Home | History | Annotate | Download | only in IR
      1 //===- CFG.h - Process LLVM structures as graphs ----------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines specializations of GraphTraits that allow Function and
     11 // BasicBlock graphs to be treated as proper graphs for generic algorithms.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_IR_CFG_H
     16 #define LLVM_IR_CFG_H
     17 
     18 #include "llvm/ADT/GraphTraits.h"
     19 #include "llvm/ADT/iterator.h"
     20 #include "llvm/ADT/iterator_range.h"
     21 #include "llvm/IR/BasicBlock.h"
     22 #include "llvm/IR/Function.h"
     23 #include "llvm/IR/InstrTypes.h"
     24 #include "llvm/IR/Value.h"
     25 #include "llvm/Support/Casting.h"
     26 #include "llvm/Support/type_traits.h"
     27 #include <cassert>
     28 #include <cstddef>
     29 #include <iterator>
     30 
     31 namespace llvm {
     32 
     33 //===----------------------------------------------------------------------===//
     34 // BasicBlock pred_iterator definition
     35 //===----------------------------------------------------------------------===//
     36 
     37 template <class Ptr, class USE_iterator> // Predecessor Iterator
     38 class PredIterator : public std::iterator<std::forward_iterator_tag,
     39                                           Ptr, ptrdiff_t, Ptr*, Ptr*> {
     40   using super =
     41       std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*, Ptr*>;
     42   using Self = PredIterator<Ptr, USE_iterator>;
     43   USE_iterator It;
     44 
     45   inline void advancePastNonTerminators() {
     46     // Loop to ignore non-terminator uses (for example BlockAddresses).
     47     while (!It.atEnd() && !isa<TerminatorInst>(*It))
     48       ++It;
     49   }
     50 
     51 public:
     52   using pointer = typename super::pointer;
     53   using reference = typename super::reference;
     54 
     55   PredIterator() = default;
     56   explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
     57     advancePastNonTerminators();
     58   }
     59   inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
     60 
     61   inline bool operator==(const Self& x) const { return It == x.It; }
     62   inline bool operator!=(const Self& x) const { return !operator==(x); }
     63 
     64   inline reference operator*() const {
     65     assert(!It.atEnd() && "pred_iterator out of range!");
     66     return cast<TerminatorInst>(*It)->getParent();
     67   }
     68   inline pointer *operator->() const { return &operator*(); }
     69 
     70   inline Self& operator++() {   // Preincrement
     71     assert(!It.atEnd() && "pred_iterator out of range!");
     72     ++It; advancePastNonTerminators();
     73     return *this;
     74   }
     75 
     76   inline Self operator++(int) { // Postincrement
     77     Self tmp = *this; ++*this; return tmp;
     78   }
     79 
     80   /// getOperandNo - Return the operand number in the predecessor's
     81   /// terminator of the successor.
     82   unsigned getOperandNo() const {
     83     return It.getOperandNo();
     84   }
     85 
     86   /// getUse - Return the operand Use in the predecessor's terminator
     87   /// of the successor.
     88   Use &getUse() const {
     89     return It.getUse();
     90   }
     91 };
     92 
     93 using pred_iterator = PredIterator<BasicBlock, Value::user_iterator>;
     94 using const_pred_iterator =
     95     PredIterator<const BasicBlock, Value::const_user_iterator>;
     96 using pred_range = iterator_range<pred_iterator>;
     97 using pred_const_range = iterator_range<const_pred_iterator>;
     98 
     99 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
    100 inline const_pred_iterator pred_begin(const BasicBlock *BB) {
    101   return const_pred_iterator(BB);
    102 }
    103 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
    104 inline const_pred_iterator pred_end(const BasicBlock *BB) {
    105   return const_pred_iterator(BB, true);
    106 }
    107 inline bool pred_empty(const BasicBlock *BB) {
    108   return pred_begin(BB) == pred_end(BB);
    109 }
    110 inline pred_range predecessors(BasicBlock *BB) {
    111   return pred_range(pred_begin(BB), pred_end(BB));
    112 }
    113 inline pred_const_range predecessors(const BasicBlock *BB) {
    114   return pred_const_range(pred_begin(BB), pred_end(BB));
    115 }
    116 
    117 //===----------------------------------------------------------------------===//
    118 // BasicBlock succ_iterator helpers
    119 //===----------------------------------------------------------------------===//
    120 
    121 using succ_iterator =
    122     TerminatorInst::SuccIterator<TerminatorInst *, BasicBlock>;
    123 using succ_const_iterator =
    124     TerminatorInst::SuccIterator<const TerminatorInst *, const BasicBlock>;
    125 using succ_range = iterator_range<succ_iterator>;
    126 using succ_const_range = iterator_range<succ_const_iterator>;
    127 
    128 inline succ_iterator succ_begin(BasicBlock *BB) {
    129   return succ_iterator(BB->getTerminator());
    130 }
    131 inline succ_const_iterator succ_begin(const BasicBlock *BB) {
    132   return succ_const_iterator(BB->getTerminator());
    133 }
    134 inline succ_iterator succ_end(BasicBlock *BB) {
    135   return succ_iterator(BB->getTerminator(), true);
    136 }
    137 inline succ_const_iterator succ_end(const BasicBlock *BB) {
    138   return succ_const_iterator(BB->getTerminator(), true);
    139 }
    140 inline bool succ_empty(const BasicBlock *BB) {
    141   return succ_begin(BB) == succ_end(BB);
    142 }
    143 inline succ_range successors(BasicBlock *BB) {
    144   return succ_range(succ_begin(BB), succ_end(BB));
    145 }
    146 inline succ_const_range successors(const BasicBlock *BB) {
    147   return succ_const_range(succ_begin(BB), succ_end(BB));
    148 }
    149 
    150 template <typename T, typename U>
    151 struct isPodLike<TerminatorInst::SuccIterator<T, U>> {
    152   static const bool value = isPodLike<T>::value;
    153 };
    154 
    155 //===--------------------------------------------------------------------===//
    156 // GraphTraits specializations for basic block graphs (CFGs)
    157 //===--------------------------------------------------------------------===//
    158 
    159 // Provide specializations of GraphTraits to be able to treat a function as a
    160 // graph of basic blocks...
    161 
    162 template <> struct GraphTraits<BasicBlock*> {
    163   using NodeRef = BasicBlock *;
    164   using ChildIteratorType = succ_iterator;
    165 
    166   static NodeRef getEntryNode(BasicBlock *BB) { return BB; }
    167   static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
    168   static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
    169 };
    170 
    171 template <> struct GraphTraits<const BasicBlock*> {
    172   using NodeRef = const BasicBlock *;
    173   using ChildIteratorType = succ_const_iterator;
    174 
    175   static NodeRef getEntryNode(const BasicBlock *BB) { return BB; }
    176 
    177   static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
    178   static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
    179 };
    180 
    181 // Provide specializations of GraphTraits to be able to treat a function as a
    182 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
    183 // a function is considered to be when traversing the predecessor edges of a BB
    184 // instead of the successor edges.
    185 //
    186 template <> struct GraphTraits<Inverse<BasicBlock*>> {
    187   using NodeRef = BasicBlock *;
    188   using ChildIteratorType = pred_iterator;
    189 
    190   static NodeRef getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
    191   static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
    192   static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
    193 };
    194 
    195 template <> struct GraphTraits<Inverse<const BasicBlock*>> {
    196   using NodeRef = const BasicBlock *;
    197   using ChildIteratorType = const_pred_iterator;
    198 
    199   static NodeRef getEntryNode(Inverse<const BasicBlock *> G) { return G.Graph; }
    200   static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
    201   static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
    202 };
    203 
    204 //===--------------------------------------------------------------------===//
    205 // GraphTraits specializations for function basic block graphs (CFGs)
    206 //===--------------------------------------------------------------------===//
    207 
    208 // Provide specializations of GraphTraits to be able to treat a function as a
    209 // graph of basic blocks... these are the same as the basic block iterators,
    210 // except that the root node is implicitly the first node of the function.
    211 //
    212 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
    213   static NodeRef getEntryNode(Function *F) { return &F->getEntryBlock(); }
    214 
    215   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
    216   using nodes_iterator = pointer_iterator<Function::iterator>;
    217 
    218   static nodes_iterator nodes_begin(Function *F) {
    219     return nodes_iterator(F->begin());
    220   }
    221 
    222   static nodes_iterator nodes_end(Function *F) {
    223     return nodes_iterator(F->end());
    224   }
    225 
    226   static size_t size(Function *F) { return F->size(); }
    227 };
    228 template <> struct GraphTraits<const Function*> :
    229   public GraphTraits<const BasicBlock*> {
    230   static NodeRef getEntryNode(const Function *F) { return &F->getEntryBlock(); }
    231 
    232   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
    233   using nodes_iterator = pointer_iterator<Function::const_iterator>;
    234 
    235   static nodes_iterator nodes_begin(const Function *F) {
    236     return nodes_iterator(F->begin());
    237   }
    238 
    239   static nodes_iterator nodes_end(const Function *F) {
    240     return nodes_iterator(F->end());
    241   }
    242 
    243   static size_t size(const Function *F) { return F->size(); }
    244 };
    245 
    246 // Provide specializations of GraphTraits to be able to treat a function as a
    247 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
    248 // a function is considered to be when traversing the predecessor edges of a BB
    249 // instead of the successor edges.
    250 //
    251 template <> struct GraphTraits<Inverse<Function*>> :
    252   public GraphTraits<Inverse<BasicBlock*>> {
    253   static NodeRef getEntryNode(Inverse<Function *> G) {
    254     return &G.Graph->getEntryBlock();
    255   }
    256 };
    257 template <> struct GraphTraits<Inverse<const Function*>> :
    258   public GraphTraits<Inverse<const BasicBlock*>> {
    259   static NodeRef getEntryNode(Inverse<const Function *> G) {
    260     return &G.Graph->getEntryBlock();
    261   }
    262 };
    263 
    264 } // end namespace llvm
    265 
    266 #endif // LLVM_IR_CFG_H
    267