   /// \brief A formulaic type to inform clients of the result type.
    299   using Result = CallGraph;
    300 
    301   /// \brief Compute the \c CallGraph for the module \c M.
    302   ///
    303   /// The real work here is done in the \c CallGraph constructor.
    304   CallGraph run(Module &M, ModuleAnalysisManager &) { return CallGraph(M); }
    305 };
    306 
    307 /// \brief Printer pass for the \c CallGraphAnalysis results.
    308 class CallGraphPrinterPass : public PassInfoMixin<CallGraphPrinterPass> {
    309   raw_ostream &OS;
    310 
    311 public:
    312   explicit CallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
    313 
    314   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
    315 };
    316 
    317 /// \brief The \c ModulePass which wraps up a \c CallGraph and the logic to
    318 /// build it.
    319 ///
    320 /// This class exposes both the interface to the call graph container and the
    321 /// module pass which runs over a module of IR and produces the call graph. The
    322 /// call graph interface is entirelly a wrapper around a \c CallGraph object
    323 /// which is stored internally for each module.
    324 class CallGraphWrapperPass : public ModulePass {
    325   std::unique_ptr<CallGraph> G;
    326 
    327 public:
    328   static char ID; // Class identification, replacement for typeinfo
    329 
    330   CallGraphWrapperPass();
    331   ~CallGraphWrapperPass() override;
    332 
    333   /// \brief The internal \c CallGraph around which the rest of this interface
    334   /// is wrapped.
    335   const CallGraph &getCallGraph() const { return *G; }
    336   CallGraph &getCallGraph() { return *G; }
    337 
    338   using iterator = CallGraph::iterator;
    339   using const_iterator = CallGraph::const_iterator;
    340 
    341   /// \brief Returns the module the call graph corresponds to.
    342   Module &getModule() const { return G->getModule(); }
    343 
    344   inline iterator begin() { return G->begin(); }
    345   inline iterator end() { return G->end(); }
    346   inline const_iterator begin() const { return G->begin(); }
    347   inline const_iterator end() const { return G->end(); }
    348 
    349   /// \brief Returns the call graph node for the provided function.
    350   inline const CallGraphNode *operator[](const Function *F) const {
    351     return (*G)[F];
    352   }
    353 
    354   /// \brief Returns the call graph node for the provided function.
    355   inline CallGraphNode *operator[](const Function *F) { return (*G)[F]; }
    356 
    357   /// \brief Returns the \c CallGraphNode which is used to represent
    358   /// undetermined calls into the callgraph.
    359   CallGraphNode *getExternalCallingNode() const {
    360     return G->getExternalCallingNode();
    361   }
    362 
    363   CallGraphNode *getCallsExternalNode() const {
    364     return G->getCallsExternalNode();
    365   }
    366 
    367   //===---------------------------------------------------------------------
    368   // Functions to keep a call graph up to date with a function that has been
    369   // modified.
    370   //
    371 
    372   /// \brief Unlink the function from this module, returning it.
    373   ///
    374   /// Because this removes the function from the module, the call graph node is
    375   /// destroyed.  This is only valid if the function does not call any other
    376   /// functions (ie, there are no edges in it's CGN).  The easiest way to do
    377   /// this is to dropAllReferences before calling this.
    378   Function *removeFunctionFromModule(CallGraphNode *CGN) {
    379     return G->removeFunctionFromModule(CGN);
    380   }
    381 
    382   /// \brief Similar to operator[], but this will insert a new CallGraphNode for
    383   /// \c F if one does not already exist.
    384   CallGraphNode *getOrInsertFunction(const Function *F) {
    385     return G->getOrInsertFunction(F);
    386   }
    387 
    388   //===---------------------------------------------------------------------
    389   // Implementation of the ModulePass interface needed here.
    390   //
    391 
    392   void getAnalysisUsage(AnalysisUsage &AU) const override;
    393   bool runOnModule(Module &M) override;
    394   void releaseMemory() override;
    395 
    396   void print(raw_ostream &o, const Module *) const override;
    397   void dump() const;
    398 };
    399 
    400 //===----------------------------------------------------------------------===//
    401 // GraphTraits specializations for call graphs so that they can be treated as
    402 // graphs by the generic graph algorithms.
    403 //
    404 
    405 // Provide graph traits for tranversing call graphs using standard graph
    406 // traversals.
    407 template <> struct GraphTraits<CallGraphNode *> {
    408   using NodeRef = CallGraphNode *;
    409   using CGNPairTy = CallGraphNode::CallRecord;
    410 
    411   static NodeRef getEntryNode(CallGraphNode *CGN) { return CGN; }
    412   static CallGraphNode *CGNGetValue(CGNPairTy P) { return P.second; }
    413 
    414   using ChildIteratorType =
    415       mapped_iterator<CallGraphNode::iterator, decltype(&CGNGetValue)>;
    416 
    417   static ChildIteratorType child_begin(NodeRef N) {
    418     return ChildIteratorType(N->begin(), &CGNGetValue);
    419   }
    420 
    421   static ChildIteratorType child_end(NodeRef N) {
    422     return ChildIteratorType(N->end(), &CGNGetValue);
    423   }
    424 };
    425 
    426 template <> struct GraphTraits<const CallGraphNode *> {
    427   using NodeRef = const CallGraphNode *;
    428   using CGNPairTy = CallGraphNode::CallRecord;
    429 
    430   static NodeRef getEntryNode(const CallGraphNode *CGN) { return CGN; }
    431   static const CallGraphNode *CGNGetValue(CGNPairTy P) { return P.second; }
    432 
    433   using ChildIteratorType =
    434       mapped_iterator<CallGraphNode::const_iterator, decltype(&CGNGetValue)>;
    435 
    436   static ChildIteratorType child_begin(NodeRef N) {
    437     return ChildIteratorType(N->begin(), &CGNGetValue);
    438   }
    439 
    440   static ChildIteratorType child_end(NodeRef N) {
    441     return ChildIteratorType(N->end(), &CGNGetValue);
    442   }
    443 };
    444 
    445 template <>
    446 struct GraphTraits<CallGraph *> : public GraphTraits<CallGraphNode *> {
    447   using PairTy =
    448       std::pair<const Function *const, std::unique_ptr<CallGraphNode>>;
    449 
    450   static NodeRef getEntryNode(CallGraph *CGN) {
    451     return CGN->getExternalCallingNode(); // Start at the external node!
    452   }
    453 
    454   static CallGraphNode *CGGetValuePtr(const PairTy &P) {
    455     return P.second.get();
    456   }
    457 
    458   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
    459   using nodes_iterator =
    460       mapped_iterator<CallGraph::iterator, decltype(&CGGetValuePtr)>;
    461 
    462   static nodes_iterator nodes_begin(CallGraph *CG) {
    463     return nodes_iterator(CG->begin(), &CGGetValuePtr);
    464   }
    465 
    466   static nodes_iterator nodes_end(CallGraph *CG) {
    467     return nodes_iterator(CG->end(), &CGGetValuePtr);
    468   }
    469 };
    470 
    471 template <>
    472 struct GraphTraits<const CallGraph *> : public GraphTraits<
    473                                             const CallGraphNode *> {
    474   using PairTy =
    475       std::pair<const Function *const, std::unique_ptr<CallGraphNode>>;
    476 
    477   static NodeRef getEntryNode(const CallGraph *CGN) {
    478     return CGN->getExternalCallingNode(); // Start at the external node!
    479   }
    480 
    481   static const CallGraphNode *CGGetValuePtr(const PairTy &P) {
    482     return P.second.get();
    483   }
    484 
    485   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
    486   using nodes_iterator =
    487       mapped_iterator<CallGraph::const_iterator, decltype(&CGGetValuePtr)>;
    488 
    489   static nodes_iterator nodes_begin(const CallGraph *CG) {
    490     return nodes_iterator(CG->begin(), &CGGetValuePtr);
    491   }
    492 
    493   static nodes_iterator nodes_end(const CallGraph *CG) {
    494     return nodes_iterator(CG->end(), &CGGetValuePtr);
    495   }
    496 };
    497 
    498 } // end namespace llvm
    499 
    500 #endif // LLVM_ANALYSIS_CALLGRAPH_H
    501