Home | History | Annotate | Download | only in Utils
      1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines various functions that are used to clone chunks of LLVM
     11 // code for various purposes.  This varies from copying whole modules into new
     12 // modules, to cloning functions with different arguments, to inlining
     13 // functions, to copying basic blocks to support loop unrolling or superblock
     14 // formation, etc.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
     19 #define LLVM_TRANSFORMS_UTILS_CLONING_H
     20 
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Twine.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/Analysis/AssumptionCache.h"
     25 #include "llvm/IR/CallSite.h"
     26 #include "llvm/IR/ValueHandle.h"
     27 #include "llvm/Transforms/Utils/ValueMapper.h"
     28 #include <functional>
     29 #include <memory>
     30 #include <vector>
     31 
     32 namespace llvm {
     33 
     34 class AllocaInst;
     35 class BasicBlock;
     36 class BlockFrequencyInfo;
     37 class CallInst;
     38 class CallGraph;
     39 class DebugInfoFinder;
     40 class DominatorTree;
     41 class Function;
     42 class Instruction;
     43 class InvokeInst;
     44 class Loop;
     45 class LoopInfo;
     46 class Module;
     47 class ProfileSummaryInfo;
     48 class ReturnInst;
     49 
     50 /// Return an exact copy of the specified module
     51 ///
     52 std::unique_ptr<Module> CloneModule(const Module *M);
     53 std::unique_ptr<Module> CloneModule(const Module *M, ValueToValueMapTy &VMap);
     54 
     55 /// Return a copy of the specified module. The ShouldCloneDefinition function
     56 /// controls whether a specific GlobalValue's definition is cloned. If the
     57 /// function returns false, the module copy will contain an external reference
     58 /// in place of the global definition.
     59 std::unique_ptr<Module>
     60 CloneModule(const Module *M, ValueToValueMapTy &VMap,
     61             function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);
     62 
     63 /// ClonedCodeInfo - This struct can be used to capture information about code
     64 /// being cloned, while it is being cloned.
     65 struct ClonedCodeInfo {
     66   /// ContainsCalls - This is set to true if the cloned code contains a normal
     67   /// call instruction.
     68   bool ContainsCalls = false;
     69 
     70   /// ContainsDynamicAllocas - This is set to true if the cloned code contains
     71   /// a 'dynamic' alloca.  Dynamic allocas are allocas that are either not in
     72   /// the entry block or they are in the entry block but are not a constant
     73   /// size.
     74   bool ContainsDynamicAllocas = false;
     75 
     76   /// All cloned call sites that have operand bundles attached are appended to
     77   /// this vector.  This vector may contain nulls or undefs if some of the
     78   /// originally inserted callsites were DCE'ed after they were cloned.
     79   std::vector<WeakTrackingVH> OperandBundleCallSites;
     80 
     81   ClonedCodeInfo() = default;
     82 };
     83 
     84 /// CloneBasicBlock - Return a copy of the specified basic block, but without
     85 /// embedding the block into a particular function.  The block returned is an
     86 /// exact copy of the specified basic block, without any remapping having been
     87 /// performed.  Because of this, this is only suitable for applications where
     88 /// the basic block will be inserted into the same function that it was cloned
     89 /// from (loop unrolling would use this, for example).
     90 ///
     91 /// Also, note that this function makes a direct copy of the basic block, and
     92 /// can thus produce illegal LLVM code.  In particular, it will copy any PHI
     93 /// nodes from the original block, even though there are no predecessors for the
     94 /// newly cloned block (thus, phi nodes will have to be updated).  Also, this
     95 /// block will branch to the old successors of the original block: these
     96 /// successors will have to have any PHI nodes updated to account for the new
     97 /// incoming edges.
     98 ///
     99 /// The correlation between instructions in the source and result basic blocks
    100 /// is recorded in the VMap map.
    101 ///
    102 /// If you have a particular suffix you'd like to use to add to any cloned
    103 /// names, specify it as the optional third parameter.
    104 ///
    105 /// If you would like the basic block to be auto-inserted into the end of a
    106 /// function, you can specify it as the optional fourth parameter.
    107 ///
    108 /// If you would like to collect additional information about the cloned
    109 /// function, you can specify a ClonedCodeInfo object with the optional fifth
    110 /// parameter.
    111 ///
    112 BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
    113                             const Twine &NameSuffix = "", Function *F = nullptr,
    114                             ClonedCodeInfo *CodeInfo = nullptr,
    115                             DebugInfoFinder *DIFinder = nullptr);
    116 
    117 /// CloneFunction - Return a copy of the specified function and add it to that
    118 /// function's module.  Also, any references specified in the VMap are changed
    119 /// to refer to their mapped value instead of the original one.  If any of the
    120 /// arguments to the function are in the VMap, the arguments are deleted from
    121 /// the resultant function.  The VMap is updated to include mappings from all of
    122 /// the instructions and basicblocks in the function from their old to new
    123 /// values.  The final argument captures information about the cloned code if
    124 /// non-null.
    125 ///
    126 /// VMap contains no non-identity GlobalValue mappings and debug info metadata
    127 /// will not be cloned.
    128 ///
    129 Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
    130                         ClonedCodeInfo *CodeInfo = nullptr);
    131 
    132 /// Clone OldFunc into NewFunc, transforming the old arguments into references
    133 /// to VMap values.  Note that if NewFunc already has basic blocks, the ones
    134 /// cloned into it will be added to the end of the function.  This function
    135 /// fills in a list of return instructions, and can optionally remap types
    136 /// and/or append the specified suffix to all values cloned.
    137 ///
    138 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
    139 /// mappings.
    140 ///
    141 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
    142                        ValueToValueMapTy &VMap, bool ModuleLevelChanges,
    143                        SmallVectorImpl<ReturnInst*> &Returns,
    144                        const char *NameSuffix = "",
    145                        ClonedCodeInfo *CodeInfo = nullptr,
    146                        ValueMapTypeRemapper *TypeMapper = nullptr,
    147                        ValueMaterializer *Materializer = nullptr);
    148 
    149 void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
    150                                const Instruction *StartingInst,
    151                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
    152                                SmallVectorImpl<ReturnInst *> &Returns,
    153                                const char *NameSuffix = "",
    154                                ClonedCodeInfo *CodeInfo = nullptr);
    155 
    156 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
    157 /// except that it does some simple constant prop and DCE on the fly.  The
    158 /// effect of this is to copy significantly less code in cases where (for
    159 /// example) a function call with constant arguments is inlined, and those
    160 /// constant arguments cause a significant amount of code in the callee to be
    161 /// dead.  Since this doesn't produce an exactly copy of the input, it can't be
    162 /// used for things like CloneFunction or CloneModule.
    163 ///
    164 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
    165 /// mappings.
    166 ///
    167 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
    168                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
    169                                SmallVectorImpl<ReturnInst*> &Returns,
    170                                const char *NameSuffix = "",
    171                                ClonedCodeInfo *CodeInfo = nullptr,
    172                                Instruction *TheCall = nullptr);
    173 
    174 /// InlineFunctionInfo - This class captures the data input to the
    175 /// InlineFunction call, and records the auxiliary results produced by it.
    176 class InlineFunctionInfo {
    177 public:
    178   explicit InlineFunctionInfo(CallGraph *cg = nullptr,
    179                               std::function<AssumptionCache &(Function &)>
    180                                   *GetAssumptionCache = nullptr,
    181                               ProfileSummaryInfo *PSI = nullptr,
    182                               BlockFrequencyInfo *CallerBFI = nullptr,
    183                               BlockFrequencyInfo *CalleeBFI = nullptr)
    184       : CG(cg), GetAssumptionCache(GetAssumptionCache), PSI(PSI),
    185         CallerBFI(CallerBFI), CalleeBFI(CalleeBFI) {}
    186 
    187   /// CG - If non-null, InlineFunction will update the callgraph to reflect the
    188   /// changes it makes.
    189   CallGraph *CG;
    190   std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
    191   ProfileSummaryInfo *PSI;
    192   BlockFrequencyInfo *CallerBFI, *CalleeBFI;
    193 
    194   /// StaticAllocas - InlineFunction fills this in with all static allocas that
    195   /// get copied into the caller.
    196   SmallVector<AllocaInst *, 4> StaticAllocas;
    197 
    198   /// InlinedCalls - InlineFunction fills this in with callsites that were
    199   /// inlined from the callee.  This is only filled in if CG is non-null.
    200   SmallVector<WeakTrackingVH, 8> InlinedCalls;
    201 
    202   /// All of the new call sites inlined into the caller.
    203   ///
    204   /// 'InlineFunction' fills this in by scanning the inlined instructions, and
    205   /// only if CG is null. If CG is non-null, instead the value handle
    206   /// `InlinedCalls` above is used.
    207   SmallVector<CallSite, 8> InlinedCallSites;
    208 
    209   void reset() {
    210     StaticAllocas.clear();
    211     InlinedCalls.clear();
    212     InlinedCallSites.clear();
    213   }
    214 };
    215 
    216 /// InlineFunction - This function inlines the called function into the basic
    217 /// block of the caller.  This returns false if it is not possible to inline
    218 /// this call.  The program is still in a well defined state if this occurs
    219 /// though.
    220 ///
    221 /// Note that this only does one level of inlining.  For example, if the
    222 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
    223 /// exists in the instruction stream.  Similarly this will inline a recursive
    224 /// function by one level.
    225 ///
    226 /// Note that while this routine is allowed to cleanup and optimize the
    227 /// *inlined* code to minimize the actual inserted code, it must not delete
    228 /// code in the caller as users of this routine may have pointers to
    229 /// instructions in the caller that need to remain stable.
    230 bool InlineFunction(CallInst *C, InlineFunctionInfo &IFI,
    231                     AAResults *CalleeAAR = nullptr, bool InsertLifetime = true);
    232 bool InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
    233                     AAResults *CalleeAAR = nullptr, bool InsertLifetime = true);
    234 bool InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
    235                     AAResults *CalleeAAR = nullptr, bool InsertLifetime = true);
    236 
    237 /// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
    238 /// Blocks.
    239 ///
    240 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
    241 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
    242 /// Note: Only innermost loops are supported.
    243 Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
    244                              Loop *OrigLoop, ValueToValueMapTy &VMap,
    245                              const Twine &NameSuffix, LoopInfo *LI,
    246                              DominatorTree *DT,
    247                              SmallVectorImpl<BasicBlock *> &Blocks);
    248 
    249 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
    250 void remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock *> &Blocks,
    251                                ValueToValueMapTy &VMap);
    252 
    253 /// Split edge between BB and PredBB and duplicate all non-Phi instructions
    254 /// from BB between its beginning and the StopAt instruction into the split
    255 /// block. Phi nodes are not duplicated, but their uses are handled correctly:
    256 /// we replace them with the uses of corresponding Phi inputs. ValueMapping
    257 /// is used to map the original instructions from BB to their newly-created
    258 /// copies. Returns the split block.
    259 BasicBlock *
    260 DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB,
    261                                     Instruction *StopAt,
    262                                     ValueToValueMapTy &ValueMapping);
    263 } // end namespace llvm
    264 
    265 #endif // LLVM_TRANSFORMS_UTILS_CLONING_H
    266