Home | History | Annotate | Download | only in CodeGen
      1 //===- MachineScheduler.h - MachineInstr Scheduling Pass --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides an interface for customizing the standard MachineScheduler
     11 // pass. Note that the entire pass may be replaced as follows:
     12 //
     13 // <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
     14 //   PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
     15 //   ...}
     16 //
     17 // The MachineScheduler pass is only responsible for choosing the regions to be
     18 // scheduled. Targets can override the DAG builder and scheduler without
     19 // replacing the pass as follows:
     20 //
     21 // ScheduleDAGInstrs *<Target>PassConfig::
     22 // createMachineScheduler(MachineSchedContext *C) {
     23 //   return new CustomMachineScheduler(C);
     24 // }
     25 //
     26 // The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
     27 // scheduling while updating the instruction stream, register pressure, and live
     28 // intervals. Most targets don't need to override the DAG builder and list
     29 // scheduler, but subtargets that require custom scheduling heuristics may
     30 // plugin an alternate MachineSchedStrategy. The strategy is responsible for
     31 // selecting the highest priority node from the list:
     32 //
     33 // ScheduleDAGInstrs *<Target>PassConfig::
     34 // createMachineScheduler(MachineSchedContext *C) {
     35 //   return new ScheduleDAGMILive(C, CustomStrategy(C));
     36 // }
     37 //
     38 // The DAG builder can also be customized in a sense by adding DAG mutations
     39 // that will run after DAG building and before list scheduling. DAG mutations
     40 // can adjust dependencies based on target-specific knowledge or add weak edges
     41 // to aid heuristics:
     42 //
     43 // ScheduleDAGInstrs *<Target>PassConfig::
     44 // createMachineScheduler(MachineSchedContext *C) {
     45 //   ScheduleDAGMI *DAG = createGenericSchedLive(C);
     46 //   DAG->addMutation(new CustomDAGMutation(...));
     47 //   return DAG;
     48 // }
     49 //
     50 // A target that supports alternative schedulers can use the
     51 // MachineSchedRegistry to allow command line selection. This can be done by
     52 // implementing the following boilerplate:
     53 //
     54 // static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
     55 //  return new CustomMachineScheduler(C);
     56 // }
     57 // static MachineSchedRegistry
     58 // SchedCustomRegistry("custom", "Run my target's custom scheduler",
     59 //                     createCustomMachineSched);
     60 //
     61 //
     62 // Finally, subtargets that don't need to implement custom heuristics but would
     63 // like to configure the GenericScheduler's policy for a given scheduler region,
     64 // including scheduling direction and register pressure tracking policy, can do
     65 // this:
     66 //
     67 // void <SubTarget>Subtarget::
     68 // overrideSchedPolicy(MachineSchedPolicy &Policy,
     69 //                     unsigned NumRegionInstrs) const {
     70 //   Policy.<Flag> = true;
     71 // }
     72 //
     73 //===----------------------------------------------------------------------===//
     74 
     75 #ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
     76 #define LLVM_CODEGEN_MACHINESCHEDULER_H
     77 
     78 #include "llvm/ADT/ArrayRef.h"
     79 #include "llvm/ADT/BitVector.h"
     80 #include "llvm/ADT/STLExtras.h"
     81 #include "llvm/ADT/SmallVector.h"
     82 #include "llvm/ADT/StringRef.h"
     83 #include "llvm/ADT/Twine.h"
     84 #include "llvm/Analysis/AliasAnalysis.h"
     85 #include "llvm/CodeGen/MachineBasicBlock.h"
     86 #include "llvm/CodeGen/MachinePassRegistry.h"
     87 #include "llvm/CodeGen/RegisterPressure.h"
     88 #include "llvm/CodeGen/ScheduleDAG.h"
     89 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     90 #include "llvm/CodeGen/ScheduleDAGMutation.h"
     91 #include "llvm/CodeGen/TargetSchedule.h"
     92 #include "llvm/Support/CommandLine.h"
     93 #include "llvm/Support/ErrorHandling.h"
     94 #include <algorithm>
     95 #include <cassert>
     96 #include <memory>
     97 #include <string>
     98 #include <vector>
     99 
    100 namespace llvm {
    101 
    102 extern cl::opt<bool> ForceTopDown;
    103 extern cl::opt<bool> ForceBottomUp;
    104 
    105 class LiveIntervals;
    106 class MachineDominatorTree;
    107 class MachineFunction;
    108 class MachineInstr;
    109 class MachineLoopInfo;
    110 class RegisterClassInfo;
    111 class SchedDFSResult;
    112 class ScheduleHazardRecognizer;
    113 class TargetInstrInfo;
    114 class TargetPassConfig;
    115 class TargetRegisterInfo;
    116 
    117 /// MachineSchedContext provides enough context from the MachineScheduler pass
    118 /// for the target to instantiate a scheduler.
    119 struct MachineSchedContext {
    120   MachineFunction *MF = nullptr;
    121   const MachineLoopInfo *MLI = nullptr;
    122   const MachineDominatorTree *MDT = nullptr;
    123   const TargetPassConfig *PassConfig = nullptr;
    124   AliasAnalysis *AA = nullptr;
    125   LiveIntervals *LIS = nullptr;
    126 
    127   RegisterClassInfo *RegClassInfo;
    128 
    129   MachineSchedContext();
    130   virtual ~MachineSchedContext();
    131 };
    132 
    133 /// MachineSchedRegistry provides a selection of available machine instruction
    134 /// schedulers.
    135 class MachineSchedRegistry : public MachinePassRegistryNode {
    136 public:
    137   using ScheduleDAGCtor = ScheduleDAGInstrs *(*)(MachineSchedContext *);
    138 
    139   // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
    140   using FunctionPassCtor = ScheduleDAGCtor;
    141 
    142   static MachinePassRegistry Registry;
    143 
    144   MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
    145     : MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
    146     Registry.Add(this);
    147   }
    148 
    149   ~MachineSchedRegistry() { Registry.Remove(this); }
    150 
    151   // Accessors.
    152   //
    153   MachineSchedRegistry *getNext() const {
    154     return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
    155   }
    156 
    157   static MachineSchedRegistry *getList() {
    158     return (MachineSchedRegistry *)Registry.getList();
    159   }
    160 
    161   static void setListener(MachinePassRegistryListener *L) {
    162     Registry.setListener(L);
    163   }
    164 };
    165 
    166 class ScheduleDAGMI;
    167 
    168 /// Define a generic scheduling policy for targets that don't provide their own
    169 /// MachineSchedStrategy. This can be overriden for each scheduling region
    170 /// before building the DAG.
    171 struct MachineSchedPolicy {
    172   // Allow the scheduler to disable register pressure tracking.
    173   bool ShouldTrackPressure = false;
    174   /// Track LaneMasks to allow reordering of independent subregister writes
    175   /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks()
    176   bool ShouldTrackLaneMasks = false;
    177 
    178   // Allow the scheduler to force top-down or bottom-up scheduling. If neither
    179   // is true, the scheduler runs in both directions and converges.
    180   bool OnlyTopDown = false;
    181   bool OnlyBottomUp = false;
    182 
    183   // Disable heuristic that tries to fetch nodes from long dependency chains
    184   // first.
    185   bool DisableLatencyHeuristic = false;
    186 
    187   MachineSchedPolicy() = default;
    188 };
    189 
    190 /// MachineSchedStrategy - Interface to the scheduling algorithm used by
    191 /// ScheduleDAGMI.
    192 ///
    193 /// Initialization sequence:
    194 ///   initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
    195 class MachineSchedStrategy {
    196   virtual void anchor();
    197 
    198 public:
    199   virtual ~MachineSchedStrategy() = default;
    200 
    201   /// Optionally override the per-region scheduling policy.
    202   virtual void initPolicy(MachineBasicBlock::iterator Begin,
    203                           MachineBasicBlock::iterator End,
    204                           unsigned NumRegionInstrs) {}
    205 
    206   virtual void dumpPolicy() const {}
    207 
    208   /// Check if pressure tracking is needed before building the DAG and
    209   /// initializing this strategy. Called after initPolicy.
    210   virtual bool shouldTrackPressure() const { return true; }
    211 
    212   /// Returns true if lanemasks should be tracked. LaneMask tracking is
    213   /// necessary to reorder independent subregister defs for the same vreg.
    214   /// This has to be enabled in combination with shouldTrackPressure().
    215   virtual bool shouldTrackLaneMasks() const { return false; }
    216 
    217   // If this method returns true, handling of the scheduling regions
    218   // themselves (in case of a scheduling boundary in MBB) will be done
    219   // beginning with the topmost region of MBB.
    220   virtual bool doMBBSchedRegionsTopDown() const { return false; }
    221 
    222   /// Initialize the strategy after building the DAG for a new region.
    223   virtual void initialize(ScheduleDAGMI *DAG) = 0;
    224 
    225   /// Tell the strategy that MBB is about to be processed.
    226   virtual void enterMBB(MachineBasicBlock *MBB) {};
    227 
    228   /// Tell the strategy that current MBB is done.
    229   virtual void leaveMBB() {};
    230 
    231   /// Notify this strategy that all roots have been released (including those
    232   /// that depend on EntrySU or ExitSU).
    233   virtual void registerRoots() {}
    234 
    235   /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
    236   /// schedule the node at the top of the unscheduled region. Otherwise it will
    237   /// be scheduled at the bottom.
    238   virtual SUnit *pickNode(bool &IsTopNode) = 0;
    239 
    240   /// \brief Scheduler callback to notify that a new subtree is scheduled.
    241   virtual void scheduleTree(unsigned SubtreeID) {}
    242 
    243   /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
    244   /// instruction and updated scheduled/remaining flags in the DAG nodes.
    245   virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
    246 
    247   /// When all predecessor dependencies have been resolved, free this node for
    248   /// top-down scheduling.
    249   virtual void releaseTopNode(SUnit *SU) = 0;
    250 
    251   /// When all successor dependencies have been resolved, free this node for
    252   /// bottom-up scheduling.
    253   virtual void releaseBottomNode(SUnit *SU) = 0;
    254 };
    255 
    256 /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
    257 /// schedules machine instructions according to the given MachineSchedStrategy
    258 /// without much extra book-keeping. This is the common functionality between
    259 /// PreRA and PostRA MachineScheduler.
    260 class ScheduleDAGMI : public ScheduleDAGInstrs {
    261 protected:
    262   AliasAnalysis *AA;
    263   LiveIntervals *LIS;
    264   std::unique_ptr<MachineSchedStrategy> SchedImpl;
    265 
    266   /// Topo - A topological ordering for SUnits which permits fast IsReachable
    267   /// and similar queries.
    268   ScheduleDAGTopologicalSort Topo;
    269 
    270   /// Ordered list of DAG postprocessing steps.
    271   std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
    272 
    273   /// The top of the unscheduled zone.
    274   MachineBasicBlock::iterator CurrentTop;
    275 
    276   /// The bottom of the unscheduled zone.
    277   MachineBasicBlock::iterator CurrentBottom;
    278 
    279   /// Record the next node in a scheduled cluster.
    280   const SUnit *NextClusterPred = nullptr;
    281   const SUnit *NextClusterSucc = nullptr;
    282 
    283 #ifndef NDEBUG
    284   /// The number of instructions scheduled so far. Used to cut off the
    285   /// scheduler at the point determined by misched-cutoff.
    286   unsigned NumInstrsScheduled = 0;
    287 #endif
    288 
    289 public:
    290   ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
    291                 bool RemoveKillFlags)
    292       : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA),
    293         LIS(C->LIS), SchedImpl(std::move(S)), Topo(SUnits, &ExitSU) {}
    294 
    295   // Provide a vtable anchor
    296   ~ScheduleDAGMI() override;
    297 
    298   /// If this method returns true, handling of the scheduling regions
    299   /// themselves (in case of a scheduling boundary in MBB) will be done
    300   /// beginning with the topmost region of MBB.
    301   bool doMBBSchedRegionsTopDown() const override {
    302     return SchedImpl->doMBBSchedRegionsTopDown();
    303   }
    304 
    305   // Returns LiveIntervals instance for use in DAG mutators and such.
    306   LiveIntervals *getLIS() const { return LIS; }
    307 
    308   /// Return true if this DAG supports VReg liveness and RegPressure.
    309   virtual bool hasVRegLiveness() const { return false; }
    310 
    311   /// Add a postprocessing step to the DAG builder.
    312   /// Mutations are applied in the order that they are added after normal DAG
    313   /// building and before MachineSchedStrategy initialization.
    314   ///
    315   /// ScheduleDAGMI takes ownership of the Mutation object.
    316   void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
    317     if (Mutation)
    318       Mutations.push_back(std::move(Mutation));
    319   }
    320 
    321   /// \brief True if an edge can be added from PredSU to SuccSU without creating
    322   /// a cycle.
    323   bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
    324 
    325   /// \brief Add a DAG edge to the given SU with the given predecessor
    326   /// dependence data.
    327   ///
    328   /// \returns true if the edge may be added without creating a cycle OR if an
    329   /// equivalent edge already existed (false indicates failure).
    330   bool addEdge(SUnit *SuccSU, const SDep &PredDep);
    331 
    332   MachineBasicBlock::iterator top() const { return CurrentTop; }
    333   MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
    334 
    335   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
    336   /// region. This covers all instructions in a block, while schedule() may only
    337   /// cover a subset.
    338   void enterRegion(MachineBasicBlock *bb,
    339                    MachineBasicBlock::iterator begin,
    340                    MachineBasicBlock::iterator end,
    341                    unsigned regioninstrs) override;
    342 
    343   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
    344   /// reorderable instructions.
    345   void schedule() override;
    346 
    347   void startBlock(MachineBasicBlock *bb) override;
    348   void finishBlock() override;
    349 
    350   /// Change the position of an instruction within the basic block and update
    351   /// live ranges and region boundary iterators.
    352   void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
    353 
    354   const SUnit *getNextClusterPred() const { return NextClusterPred; }
    355 
    356   const SUnit *getNextClusterSucc() const { return NextClusterSucc; }
    357 
    358   void viewGraph(const Twine &Name, const Twine &Title) override;
    359   void viewGraph() override;
    360 
    361 protected:
    362   // Top-Level entry points for the schedule() driver...
    363 
    364   /// Apply each ScheduleDAGMutation step in order. This allows different
    365   /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
    366   void postprocessDAG();
    367 
    368   /// Release ExitSU predecessors and setup scheduler queues.
    369   void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
    370 
    371   /// Update scheduler DAG and queues after scheduling an instruction.
    372   void updateQueues(SUnit *SU, bool IsTopNode);
    373 
    374   /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
    375   void placeDebugValues();
    376 
    377   /// \brief dump the scheduled Sequence.
    378   void dumpSchedule() const;
    379 
    380   // Lesser helpers...
    381   bool checkSchedLimit();
    382 
    383   void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
    384                              SmallVectorImpl<SUnit*> &BotRoots);
    385 
    386   void releaseSucc(SUnit *SU, SDep *SuccEdge);
    387   void releaseSuccessors(SUnit *SU);
    388   void releasePred(SUnit *SU, SDep *PredEdge);
    389   void releasePredecessors(SUnit *SU);
    390 };
    391 
    392 /// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
    393 /// machine instructions while updating LiveIntervals and tracking regpressure.
    394 class ScheduleDAGMILive : public ScheduleDAGMI {
    395 protected:
    396   RegisterClassInfo *RegClassInfo;
    397 
    398   /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
    399   /// will be empty.
    400   SchedDFSResult *DFSResult = nullptr;
    401   BitVector ScheduledTrees;
    402 
    403   MachineBasicBlock::iterator LiveRegionEnd;
    404 
    405   /// Maps vregs to the SUnits of their uses in the current scheduling region.
    406   VReg2SUnitMultiMap VRegUses;
    407 
    408   // Map each SU to its summary of pressure changes. This array is updated for
    409   // liveness during bottom-up scheduling. Top-down scheduling may proceed but
    410   // has no affect on the pressure diffs.
    411   PressureDiffs SUPressureDiffs;
    412 
    413   /// Register pressure in this region computed by initRegPressure.
    414   bool ShouldTrackPressure = false;
    415   bool ShouldTrackLaneMasks = false;
    416   IntervalPressure RegPressure;
    417   RegPressureTracker RPTracker;
    418 
    419   /// List of pressure sets that exceed the target's pressure limit before
    420   /// scheduling, listed in increasing set ID order. Each pressure set is paired
    421   /// with its max pressure in the currently scheduled regions.
    422   std::vector<PressureChange> RegionCriticalPSets;
    423 
    424   /// The top of the unscheduled zone.
    425   IntervalPressure TopPressure;
    426   RegPressureTracker TopRPTracker;
    427 
    428   /// The bottom of the unscheduled zone.
    429   IntervalPressure BotPressure;
    430   RegPressureTracker BotRPTracker;
    431 
    432   /// True if disconnected subregister components are already renamed.
    433   /// The renaming is only done on demand if lane masks are tracked.
    434   bool DisconnectedComponentsRenamed = false;
    435 
    436 public:
    437   ScheduleDAGMILive(MachineSchedContext *C,
    438                     std::unique_ptr<MachineSchedStrategy> S)
    439       : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false),
    440         RegClassInfo(C->RegClassInfo), RPTracker(RegPressure),
    441         TopRPTracker(TopPressure), BotRPTracker(BotPressure) {}
    442 
    443   ~ScheduleDAGMILive() override;
    444 
    445   /// Return true if this DAG supports VReg liveness and RegPressure.
    446   bool hasVRegLiveness() const override { return true; }
    447 
    448   /// \brief Return true if register pressure tracking is enabled.
    449   bool isTrackingPressure() const { return ShouldTrackPressure; }
    450 
    451   /// Get current register pressure for the top scheduled instructions.
    452   const IntervalPressure &getTopPressure() const { return TopPressure; }
    453   const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
    454 
    455   /// Get current register pressure for the bottom scheduled instructions.
    456   const IntervalPressure &getBotPressure() const { return BotPressure; }
    457   const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
    458 
    459   /// Get register pressure for the entire scheduling region before scheduling.
    460   const IntervalPressure &getRegPressure() const { return RegPressure; }
    461 
    462   const std::vector<PressureChange> &getRegionCriticalPSets() const {
    463     return RegionCriticalPSets;
    464   }
    465 
    466   PressureDiff &getPressureDiff(const SUnit *SU) {
    467     return SUPressureDiffs[SU->NodeNum];
    468   }
    469 
    470   /// Compute a DFSResult after DAG building is complete, and before any
    471   /// queue comparisons.
    472   void computeDFSResult();
    473 
    474   /// Return a non-null DFS result if the scheduling strategy initialized it.
    475   const SchedDFSResult *getDFSResult() const { return DFSResult; }
    476 
    477   BitVector &getScheduledTrees() { return ScheduledTrees; }
    478 
    479   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
    480   /// region. This covers all instructions in a block, while schedule() may only
    481   /// cover a subset.
    482   void enterRegion(MachineBasicBlock *bb,
    483                    MachineBasicBlock::iterator begin,
    484                    MachineBasicBlock::iterator end,
    485                    unsigned regioninstrs) override;
    486 
    487   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
    488   /// reorderable instructions.
    489   void schedule() override;
    490 
    491   /// Compute the cyclic critical path through the DAG.
    492   unsigned computeCyclicCriticalPath();
    493 
    494 protected:
    495   // Top-Level entry points for the schedule() driver...
    496 
    497   /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
    498   /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
    499   /// region, TopTracker and BottomTracker will be initialized to the top and
    500   /// bottom of the DAG region without covereing any unscheduled instruction.
    501   void buildDAGWithRegPressure();
    502 
    503   /// Release ExitSU predecessors and setup scheduler queues. Re-position
    504   /// the Top RP tracker in case the region beginning has changed.
    505   void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
    506 
    507   /// Move an instruction and update register pressure.
    508   void scheduleMI(SUnit *SU, bool IsTopNode);
    509 
    510   // Lesser helpers...
    511 
    512   void initRegPressure();
    513 
    514   void updatePressureDiffs(ArrayRef<RegisterMaskPair> LiveUses);
    515 
    516   void updateScheduledPressure(const SUnit *SU,
    517                                const std::vector<unsigned> &NewMaxPressure);
    518 
    519   void collectVRegUses(SUnit &SU);
    520 };
    521 
    522 //===----------------------------------------------------------------------===//
    523 ///
    524 /// Helpers for implementing custom MachineSchedStrategy classes. These take
    525 /// care of the book-keeping associated with list scheduling heuristics.
    526 ///
    527 //===----------------------------------------------------------------------===//
    528 
    529 /// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
    530 /// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
    531 /// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
    532 ///
    533 /// This is a convenience class that may be used by implementations of
    534 /// MachineSchedStrategy.
    535 class ReadyQueue {
    536   unsigned ID;
    537   std::string Name;
    538   std::vector<SUnit*> Queue;
    539 
    540 public:
    541   ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
    542 
    543   unsigned getID() const { return ID; }
    544 
    545   StringRef getName() const { return Name; }
    546 
    547   // SU is in this queue if it's NodeQueueID is a superset of this ID.
    548   bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
    549 
    550   bool empty() const { return Queue.empty(); }
    551 
    552   void clear() { Queue.clear(); }
    553 
    554   unsigned size() const { return Queue.size(); }
    555 
    556   using iterator = std::vector<SUnit*>::iterator;
    557 
    558   iterator begin() { return Queue.begin(); }
    559 
    560   iterator end() { return Queue.end(); }
    561 
    562   ArrayRef<SUnit*> elements() { return Queue; }
    563 
    564   iterator find(SUnit *SU) { return llvm::find(Queue, SU); }
    565 
    566   void push(SUnit *SU) {
    567     Queue.push_back(SU);
    568     SU->NodeQueueId |= ID;
    569   }
    570 
    571   iterator remove(iterator I) {
    572     (*I)->NodeQueueId &= ~ID;
    573     *I = Queue.back();
    574     unsigned idx = I - Queue.begin();
    575     Queue.pop_back();
    576     return Queue.begin() + idx;
    577   }
    578 
    579   void dump() const;
    580 };
    581 
    582 /// Summarize the unscheduled region.
    583 struct SchedRemainder {
    584   // Critical path through the DAG in expected latency.
    585   unsigned CriticalPath;
    586   unsigned CyclicCritPath;
    587 
    588   // Scaled count of micro-ops left to schedule.
    589   unsigned RemIssueCount;
    590 
    591   bool IsAcyclicLatencyLimited;
    592 
    593   // Unscheduled resources
    594   SmallVector<unsigned, 16> RemainingCounts;
    595 
    596   SchedRemainder() { reset(); }
    597 
    598   void reset() {
    599     CriticalPath = 0;
    600     CyclicCritPath = 0;
    601     RemIssueCount = 0;
    602     IsAcyclicLatencyLimited = false;
    603     RemainingCounts.clear();
    604   }
    605 
    606   void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
    607 };
    608 
    609 /// Each Scheduling boundary is associated with ready queues. It tracks the
    610 /// current cycle in the direction of movement, and maintains the state
    611 /// of "hazards" and other interlocks at the current cycle.
    612 class SchedBoundary {
    613 public:
    614   /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
    615   enum {
    616     TopQID = 1,
    617     BotQID = 2,
    618     LogMaxQID = 2
    619   };
    620 
    621   ScheduleDAGMI *DAG = nullptr;
    622   const TargetSchedModel *SchedModel = nullptr;
    623   SchedRemainder *Rem = nullptr;
    624 
    625   ReadyQueue Available;
    626   ReadyQueue Pending;
    627 
    628   ScheduleHazardRecognizer *HazardRec = nullptr;
    629 
    630 private:
    631   /// True if the pending Q should be checked/updated before scheduling another
    632   /// instruction.
    633   bool CheckPending;
    634 
    635   /// Number of cycles it takes to issue the instructions scheduled in this
    636   /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
    637   /// See getStalls().
    638   unsigned CurrCycle;
    639 
    640   /// Micro-ops issued in the current cycle
    641   unsigned CurrMOps;
    642 
    643   /// MinReadyCycle - Cycle of the soonest available instruction.
    644   unsigned MinReadyCycle;
    645 
    646   // The expected latency of the critical path in this scheduled zone.
    647   unsigned ExpectedLatency;
    648 
    649   // The latency of dependence chains leading into this zone.
    650   // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
    651   // For each cycle scheduled: DLat -= 1.
    652   unsigned DependentLatency;
    653 
    654   /// Count the scheduled (issued) micro-ops that can be retired by
    655   /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
    656   unsigned RetiredMOps;
    657 
    658   // Count scheduled resources that have been executed. Resources are
    659   // considered executed if they become ready in the time that it takes to
    660   // saturate any resource including the one in question. Counts are scaled
    661   // for direct comparison with other resources. Counts can be compared with
    662   // MOps * getMicroOpFactor and Latency * getLatencyFactor.
    663   SmallVector<unsigned, 16> ExecutedResCounts;
    664 
    665   /// Cache the max count for a single resource.
    666   unsigned MaxExecutedResCount;
    667 
    668   // Cache the critical resources ID in this scheduled zone.
    669   unsigned ZoneCritResIdx;
    670 
    671   // Is the scheduled region resource limited vs. latency limited.
    672   bool IsResourceLimited;
    673 
    674   // Record the highest cycle at which each resource has been reserved by a
    675   // scheduled instruction.
    676   SmallVector<unsigned, 16> ReservedCycles;
    677 
    678 #ifndef NDEBUG
    679   // Remember the greatest possible stall as an upper bound on the number of
    680   // times we should retry the pending queue because of a hazard.
    681   unsigned MaxObservedStall;
    682 #endif
    683 
    684 public:
    685   /// Pending queues extend the ready queues with the same ID and the
    686   /// PendingFlag set.
    687   SchedBoundary(unsigned ID, const Twine &Name):
    688     Available(ID, Name+".A"), Pending(ID << LogMaxQID, Name+".P") {
    689     reset();
    690   }
    691 
    692   ~SchedBoundary();
    693 
    694   void reset();
    695 
    696   void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
    697             SchedRemainder *rem);
    698 
    699   bool isTop() const {
    700     return Available.getID() == TopQID;
    701   }
    702 
    703   /// Number of cycles to issue the instructions scheduled in this zone.
    704   unsigned getCurrCycle() const { return CurrCycle; }
    705 
    706   /// Micro-ops issued in the current cycle
    707   unsigned getCurrMOps() const { return CurrMOps; }
    708 
    709   // The latency of dependence chains leading into this zone.
    710   unsigned getDependentLatency() const { return DependentLatency; }
    711 
    712   /// Get the number of latency cycles "covered" by the scheduled
    713   /// instructions. This is the larger of the critical path within the zone
    714   /// and the number of cycles required to issue the instructions.
    715   unsigned getScheduledLatency() const {
    716     return std::max(ExpectedLatency, CurrCycle);
    717   }
    718 
    719   unsigned getUnscheduledLatency(SUnit *SU) const {
    720     return isTop() ? SU->getHeight() : SU->getDepth();
    721   }
    722 
    723   unsigned getResourceCount(unsigned ResIdx) const {
    724     return ExecutedResCounts[ResIdx];
    725   }
    726 
    727   /// Get the scaled count of scheduled micro-ops and resources, including
    728   /// executed resources.
    729   unsigned getCriticalCount() const {
    730     if (!ZoneCritResIdx)
    731       return RetiredMOps * SchedModel->getMicroOpFactor();
    732     return getResourceCount(ZoneCritResIdx);
    733   }
    734 
    735   /// Get a scaled count for the minimum execution time of the scheduled
    736   /// micro-ops that are ready to execute by getExecutedCount. Notice the
    737   /// feedback loop.
    738   unsigned getExecutedCount() const {
    739     return std::max(CurrCycle * SchedModel->getLatencyFactor(),
    740                     MaxExecutedResCount);
    741   }
    742 
    743   unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }
    744 
    745   // Is the scheduled region resource limited vs. latency limited.
    746   bool isResourceLimited() const { return IsResourceLimited; }
    747 
    748   /// Get the difference between the given SUnit's ready time and the current
    749   /// cycle.
    750   unsigned getLatencyStallCycles(SUnit *SU);
    751 
    752   unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);
    753 
    754   bool checkHazard(SUnit *SU);
    755 
    756   unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
    757 
    758   unsigned getOtherResourceCount(unsigned &OtherCritIdx);
    759 
    760   void releaseNode(SUnit *SU, unsigned ReadyCycle);
    761 
    762   void bumpCycle(unsigned NextCycle);
    763 
    764   void incExecutedResources(unsigned PIdx, unsigned Count);
    765 
    766   unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
    767 
    768   void bumpNode(SUnit *SU);
    769 
    770   void releasePending();
    771 
    772   void removeReady(SUnit *SU);
    773 
    774   /// Call this before applying any other heuristics to the Available queue.
    775   /// Updates the Available/Pending Q's if necessary and returns the single
    776   /// available instruction, or NULL if there are multiple candidates.
    777   SUnit *pickOnlyChoice();
    778 
    779   void dumpScheduledState() const;
    780 };
    781 
    782 /// Base class for GenericScheduler. This class maintains information about
    783 /// scheduling candidates based on TargetSchedModel making it easy to implement
    784 /// heuristics for either preRA or postRA scheduling.
    785 class GenericSchedulerBase : public MachineSchedStrategy {
    786 public:
    787   /// Represent the type of SchedCandidate found within a single queue.
    788   /// pickNodeBidirectional depends on these listed by decreasing priority.
    789   enum CandReason : uint8_t {
    790     NoCand, Only1, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak,
    791     RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
    792     TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
    793 
    794 #ifndef NDEBUG
    795   static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
    796 #endif
    797 
    798   /// Policy for scheduling the next instruction in the candidate's zone.
    799   struct CandPolicy {
    800     bool ReduceLatency = false;
    801     unsigned ReduceResIdx = 0;
    802     unsigned DemandResIdx = 0;
    803 
    804     CandPolicy() = default;
    805 
    806     bool operator==(const CandPolicy &RHS) const {
    807       return ReduceLatency == RHS.ReduceLatency &&
    808              ReduceResIdx == RHS.ReduceResIdx &&
    809              DemandResIdx == RHS.DemandResIdx;
    810     }
    811     bool operator!=(const CandPolicy &RHS) const {
    812       return !(*this == RHS);
    813     }
    814   };
    815 
    816   /// Status of an instruction's critical resource consumption.
    817   struct SchedResourceDelta {
    818     // Count critical resources in the scheduled region required by SU.
    819     unsigned CritResources = 0;
    820 
    821     // Count critical resources from another region consumed by SU.
    822     unsigned DemandedResources = 0;
    823 
    824     SchedResourceDelta() = default;
    825 
    826     bool operator==(const SchedResourceDelta &RHS) const {
    827       return CritResources == RHS.CritResources
    828         && DemandedResources == RHS.DemandedResources;
    829     }
    830     bool operator!=(const SchedResourceDelta &RHS) const {
    831       return !operator==(RHS);
    832     }
    833   };
    834 
    835   /// Store the state used by GenericScheduler heuristics, required for the
    836   /// lifetime of one invocation of pickNode().
    837   struct SchedCandidate {
    838     CandPolicy Policy;
    839 
    840     // The best SUnit candidate.
    841     SUnit *SU;
    842 
    843     // The reason for this candidate.
    844     CandReason Reason;
    845 
    846     // Whether this candidate should be scheduled at top/bottom.
    847     bool AtTop;
    848 
    849     // Register pressure values for the best candidate.
    850     RegPressureDelta RPDelta;
    851 
    852     // Critical resource consumption of the best candidate.
    853     SchedResourceDelta ResDelta;
    854 
    855     SchedCandidate() { reset(CandPolicy()); }
    856     SchedCandidate(const CandPolicy &Policy) { reset(Policy); }
    857 
    858     void reset(const CandPolicy &NewPolicy) {
    859       Policy = NewPolicy;
    860       SU = nullptr;
    861       Reason = NoCand;
    862       AtTop = false;
    863       RPDelta = RegPressureDelta();
    864       ResDelta = SchedResourceDelta();
    865     }
    866 
    867     bool isValid() const { return SU; }
    868 
    869     // Copy the status of another candidate without changing policy.
    870     void setBest(SchedCandidate &Best) {
    871       assert(Best.Reason != NoCand && "uninitialized Sched candidate");
    872       SU = Best.SU;
    873       Reason = Best.Reason;
    874       AtTop = Best.AtTop;
    875       RPDelta = Best.RPDelta;
    876       ResDelta = Best.ResDelta;
    877     }
    878 
    879     void initResourceDelta(const ScheduleDAGMI *DAG,
    880                            const TargetSchedModel *SchedModel);
    881   };
    882 
    883 protected:
    884   const MachineSchedContext *Context;
    885   const TargetSchedModel *SchedModel = nullptr;
    886   const TargetRegisterInfo *TRI = nullptr;
    887 
    888   SchedRemainder Rem;
    889 
    890   GenericSchedulerBase(const MachineSchedContext *C) : Context(C) {}
    891 
    892   void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
    893                  SchedBoundary *OtherZone);
    894 
    895 #ifndef NDEBUG
    896   void traceCandidate(const SchedCandidate &Cand);
    897 #endif
    898 };
    899 
    900 /// GenericScheduler shrinks the unscheduled zone using heuristics to balance
    901 /// the schedule.
    902 class GenericScheduler : public GenericSchedulerBase {
    903 public:
    904   GenericScheduler(const MachineSchedContext *C):
    905     GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ"),
    906     Bot(SchedBoundary::BotQID, "BotQ") {}
    907 
    908   void initPolicy(MachineBasicBlock::iterator Begin,
    909                   MachineBasicBlock::iterator End,
    910                   unsigned NumRegionInstrs) override;
    911 
    912   void dumpPolicy() const override;
    913 
    914   bool shouldTrackPressure() const override {
    915     return RegionPolicy.ShouldTrackPressure;
    916   }
    917 
    918   bool shouldTrackLaneMasks() const override {
    919     return RegionPolicy.ShouldTrackLaneMasks;
    920   }
    921 
    922   void initialize(ScheduleDAGMI *dag) override;
    923 
    924   SUnit *pickNode(bool &IsTopNode) override;
    925 
    926   void schedNode(SUnit *SU, bool IsTopNode) override;
    927 
    928   void releaseTopNode(SUnit *SU) override {
    929     if (SU->isScheduled)
    930       return;
    931 
    932     Top.releaseNode(SU, SU->TopReadyCycle);
    933     TopCand.SU = nullptr;
    934   }
    935 
    936   void releaseBottomNode(SUnit *SU) override {
    937     if (SU->isScheduled)
    938       return;
    939 
    940     Bot.releaseNode(SU, SU->BotReadyCycle);
    941     BotCand.SU = nullptr;
    942   }
    943 
    944   void registerRoots() override;
    945 
    946 protected:
    947   ScheduleDAGMILive *DAG = nullptr;
    948 
    949   MachineSchedPolicy RegionPolicy;
    950 
    951   // State of the top and bottom scheduled instruction boundaries.
    952   SchedBoundary Top;
    953   SchedBoundary Bot;
    954 
    955   /// Candidate last picked from Top boundary.
    956   SchedCandidate TopCand;
    957   /// Candidate last picked from Bot boundary.
    958   SchedCandidate BotCand;
    959 
    960   void checkAcyclicLatency();
    961 
    962   void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop,
    963                      const RegPressureTracker &RPTracker,
    964                      RegPressureTracker &TempTracker);
    965 
    966   void tryCandidate(SchedCandidate &Cand,
    967                     SchedCandidate &TryCand,
    968                     SchedBoundary *Zone);
    969 
    970   SUnit *pickNodeBidirectional(bool &IsTopNode);
    971 
    972   void pickNodeFromQueue(SchedBoundary &Zone,
    973                          const CandPolicy &ZonePolicy,
    974                          const RegPressureTracker &RPTracker,
    975                          SchedCandidate &Candidate);
    976 
    977   void reschedulePhysRegCopies(SUnit *SU, bool isTop);
    978 };
    979 
    980 /// PostGenericScheduler - Interface to the scheduling algorithm used by
    981 /// ScheduleDAGMI.
    982 ///
    983 /// Callbacks from ScheduleDAGMI:
    984 ///   initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
    985 class PostGenericScheduler : public GenericSchedulerBase {
    986   ScheduleDAGMI *DAG;
    987   SchedBoundary Top;
    988   SmallVector<SUnit*, 8> BotRoots;
    989 
    990 public:
    991   PostGenericScheduler(const MachineSchedContext *C):
    992     GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}
    993 
    994   ~PostGenericScheduler() override = default;
    995 
    996   void initPolicy(MachineBasicBlock::iterator Begin,
    997                   MachineBasicBlock::iterator End,
    998                   unsigned NumRegionInstrs) override {
    999     /* no configurable policy */
   1000   }
   1001 
   1002   /// PostRA scheduling does not track pressure.
   1003   bool shouldTrackPressure() const override { return false; }
   1004 
   1005   void initialize(ScheduleDAGMI *Dag) override;
   1006 
   1007   void registerRoots() override;
   1008 
   1009   SUnit *pickNode(bool &IsTopNode) override;
   1010 
   1011   void scheduleTree(unsigned SubtreeID) override {
   1012     llvm_unreachable("PostRA scheduler does not support subtree analysis.");
   1013   }
   1014 
   1015   void schedNode(SUnit *SU, bool IsTopNode) override;
   1016 
   1017   void releaseTopNode(SUnit *SU) override {
   1018     if (SU->isScheduled)
   1019       return;
   1020     Top.releaseNode(SU, SU->TopReadyCycle);
   1021   }
   1022 
   1023   // Only called for roots.
   1024   void releaseBottomNode(SUnit *SU) override {
   1025     BotRoots.push_back(SU);
   1026   }
   1027 
   1028 protected:
   1029   void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);
   1030 
   1031   void pickNodeFromQueue(SchedCandidate &Cand);
   1032 };
   1033 
   1034 /// Create the standard converging machine scheduler. This will be used as the
   1035 /// default scheduler if the target does not set a default.
   1036 /// Adds default DAG mutations.
   1037 ScheduleDAGMILive *createGenericSchedLive(MachineSchedContext *C);
   1038 
   1039 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
   1040 ScheduleDAGMI *createGenericSchedPostRA(MachineSchedContext *C);
   1041 
   1042 std::unique_ptr<ScheduleDAGMutation>
   1043 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
   1044                              const TargetRegisterInfo *TRI);
   1045 
   1046 std::unique_ptr<ScheduleDAGMutation>
   1047 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
   1048                               const TargetRegisterInfo *TRI);
   1049 
   1050 std::unique_ptr<ScheduleDAGMutation>
   1051 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
   1052                                const TargetRegisterInfo *TRI);
   1053 
   1054 } // end namespace llvm
   1055 
   1056 #endif // LLVM_CODEGEN_MACHINESCHEDULER_H
   1057