Home | History | Annotate | Download | only in AST
      1 //===--- VTableBuilder.h - C++ vtable layout builder --------------*- C++ -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with generation of the layout of virtual tables.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CLANG_AST_VTABLEBUILDER_H
     15 #define LLVM_CLANG_AST_VTABLEBUILDER_H
     16 
     17 #include "clang/AST/BaseSubobject.h"
     18 #include "clang/AST/CXXInheritance.h"
     19 #include "clang/AST/GlobalDecl.h"
     20 #include "clang/AST/RecordLayout.h"
     21 #include "clang/Basic/ABI.h"
     22 #include "llvm/ADT/DenseMap.h"
     23 #include <memory>
     24 #include <utility>
     25 
     26 namespace clang {
     27   class CXXRecordDecl;
     28 
     29 /// \brief Represents a single component in a vtable.
     30 class VTableComponent {
     31 public:
     32   enum Kind {
     33     CK_VCallOffset,
     34     CK_VBaseOffset,
     35     CK_OffsetToTop,
     36     CK_RTTI,
     37     CK_FunctionPointer,
     38 
     39     /// \brief A pointer to the complete destructor.
     40     CK_CompleteDtorPointer,
     41 
     42     /// \brief A pointer to the deleting destructor.
     43     CK_DeletingDtorPointer,
     44 
     45     /// \brief An entry that is never used.
     46     ///
     47     /// In some cases, a vtable function pointer will end up never being
     48     /// called. Such vtable function pointers are represented as a
     49     /// CK_UnusedFunctionPointer.
     50     CK_UnusedFunctionPointer
     51   };
     52 
     53   VTableComponent() = default;
     54 
     55   static VTableComponent MakeVCallOffset(CharUnits Offset) {
     56     return VTableComponent(CK_VCallOffset, Offset);
     57   }
     58 
     59   static VTableComponent MakeVBaseOffset(CharUnits Offset) {
     60     return VTableComponent(CK_VBaseOffset, Offset);
     61   }
     62 
     63   static VTableComponent MakeOffsetToTop(CharUnits Offset) {
     64     return VTableComponent(CK_OffsetToTop, Offset);
     65   }
     66 
     67   static VTableComponent MakeRTTI(const CXXRecordDecl *RD) {
     68     return VTableComponent(CK_RTTI, reinterpret_cast<uintptr_t>(RD));
     69   }
     70 
     71   static VTableComponent MakeFunction(const CXXMethodDecl *MD) {
     72     assert(!isa<CXXDestructorDecl>(MD) &&
     73            "Don't use MakeFunction with destructors!");
     74 
     75     return VTableComponent(CK_FunctionPointer,
     76                            reinterpret_cast<uintptr_t>(MD));
     77   }
     78 
     79   static VTableComponent MakeCompleteDtor(const CXXDestructorDecl *DD) {
     80     return VTableComponent(CK_CompleteDtorPointer,
     81                            reinterpret_cast<uintptr_t>(DD));
     82   }
     83 
     84   static VTableComponent MakeDeletingDtor(const CXXDestructorDecl *DD) {
     85     return VTableComponent(CK_DeletingDtorPointer,
     86                            reinterpret_cast<uintptr_t>(DD));
     87   }
     88 
     89   static VTableComponent MakeUnusedFunction(const CXXMethodDecl *MD) {
     90     assert(!isa<CXXDestructorDecl>(MD) &&
     91            "Don't use MakeUnusedFunction with destructors!");
     92     return VTableComponent(CK_UnusedFunctionPointer,
     93                            reinterpret_cast<uintptr_t>(MD));
     94   }
     95 
     96   static VTableComponent getFromOpaqueInteger(uint64_t I) {
     97     return VTableComponent(I);
     98   }
     99 
    100   /// \brief Get the kind of this vtable component.
    101   Kind getKind() const {
    102     return (Kind)(Value & 0x7);
    103   }
    104 
    105   CharUnits getVCallOffset() const {
    106     assert(getKind() == CK_VCallOffset && "Invalid component kind!");
    107 
    108     return getOffset();
    109   }
    110 
    111   CharUnits getVBaseOffset() const {
    112     assert(getKind() == CK_VBaseOffset && "Invalid component kind!");
    113 
    114     return getOffset();
    115   }
    116 
    117   CharUnits getOffsetToTop() const {
    118     assert(getKind() == CK_OffsetToTop && "Invalid component kind!");
    119 
    120     return getOffset();
    121   }
    122 
    123   const CXXRecordDecl *getRTTIDecl() const {
    124     assert(isRTTIKind() && "Invalid component kind!");
    125     return reinterpret_cast<CXXRecordDecl *>(getPointer());
    126   }
    127 
    128   const CXXMethodDecl *getFunctionDecl() const {
    129     assert(isFunctionPointerKind() && "Invalid component kind!");
    130     if (isDestructorKind())
    131       return getDestructorDecl();
    132     return reinterpret_cast<CXXMethodDecl *>(getPointer());
    133   }
    134 
    135   const CXXDestructorDecl *getDestructorDecl() const {
    136     assert(isDestructorKind() && "Invalid component kind!");
    137     return reinterpret_cast<CXXDestructorDecl *>(getPointer());
    138   }
    139 
    140   const CXXMethodDecl *getUnusedFunctionDecl() const {
    141     assert(getKind() == CK_UnusedFunctionPointer && "Invalid component kind!");
    142     return reinterpret_cast<CXXMethodDecl *>(getPointer());
    143   }
    144 
    145   bool isDestructorKind() const { return isDestructorKind(getKind()); }
    146 
    147   bool isUsedFunctionPointerKind() const {
    148     return isUsedFunctionPointerKind(getKind());
    149   }
    150 
    151   bool isFunctionPointerKind() const {
    152     return isFunctionPointerKind(getKind());
    153   }
    154 
    155   bool isRTTIKind() const { return isRTTIKind(getKind()); }
    156 
    157   GlobalDecl getGlobalDecl() const {
    158     assert(isUsedFunctionPointerKind() &&
    159            "GlobalDecl can be created only from virtual function");
    160 
    161     auto *DtorDecl = dyn_cast<CXXDestructorDecl>(getFunctionDecl());
    162     switch (getKind()) {
    163     case CK_FunctionPointer:
    164       return GlobalDecl(getFunctionDecl());
    165     case CK_CompleteDtorPointer:
    166       return GlobalDecl(DtorDecl, CXXDtorType::Dtor_Complete);
    167     case CK_DeletingDtorPointer:
    168       return GlobalDecl(DtorDecl, CXXDtorType::Dtor_Deleting);
    169     case CK_VCallOffset:
    170     case CK_VBaseOffset:
    171     case CK_OffsetToTop:
    172     case CK_RTTI:
    173     case CK_UnusedFunctionPointer:
    174       llvm_unreachable("Only function pointers kinds");
    175     }
    176     llvm_unreachable("Should already return");
    177   }
    178 
    179 private:
    180   static bool isFunctionPointerKind(Kind ComponentKind) {
    181     return isUsedFunctionPointerKind(ComponentKind) ||
    182            ComponentKind == CK_UnusedFunctionPointer;
    183   }
    184   static bool isUsedFunctionPointerKind(Kind ComponentKind) {
    185     return ComponentKind == CK_FunctionPointer ||
    186            isDestructorKind(ComponentKind);
    187   }
    188   static bool isDestructorKind(Kind ComponentKind) {
    189     return ComponentKind == CK_CompleteDtorPointer ||
    190            ComponentKind == CK_DeletingDtorPointer;
    191   }
    192   static bool isRTTIKind(Kind ComponentKind) {
    193     return ComponentKind == CK_RTTI;
    194   }
    195 
    196   VTableComponent(Kind ComponentKind, CharUnits Offset) {
    197     assert((ComponentKind == CK_VCallOffset ||
    198             ComponentKind == CK_VBaseOffset ||
    199             ComponentKind == CK_OffsetToTop) && "Invalid component kind!");
    200     assert(Offset.getQuantity() < (1LL << 56) && "Offset is too big!");
    201     assert(Offset.getQuantity() >= -(1LL << 56) && "Offset is too small!");
    202 
    203     Value = (uint64_t(Offset.getQuantity()) << 3) | ComponentKind;
    204   }
    205 
    206   VTableComponent(Kind ComponentKind, uintptr_t Ptr) {
    207     assert((isRTTIKind(ComponentKind) || isFunctionPointerKind(ComponentKind)) &&
    208            "Invalid component kind!");
    209 
    210     assert((Ptr & 7) == 0 && "Pointer not sufficiently aligned!");
    211 
    212     Value = Ptr | ComponentKind;
    213   }
    214 
    215   CharUnits getOffset() const {
    216     assert((getKind() == CK_VCallOffset || getKind() == CK_VBaseOffset ||
    217             getKind() == CK_OffsetToTop) && "Invalid component kind!");
    218 
    219     return CharUnits::fromQuantity(Value >> 3);
    220   }
    221 
    222   uintptr_t getPointer() const {
    223     assert((getKind() == CK_RTTI || isFunctionPointerKind()) &&
    224            "Invalid component kind!");
    225 
    226     return static_cast<uintptr_t>(Value & ~7ULL);
    227   }
    228 
    229   explicit VTableComponent(uint64_t Value)
    230     : Value(Value) { }
    231 
    232   /// The kind is stored in the lower 3 bits of the value. For offsets, we
    233   /// make use of the facts that classes can't be larger than 2^55 bytes,
    234   /// so we store the offset in the lower part of the 61 bits that remain.
    235   /// (The reason that we're not simply using a PointerIntPair here is that we
    236   /// need the offsets to be 64-bit, even when on a 32-bit machine).
    237   int64_t Value;
    238 };
    239 
    240 class VTableLayout {
    241 public:
    242   typedef std::pair<uint64_t, ThunkInfo> VTableThunkTy;
    243   struct AddressPointLocation {
    244     unsigned VTableIndex, AddressPointIndex;
    245   };
    246   typedef llvm::DenseMap<BaseSubobject, AddressPointLocation>
    247       AddressPointsMapTy;
    248 
    249 private:
    250   // Stores the component indices of the first component of each virtual table in
    251   // the virtual table group. To save a little memory in the common case where
    252   // the vtable group contains a single vtable, an empty vector here represents
    253   // the vector {0}.
    254   OwningArrayRef<size_t> VTableIndices;
    255 
    256   OwningArrayRef<VTableComponent> VTableComponents;
    257 
    258   /// \brief Contains thunks needed by vtables, sorted by indices.
    259   OwningArrayRef<VTableThunkTy> VTableThunks;
    260 
    261   /// \brief Address points for all vtables.
    262   AddressPointsMapTy AddressPoints;
    263 
    264 public:
    265   VTableLayout(ArrayRef<size_t> VTableIndices,
    266                ArrayRef<VTableComponent> VTableComponents,
    267                ArrayRef<VTableThunkTy> VTableThunks,
    268                const AddressPointsMapTy &AddressPoints);
    269   ~VTableLayout();
    270 
    271   ArrayRef<VTableComponent> vtable_components() const {
    272     return VTableComponents;
    273   }
    274 
    275   ArrayRef<VTableThunkTy> vtable_thunks() const {
    276     return VTableThunks;
    277   }
    278 
    279   AddressPointLocation getAddressPoint(BaseSubobject Base) const {
    280     assert(AddressPoints.count(Base) && "Did not find address point!");
    281     return AddressPoints.find(Base)->second;
    282   }
    283 
    284   const AddressPointsMapTy &getAddressPoints() const {
    285     return AddressPoints;
    286   }
    287 
    288   size_t getNumVTables() const {
    289     if (VTableIndices.empty())
    290       return 1;
    291     return VTableIndices.size();
    292   }
    293 
    294   size_t getVTableOffset(size_t i) const {
    295     if (VTableIndices.empty()) {
    296       assert(i == 0);
    297       return 0;
    298     }
    299     return VTableIndices[i];
    300   }
    301 
    302   size_t getVTableSize(size_t i) const {
    303     if (VTableIndices.empty()) {
    304       assert(i == 0);
    305       return vtable_components().size();
    306     }
    307 
    308     size_t thisIndex = VTableIndices[i];
    309     size_t nextIndex = (i + 1 == VTableIndices.size())
    310                            ? vtable_components().size()
    311                            : VTableIndices[i + 1];
    312     return nextIndex - thisIndex;
    313   }
    314 };
    315 
    316 class VTableContextBase {
    317 public:
    318   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
    319 
    320   bool isMicrosoft() const { return IsMicrosoftABI; }
    321 
    322   virtual ~VTableContextBase() {}
    323 
    324 protected:
    325   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
    326 
    327   /// \brief Contains all thunks that a given method decl will need.
    328   ThunksMapTy Thunks;
    329 
    330   /// Compute and store all vtable related information (vtable layout, vbase
    331   /// offset offsets, thunks etc) for the given record decl.
    332   virtual void computeVTableRelatedInformation(const CXXRecordDecl *RD) = 0;
    333 
    334   VTableContextBase(bool MS) : IsMicrosoftABI(MS) {}
    335 
    336 public:
    337   virtual const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) {
    338     const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()->getCanonicalDecl());
    339     computeVTableRelatedInformation(MD->getParent());
    340 
    341     // This assumes that all the destructors present in the vtable
    342     // use exactly the same set of thunks.
    343     ThunksMapTy::const_iterator I = Thunks.find(MD);
    344     if (I == Thunks.end()) {
    345       // We did not find a thunk for this method.
    346       return nullptr;
    347     }
    348 
    349     return &I->second;
    350   }
    351 
    352   bool IsMicrosoftABI;
    353 };
    354 
    355 class ItaniumVTableContext : public VTableContextBase {
    356 private:
    357 
    358   /// \brief Contains the index (relative to the vtable address point)
    359   /// where the function pointer for a virtual function is stored.
    360   typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
    361   MethodVTableIndicesTy MethodVTableIndices;
    362 
    363   typedef llvm::DenseMap<const CXXRecordDecl *,
    364                          std::unique_ptr<const VTableLayout>>
    365       VTableLayoutMapTy;
    366   VTableLayoutMapTy VTableLayouts;
    367 
    368   typedef std::pair<const CXXRecordDecl *,
    369                     const CXXRecordDecl *> ClassPairTy;
    370 
    371   /// \brief vtable offsets for offsets of virtual bases of a class.
    372   ///
    373   /// Contains the vtable offset (relative to the address point) in chars
    374   /// where the offsets for virtual bases of a class are stored.
    375   typedef llvm::DenseMap<ClassPairTy, CharUnits>
    376     VirtualBaseClassOffsetOffsetsMapTy;
    377   VirtualBaseClassOffsetOffsetsMapTy VirtualBaseClassOffsetOffsets;
    378 
    379   void computeVTableRelatedInformation(const CXXRecordDecl *RD) override;
    380 
    381 public:
    382   ItaniumVTableContext(ASTContext &Context);
    383   ~ItaniumVTableContext() override;
    384 
    385   const VTableLayout &getVTableLayout(const CXXRecordDecl *RD) {
    386     computeVTableRelatedInformation(RD);
    387     assert(VTableLayouts.count(RD) && "No layout for this record decl!");
    388 
    389     return *VTableLayouts[RD];
    390   }
    391 
    392   std::unique_ptr<VTableLayout> createConstructionVTableLayout(
    393       const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
    394       bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass);
    395 
    396   /// \brief Locate a virtual function in the vtable.
    397   ///
    398   /// Return the index (relative to the vtable address point) where the
    399   /// function pointer for the given virtual function is stored.
    400   uint64_t getMethodVTableIndex(GlobalDecl GD);
    401 
    402   /// Return the offset in chars (relative to the vtable address point) where
    403   /// the offset of the virtual base that contains the given base is stored,
    404   /// otherwise, if no virtual base contains the given class, return 0.
    405   ///
    406   /// Base must be a virtual base class or an unambiguous base.
    407   CharUnits getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
    408                                        const CXXRecordDecl *VBase);
    409 
    410   static bool classof(const VTableContextBase *VT) {
    411     return !VT->isMicrosoft();
    412   }
    413 };
    414 
    415 /// Holds information about the inheritance path to a virtual base or function
    416 /// table pointer.  A record may contain as many vfptrs or vbptrs as there are
    417 /// base subobjects.
    418 struct VPtrInfo {
    419   typedef SmallVector<const CXXRecordDecl *, 1> BasePath;
    420 
    421   VPtrInfo(const CXXRecordDecl *RD)
    422       : ObjectWithVPtr(RD), IntroducingObject(RD), NextBaseToMangle(RD) {}
    423 
    424   /// This is the most derived class that has this vptr at offset zero. When
    425   /// single inheritance is used, this is always the most derived class. If
    426   /// multiple inheritance is used, it may be any direct or indirect base.
    427   const CXXRecordDecl *ObjectWithVPtr;
    428 
    429   /// This is the class that introduced the vptr by declaring new virtual
    430   /// methods or virtual bases.
    431   const CXXRecordDecl *IntroducingObject;
    432 
    433   /// IntroducingObject is at this offset from its containing complete object or
    434   /// virtual base.
    435   CharUnits NonVirtualOffset;
    436 
    437   /// The bases from the inheritance path that got used to mangle the vbtable
    438   /// name.  This is not really a full path like a CXXBasePath.  It holds the
    439   /// subset of records that need to be mangled into the vbtable symbol name in
    440   /// order to get a unique name.
    441   BasePath MangledPath;
    442 
    443   /// The next base to push onto the mangled path if this path is ambiguous in a
    444   /// derived class.  If it's null, then it's already been pushed onto the path.
    445   const CXXRecordDecl *NextBaseToMangle;
    446 
    447   /// The set of possibly indirect vbases that contain this vbtable.  When a
    448   /// derived class indirectly inherits from the same vbase twice, we only keep
    449   /// vtables and their paths from the first instance.
    450   BasePath ContainingVBases;
    451 
    452   /// This holds the base classes path from the complete type to the first base
    453   /// with the given vfptr offset, in the base-to-derived order.  Only used for
    454   /// vftables.
    455   BasePath PathToIntroducingObject;
    456 
    457   /// Static offset from the top of the most derived class to this vfptr,
    458   /// including any virtual base offset.  Only used for vftables.
    459   CharUnits FullOffsetInMDC;
    460 
    461   /// The vptr is stored inside the non-virtual component of this virtual base.
    462   const CXXRecordDecl *getVBaseWithVPtr() const {
    463     return ContainingVBases.empty() ? nullptr : ContainingVBases.front();
    464   }
    465 };
    466 
    467 typedef SmallVector<std::unique_ptr<VPtrInfo>, 2> VPtrInfoVector;
    468 
    469 /// All virtual base related information about a given record decl.  Includes
    470 /// information on all virtual base tables and the path components that are used
    471 /// to mangle them.
    472 struct VirtualBaseInfo {
    473   /// A map from virtual base to vbtable index for doing a conversion from the
    474   /// the derived class to the a base.
    475   llvm::DenseMap<const CXXRecordDecl *, unsigned> VBTableIndices;
    476 
    477   /// Information on all virtual base tables used when this record is the most
    478   /// derived class.
    479   VPtrInfoVector VBPtrPaths;
    480 };
    481 
    482 class MicrosoftVTableContext : public VTableContextBase {
    483 public:
    484   struct MethodVFTableLocation {
    485     /// If nonzero, holds the vbtable index of the virtual base with the vfptr.
    486     uint64_t VBTableIndex;
    487 
    488     /// If nonnull, holds the last vbase which contains the vfptr that the
    489     /// method definition is adjusted to.
    490     const CXXRecordDecl *VBase;
    491 
    492     /// This is the offset of the vfptr from the start of the last vbase, or the
    493     /// complete type if there are no virtual bases.
    494     CharUnits VFPtrOffset;
    495 
    496     /// Method's index in the vftable.
    497     uint64_t Index;
    498 
    499     MethodVFTableLocation()
    500         : VBTableIndex(0), VBase(nullptr), VFPtrOffset(CharUnits::Zero()),
    501           Index(0) {}
    502 
    503     MethodVFTableLocation(uint64_t VBTableIndex, const CXXRecordDecl *VBase,
    504                           CharUnits VFPtrOffset, uint64_t Index)
    505         : VBTableIndex(VBTableIndex), VBase(VBase),
    506           VFPtrOffset(VFPtrOffset), Index(Index) {}
    507 
    508     bool operator<(const MethodVFTableLocation &other) const {
    509       if (VBTableIndex != other.VBTableIndex) {
    510         assert(VBase != other.VBase);
    511         return VBTableIndex < other.VBTableIndex;
    512       }
    513       return std::tie(VFPtrOffset, Index) <
    514              std::tie(other.VFPtrOffset, other.Index);
    515     }
    516   };
    517 
    518 private:
    519   ASTContext &Context;
    520 
    521   typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
    522     MethodVFTableLocationsTy;
    523   MethodVFTableLocationsTy MethodVFTableLocations;
    524 
    525   typedef llvm::DenseMap<const CXXRecordDecl *, VPtrInfoVector>
    526       VFPtrLocationsMapTy;
    527   VFPtrLocationsMapTy VFPtrLocations;
    528 
    529   typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
    530   typedef llvm::DenseMap<VFTableIdTy, std::unique_ptr<const VTableLayout>>
    531       VFTableLayoutMapTy;
    532   VFTableLayoutMapTy VFTableLayouts;
    533 
    534   llvm::DenseMap<const CXXRecordDecl *, std::unique_ptr<VirtualBaseInfo>>
    535       VBaseInfo;
    536 
    537   void enumerateVFPtrs(const CXXRecordDecl *ForClass, VPtrInfoVector &Result);
    538 
    539   void computeVTableRelatedInformation(const CXXRecordDecl *RD) override;
    540 
    541   void dumpMethodLocations(const CXXRecordDecl *RD,
    542                            const MethodVFTableLocationsTy &NewMethods,
    543                            raw_ostream &);
    544 
    545   const VirtualBaseInfo &
    546   computeVBTableRelatedInformation(const CXXRecordDecl *RD);
    547 
    548   void computeVTablePaths(bool ForVBTables, const CXXRecordDecl *RD,
    549                           VPtrInfoVector &Paths);
    550 
    551 public:
    552   MicrosoftVTableContext(ASTContext &Context)
    553       : VTableContextBase(/*MS=*/true), Context(Context) {}
    554 
    555   ~MicrosoftVTableContext() override;
    556 
    557   const VPtrInfoVector &getVFPtrOffsets(const CXXRecordDecl *RD);
    558 
    559   const VTableLayout &getVFTableLayout(const CXXRecordDecl *RD,
    560                                        CharUnits VFPtrOffset);
    561 
    562   const MethodVFTableLocation &getMethodVFTableLocation(GlobalDecl GD);
    563 
    564   const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) override {
    565     // Complete destructors don't have a slot in a vftable, so no thunks needed.
    566     if (isa<CXXDestructorDecl>(GD.getDecl()) &&
    567         GD.getDtorType() == Dtor_Complete)
    568       return nullptr;
    569     return VTableContextBase::getThunkInfo(GD);
    570   }
    571 
    572   /// \brief Returns the index of VBase in the vbtable of Derived.
    573   /// VBase must be a morally virtual base of Derived.
    574   /// The vbtable is an array of i32 offsets.  The first entry is a self entry,
    575   /// and the rest are offsets from the vbptr to virtual bases.
    576   unsigned getVBTableIndex(const CXXRecordDecl *Derived,
    577                            const CXXRecordDecl *VBase);
    578 
    579   const VPtrInfoVector &enumerateVBTables(const CXXRecordDecl *RD);
    580 
    581   static bool classof(const VTableContextBase *VT) { return VT->isMicrosoft(); }
    582 };
    583 
    584 } // namespace clang
    585 
    586 #endif
    587