Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the generic AliasAnalysis interface, which is used as the
     11 // common interface used by all clients of alias analysis information, and
     12 // implemented by all alias analysis implementations.  Mod/Ref information is
     13 // also captured by this interface.
     14 //
     15 // Implementations of this interface must implement the various virtual methods,
     16 // which automatically provides functionality for the entire suite of client
     17 // APIs.
     18 //
     19 // This API identifies memory regions with the MemoryLocation class. The pointer
     20 // component specifies the base memory address of the region. The Size specifies
     21 // the maximum size (in address units) of the memory region, or
     22 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
     23 // identifies the "type" of the memory reference; see the
     24 // TypeBasedAliasAnalysis class for details.
     25 //
     26 // Some non-obvious details include:
     27 //  - Pointers that point to two completely different objects in memory never
     28 //    alias, regardless of the value of the Size component.
     29 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
     30 //    is two pointers to constant memory. Even if they are equal, constant
     31 //    memory is never stored to, so there will never be any dependencies.
     32 //    In this and other situations, the pointers may be both NoAlias and
     33 //    MustAlias at the same time. The current API can only return one result,
     34 //    though this is rarely a problem in practice.
     35 //
     36 //===----------------------------------------------------------------------===//
     37 
     38 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
     39 #define LLVM_ANALYSIS_ALIASANALYSIS_H
     40 
     41 #include "llvm/ADT/None.h"
     42 #include "llvm/ADT/Optional.h"
     43 #include "llvm/ADT/SmallVector.h"
     44 #include "llvm/Analysis/MemoryLocation.h"
     45 #include "llvm/Analysis/TargetLibraryInfo.h"
     46 #include "llvm/IR/CallSite.h"
     47 #include "llvm/IR/Function.h"
     48 #include "llvm/IR/Instruction.h"
     49 #include "llvm/IR/Instructions.h"
     50 #include "llvm/IR/PassManager.h"
     51 #include "llvm/Pass.h"
     52 #include <cstdint>
     53 #include <functional>
     54 #include <memory>
     55 #include <vector>
     56 
     57 namespace llvm {
     58 
     59 class AnalysisUsage;
     60 class BasicAAResult;
     61 class BasicBlock;
     62 class DominatorTree;
     63 class OrderedBasicBlock;
     64 class Value;
     65 
     66 /// The possible results of an alias query.
     67 ///
     68 /// These results are always computed between two MemoryLocation objects as
     69 /// a query to some alias analysis.
     70 ///
     71 /// Note that these are unscoped enumerations because we would like to support
     72 /// implicitly testing a result for the existence of any possible aliasing with
     73 /// a conversion to bool, but an "enum class" doesn't support this. The
     74 /// canonical names from the literature are suffixed and unique anyways, and so
     75 /// they serve as global constants in LLVM for these results.
     76 ///
     77 /// See docs/AliasAnalysis.html for more information on the specific meanings
     78 /// of these values.
     79 enum AliasResult {
     80   /// The two locations do not alias at all.
     81   ///
     82   /// This value is arranged to convert to false, while all other values
     83   /// convert to true. This allows a boolean context to convert the result to
     84   /// a binary flag indicating whether there is the possibility of aliasing.
     85   NoAlias = 0,
     86   /// The two locations may or may not alias. This is the least precise result.
     87   MayAlias,
     88   /// The two locations alias, but only due to a partial overlap.
     89   PartialAlias,
     90   /// The two locations precisely alias each other.
     91   MustAlias,
     92 };
     93 
     94 /// Flags indicating whether a memory access modifies or references memory.
     95 ///
     96 /// This is no access at all, a modification, a reference, or both
     97 /// a modification and a reference. These are specifically structured such that
     98 /// they form a two bit matrix and bit-tests for 'mod' or 'ref' work with any
     99 /// of the possible values.
    100 enum ModRefInfo {
    101   /// The access neither references nor modifies the value stored in memory.
    102   MRI_NoModRef = 0,
    103   /// The access references the value stored in memory.
    104   MRI_Ref = 1,
    105   /// The access modifies the value stored in memory.
    106   MRI_Mod = 2,
    107   /// The access both references and modifies the value stored in memory.
    108   MRI_ModRef = MRI_Ref | MRI_Mod
    109 };
    110 
    111 /// The locations at which a function might access memory.
    112 ///
    113 /// These are primarily used in conjunction with the \c AccessKind bits to
    114 /// describe both the nature of access and the locations of access for a
    115 /// function call.
    116 enum FunctionModRefLocation {
    117   /// Base case is no access to memory.
    118   FMRL_Nowhere = 0,
    119   /// Access to memory via argument pointers.
    120   FMRL_ArgumentPointees = 4,
    121   /// Memory that is inaccessible via LLVM IR.
    122   FMRL_InaccessibleMem = 8,
    123   /// Access to any memory.
    124   FMRL_Anywhere = 16 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
    125 };
    126 
    127 /// Summary of how a function affects memory in the program.
    128 ///
    129 /// Loads from constant globals are not considered memory accesses for this
    130 /// interface. Also, functions may freely modify stack space local to their
    131 /// invocation without having to report it through these interfaces.
    132 enum FunctionModRefBehavior {
    133   /// This function does not perform any non-local loads or stores to memory.
    134   ///
    135   /// This property corresponds to the GCC 'const' attribute.
    136   /// This property corresponds to the LLVM IR 'readnone' attribute.
    137   /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
    138   FMRB_DoesNotAccessMemory = FMRL_Nowhere | MRI_NoModRef,
    139 
    140   /// The only memory references in this function (if it has any) are
    141   /// non-volatile loads from objects pointed to by its pointer-typed
    142   /// arguments, with arbitrary offsets.
    143   ///
    144   /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
    145   FMRB_OnlyReadsArgumentPointees = FMRL_ArgumentPointees | MRI_Ref,
    146 
    147   /// The only memory references in this function (if it has any) are
    148   /// non-volatile loads and stores from objects pointed to by its
    149   /// pointer-typed arguments, with arbitrary offsets.
    150   ///
    151   /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
    152   FMRB_OnlyAccessesArgumentPointees = FMRL_ArgumentPointees | MRI_ModRef,
    153 
    154   /// The only memory references in this function (if it has any) are
    155   /// references of memory that is otherwise inaccessible via LLVM IR.
    156   ///
    157   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
    158   FMRB_OnlyAccessesInaccessibleMem = FMRL_InaccessibleMem | MRI_ModRef,
    159 
    160   /// The function may perform non-volatile loads and stores of objects
    161   /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
    162   /// it may also perform loads and stores of memory that is otherwise
    163   /// inaccessible via LLVM IR.
    164   ///
    165   /// This property corresponds to the LLVM IR
    166   /// inaccessiblemem_or_argmemonly attribute.
    167   FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
    168                                           FMRL_ArgumentPointees | MRI_ModRef,
    169 
    170   /// This function does not perform any non-local stores or volatile loads,
    171   /// but may read from any memory location.
    172   ///
    173   /// This property corresponds to the GCC 'pure' attribute.
    174   /// This property corresponds to the LLVM IR 'readonly' attribute.
    175   /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
    176   FMRB_OnlyReadsMemory = FMRL_Anywhere | MRI_Ref,
    177 
    178   // This function does not read from memory anywhere, but may write to any
    179   // memory location.
    180   //
    181   // This property corresponds to the LLVM IR 'writeonly' attribute.
    182   // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
    183   FMRB_DoesNotReadMemory = FMRL_Anywhere | MRI_Mod,
    184 
    185   /// This indicates that the function could not be classified into one of the
    186   /// behaviors above.
    187   FMRB_UnknownModRefBehavior = FMRL_Anywhere | MRI_ModRef
    188 };
    189 
    190 class AAResults {
    191 public:
    192   // Make these results default constructable and movable. We have to spell
    193   // these out because MSVC won't synthesize them.
    194   AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
    195   AAResults(AAResults &&Arg);
    196   ~AAResults();
    197 
    198   /// Register a specific AA result.
    199   template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
    200     // FIXME: We should use a much lighter weight system than the usual
    201     // polymorphic pattern because we don't own AAResult. It should
    202     // ideally involve two pointers and no separate allocation.
    203     AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
    204   }
    205 
    206   /// Register a function analysis ID that the results aggregation depends on.
    207   ///
    208   /// This is used in the new pass manager to implement the invalidation logic
    209   /// where we must invalidate the results aggregation if any of our component
    210   /// analyses become invalid.
    211   void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
    212 
    213   /// Handle invalidation events in the new pass manager.
    214   ///
    215   /// The aggregation is invalidated if any of the underlying analyses is
    216   /// invalidated.
    217   bool invalidate(Function &F, const PreservedAnalyses &PA,
    218                   FunctionAnalysisManager::Invalidator &Inv);
    219 
    220   //===--------------------------------------------------------------------===//
    221   /// \name Alias Queries
    222   /// @{
    223 
    224   /// The main low level interface to the alias analysis implementation.
    225   /// Returns an AliasResult indicating whether the two pointers are aliased to
    226   /// each other. This is the interface that must be implemented by specific
    227   /// alias analysis implementations.
    228   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
    229 
    230   /// A convenience wrapper around the primary \c alias interface.
    231   AliasResult alias(const Value *V1, uint64_t V1Size, const Value *V2,
    232                     uint64_t V2Size) {
    233     return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
    234   }
    235 
    236   /// A convenience wrapper around the primary \c alias interface.
    237   AliasResult alias(const Value *V1, const Value *V2) {
    238     return alias(V1, MemoryLocation::UnknownSize, V2,
    239                  MemoryLocation::UnknownSize);
    240   }
    241 
    242   /// A trivial helper function to check to see if the specified pointers are
    243   /// no-alias.
    244   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
    245     return alias(LocA, LocB) == NoAlias;
    246   }
    247 
    248   /// A convenience wrapper around the \c isNoAlias helper interface.
    249   bool isNoAlias(const Value *V1, uint64_t V1Size, const Value *V2,
    250                  uint64_t V2Size) {
    251     return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
    252   }
    253 
    254   /// A convenience wrapper around the \c isNoAlias helper interface.
    255   bool isNoAlias(const Value *V1, const Value *V2) {
    256     return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
    257   }
    258 
    259   /// A trivial helper function to check to see if the specified pointers are
    260   /// must-alias.
    261   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
    262     return alias(LocA, LocB) == MustAlias;
    263   }
    264 
    265   /// A convenience wrapper around the \c isMustAlias helper interface.
    266   bool isMustAlias(const Value *V1, const Value *V2) {
    267     return alias(V1, 1, V2, 1) == MustAlias;
    268   }
    269 
    270   /// Checks whether the given location points to constant memory, or if
    271   /// \p OrLocal is true whether it points to a local alloca.
    272   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
    273 
    274   /// A convenience wrapper around the primary \c pointsToConstantMemory
    275   /// interface.
    276   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
    277     return pointsToConstantMemory(MemoryLocation(P), OrLocal);
    278   }
    279 
    280   /// @}
    281   //===--------------------------------------------------------------------===//
    282   /// \name Simple mod/ref information
    283   /// @{
    284 
    285   /// Get the ModRef info associated with a pointer argument of a callsite. The
    286   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
    287   /// that these bits do not necessarily account for the overall behavior of
    288   /// the function, but rather only provide additional per-argument
    289   /// information.
    290   ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx);
    291 
    292   /// Return the behavior of the given call site.
    293   FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS);
    294 
    295   /// Return the behavior when calling the given function.
    296   FunctionModRefBehavior getModRefBehavior(const Function *F);
    297 
    298   /// Checks if the specified call is known to never read or write memory.
    299   ///
    300   /// Note that if the call only reads from known-constant memory, it is also
    301   /// legal to return true. Also, calls that unwind the stack are legal for
    302   /// this predicate.
    303   ///
    304   /// Many optimizations (such as CSE and LICM) can be performed on such calls
    305   /// without worrying about aliasing properties, and many calls have this
    306   /// property (e.g. calls to 'sin' and 'cos').
    307   ///
    308   /// This property corresponds to the GCC 'const' attribute.
    309   bool doesNotAccessMemory(ImmutableCallSite CS) {
    310     return getModRefBehavior(CS) == FMRB_DoesNotAccessMemory;
    311   }
    312 
    313   /// Checks if the specified function is known to never read or write memory.
    314   ///
    315   /// Note that if the function only reads from known-constant memory, it is
    316   /// also legal to return true. Also, function that unwind the stack are legal
    317   /// for this predicate.
    318   ///
    319   /// Many optimizations (such as CSE and LICM) can be performed on such calls
    320   /// to such functions without worrying about aliasing properties, and many
    321   /// functions have this property (e.g. 'sin' and 'cos').
    322   ///
    323   /// This property corresponds to the GCC 'const' attribute.
    324   bool doesNotAccessMemory(const Function *F) {
    325     return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
    326   }
    327 
    328   /// Checks if the specified call is known to only read from non-volatile
    329   /// memory (or not access memory at all).
    330   ///
    331   /// Calls that unwind the stack are legal for this predicate.
    332   ///
    333   /// This property allows many common optimizations to be performed in the
    334   /// absence of interfering store instructions, such as CSE of strlen calls.
    335   ///
    336   /// This property corresponds to the GCC 'pure' attribute.
    337   bool onlyReadsMemory(ImmutableCallSite CS) {
    338     return onlyReadsMemory(getModRefBehavior(CS));
    339   }
    340 
    341   /// Checks if the specified function is known to only read from non-volatile
    342   /// memory (or not access memory at all).
    343   ///
    344   /// Functions that unwind the stack are legal for this predicate.
    345   ///
    346   /// This property allows many common optimizations to be performed in the
    347   /// absence of interfering store instructions, such as CSE of strlen calls.
    348   ///
    349   /// This property corresponds to the GCC 'pure' attribute.
    350   bool onlyReadsMemory(const Function *F) {
    351     return onlyReadsMemory(getModRefBehavior(F));
    352   }
    353 
    354   /// Checks if functions with the specified behavior are known to only read
    355   /// from non-volatile memory (or not access memory at all).
    356   static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
    357     return !(MRB & MRI_Mod);
    358   }
    359 
    360   /// Checks if functions with the specified behavior are known to only write
    361   /// memory (or not access memory at all).
    362   static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
    363     return !(MRB & MRI_Ref);
    364   }
    365 
    366   /// Checks if functions with the specified behavior are known to read and
    367   /// write at most from objects pointed to by their pointer-typed arguments
    368   /// (with arbitrary offsets).
    369   static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
    370     return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
    371   }
    372 
    373   /// Checks if functions with the specified behavior are known to potentially
    374   /// read or write from objects pointed to be their pointer-typed arguments
    375   /// (with arbitrary offsets).
    376   static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
    377     return (MRB & MRI_ModRef) && (MRB & FMRL_ArgumentPointees);
    378   }
    379 
    380   /// Checks if functions with the specified behavior are known to read and
    381   /// write at most from memory that is inaccessible from LLVM IR.
    382   static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
    383     return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
    384   }
    385 
    386   /// Checks if functions with the specified behavior are known to potentially
    387   /// read or write from memory that is inaccessible from LLVM IR.
    388   static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
    389     return (MRB & MRI_ModRef) && (MRB & FMRL_InaccessibleMem);
    390   }
    391 
    392   /// Checks if functions with the specified behavior are known to read and
    393   /// write at most from memory that is inaccessible from LLVM IR or objects
    394   /// pointed to by their pointer-typed arguments (with arbitrary offsets).
    395   static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
    396     return !(MRB & FMRL_Anywhere &
    397              ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
    398   }
    399 
    400   /// getModRefInfo (for call sites) - Return information about whether
    401   /// a particular call site modifies or reads the specified memory location.
    402   ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc);
    403 
    404   /// getModRefInfo (for call sites) - A convenience wrapper.
    405   ModRefInfo getModRefInfo(ImmutableCallSite CS, const Value *P,
    406                            uint64_t Size) {
    407     return getModRefInfo(CS, MemoryLocation(P, Size));
    408   }
    409 
    410   /// getModRefInfo (for calls) - Return information about whether
    411   /// a particular call modifies or reads the specified memory location.
    412   ModRefInfo getModRefInfo(const CallInst *C, const MemoryLocation &Loc) {
    413     return getModRefInfo(ImmutableCallSite(C), Loc);
    414   }
    415 
    416   /// getModRefInfo (for calls) - A convenience wrapper.
    417   ModRefInfo getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
    418     return getModRefInfo(C, MemoryLocation(P, Size));
    419   }
    420 
    421   /// getModRefInfo (for invokes) - Return information about whether
    422   /// a particular invoke modifies or reads the specified memory location.
    423   ModRefInfo getModRefInfo(const InvokeInst *I, const MemoryLocation &Loc) {
    424     return getModRefInfo(ImmutableCallSite(I), Loc);
    425   }
    426 
    427   /// getModRefInfo (for invokes) - A convenience wrapper.
    428   ModRefInfo getModRefInfo(const InvokeInst *I, const Value *P, uint64_t Size) {
    429     return getModRefInfo(I, MemoryLocation(P, Size));
    430   }
    431 
    432   /// getModRefInfo (for loads) - Return information about whether
    433   /// a particular load modifies or reads the specified memory location.
    434   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
    435 
    436   /// getModRefInfo (for loads) - A convenience wrapper.
    437   ModRefInfo getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
    438     return getModRefInfo(L, MemoryLocation(P, Size));
    439   }
    440 
    441   /// getModRefInfo (for stores) - Return information about whether
    442   /// a particular store modifies or reads the specified memory location.
    443   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
    444 
    445   /// getModRefInfo (for stores) - A convenience wrapper.
    446   ModRefInfo getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) {
    447     return getModRefInfo(S, MemoryLocation(P, Size));
    448   }
    449 
    450   /// getModRefInfo (for fences) - Return information about whether
    451   /// a particular store modifies or reads the specified memory location.
    452   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
    453 
    454   /// getModRefInfo (for fences) - A convenience wrapper.
    455   ModRefInfo getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size) {
    456     return getModRefInfo(S, MemoryLocation(P, Size));
    457   }
    458 
    459   /// getModRefInfo (for cmpxchges) - Return information about whether
    460   /// a particular cmpxchg modifies or reads the specified memory location.
    461   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
    462                            const MemoryLocation &Loc);
    463 
    464   /// getModRefInfo (for cmpxchges) - A convenience wrapper.
    465   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
    466                            unsigned Size) {
    467     return getModRefInfo(CX, MemoryLocation(P, Size));
    468   }
    469 
    470   /// getModRefInfo (for atomicrmws) - Return information about whether
    471   /// a particular atomicrmw modifies or reads the specified memory location.
    472   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
    473 
    474   /// getModRefInfo (for atomicrmws) - A convenience wrapper.
    475   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
    476                            unsigned Size) {
    477     return getModRefInfo(RMW, MemoryLocation(P, Size));
    478   }
    479 
    480   /// getModRefInfo (for va_args) - Return information about whether
    481   /// a particular va_arg modifies or reads the specified memory location.
    482   ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
    483 
    484   /// getModRefInfo (for va_args) - A convenience wrapper.
    485   ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P, uint64_t Size) {
    486     return getModRefInfo(I, MemoryLocation(P, Size));
    487   }
    488 
    489   /// getModRefInfo (for catchpads) - Return information about whether
    490   /// a particular catchpad modifies or reads the specified memory location.
    491   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
    492 
    493   /// getModRefInfo (for catchpads) - A convenience wrapper.
    494   ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
    495                            uint64_t Size) {
    496     return getModRefInfo(I, MemoryLocation(P, Size));
    497   }
    498 
    499   /// getModRefInfo (for catchrets) - Return information about whether
    500   /// a particular catchret modifies or reads the specified memory location.
    501   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
    502 
    503   /// getModRefInfo (for catchrets) - A convenience wrapper.
    504   ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
    505                            uint64_t Size) {
    506     return getModRefInfo(I, MemoryLocation(P, Size));
    507   }
    508 
    509   /// Check whether or not an instruction may read or write the optionally
    510   /// specified memory location.
    511   ///
    512   ///
    513   /// An instruction that doesn't read or write memory may be trivially LICM'd
    514   /// for example.
    515   ///
    516   /// For function calls, this delegates to the alias-analysis specific
    517   /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
    518   /// helpers above.
    519   ModRefInfo getModRefInfo(const Instruction *I,
    520                            const Optional<MemoryLocation> &OptLoc) {
    521     if (OptLoc == None) {
    522       if (auto CS = ImmutableCallSite(I)) {
    523         auto MRB = getModRefBehavior(CS);
    524         if ((MRB & MRI_ModRef) == MRI_ModRef)
    525           return MRI_ModRef;
    526         if (MRB & MRI_Ref)
    527           return MRI_Ref;
    528         if (MRB & MRI_Mod)
    529           return MRI_Mod;
    530         return MRI_NoModRef;
    531       }
    532     }
    533 
    534     const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation());
    535 
    536     switch (I->getOpcode()) {
    537     case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
    538     case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
    539     case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
    540     case Instruction::Fence:  return getModRefInfo((const FenceInst*)I, Loc);
    541     case Instruction::AtomicCmpXchg:
    542       return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
    543     case Instruction::AtomicRMW:
    544       return getModRefInfo((const AtomicRMWInst*)I, Loc);
    545     case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
    546     case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
    547     case Instruction::CatchPad:
    548       return getModRefInfo((const CatchPadInst *)I, Loc);
    549     case Instruction::CatchRet:
    550       return getModRefInfo((const CatchReturnInst *)I, Loc);
    551     default:
    552       return MRI_NoModRef;
    553     }
    554   }
    555 
    556   /// A convenience wrapper for constructing the memory location.
    557   ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
    558                            uint64_t Size) {
    559     return getModRefInfo(I, MemoryLocation(P, Size));
    560   }
    561 
    562   /// Return information about whether a call and an instruction may refer to
    563   /// the same memory locations.
    564   ModRefInfo getModRefInfo(Instruction *I, ImmutableCallSite Call);
    565 
    566   /// Return information about whether two call sites may refer to the same set
    567   /// of memory locations. See the AA documentation for details:
    568   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
    569   ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2);
    570 
    571   /// \brief Return information about whether a particular call site modifies
    572   /// or reads the specified memory location \p MemLoc before instruction \p I
    573   /// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
    574   /// instruction ordering queries inside the BasicBlock containing \p I.
    575   ModRefInfo callCapturesBefore(const Instruction *I,
    576                                 const MemoryLocation &MemLoc, DominatorTree *DT,
    577                                 OrderedBasicBlock *OBB = nullptr);
    578 
    579   /// \brief A convenience wrapper to synthesize a memory location.
    580   ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
    581                                 uint64_t Size, DominatorTree *DT,
    582                                 OrderedBasicBlock *OBB = nullptr) {
    583     return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
    584   }
    585 
    586   /// @}
    587   //===--------------------------------------------------------------------===//
    588   /// \name Higher level methods for querying mod/ref information.
    589   /// @{
    590 
    591   /// Check if it is possible for execution of the specified basic block to
    592   /// modify the location Loc.
    593   bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
    594 
    595   /// A convenience wrapper synthesizing a memory location.
    596   bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
    597                            uint64_t Size) {
    598     return canBasicBlockModify(BB, MemoryLocation(P, Size));
    599   }
    600 
    601   /// Check if it is possible for the execution of the specified instructions
    602   /// to mod\ref (according to the mode) the location Loc.
    603   ///
    604   /// The instructions to consider are all of the instructions in the range of
    605   /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
    606   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
    607                                  const MemoryLocation &Loc,
    608                                  const ModRefInfo Mode);
    609 
    610   /// A convenience wrapper synthesizing a memory location.
    611   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
    612                                  const Value *Ptr, uint64_t Size,
    613                                  const ModRefInfo Mode) {
    614     return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
    615   }
    616 
    617 private:
    618   class Concept;
    619 
    620   template <typename T> class Model;
    621 
    622   template <typename T> friend class AAResultBase;
    623 
    624   const TargetLibraryInfo &TLI;
    625 
    626   std::vector<std::unique_ptr<Concept>> AAs;
    627 
    628   std::vector<AnalysisKey *> AADeps;
    629 };
    630 
    631 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
    632 /// pointer or reference.
    633 using AliasAnalysis = AAResults;
    634 
    635 /// A private abstract base class describing the concept of an individual alias
    636 /// analysis implementation.
    637 ///
    638 /// This interface is implemented by any \c Model instantiation. It is also the
    639 /// interface which a type used to instantiate the model must provide.
    640 ///
    641 /// All of these methods model methods by the same name in the \c
    642 /// AAResults class. Only differences and specifics to how the
    643 /// implementations are called are documented here.
    644 class AAResults::Concept {
    645 public:
    646   virtual ~Concept() = 0;
    647 
    648   /// An update API used internally by the AAResults to provide
    649   /// a handle back to the top level aggregation.
    650   virtual void setAAResults(AAResults *NewAAR) = 0;
    651 
    652   //===--------------------------------------------------------------------===//
    653   /// \name Alias Queries
    654   /// @{
    655 
    656   /// The main low level interface to the alias analysis implementation.
    657   /// Returns an AliasResult indicating whether the two pointers are aliased to
    658   /// each other. This is the interface that must be implemented by specific
    659   /// alias analysis implementations.
    660   virtual AliasResult alias(const MemoryLocation &LocA,
    661                             const MemoryLocation &LocB) = 0;
    662 
    663   /// Checks whether the given location points to constant memory, or if
    664   /// \p OrLocal is true whether it points to a local alloca.
    665   virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
    666                                       bool OrLocal) = 0;
    667 
    668   /// @}
    669   //===--------------------------------------------------------------------===//
    670   /// \name Simple mod/ref information
    671   /// @{
    672 
    673   /// Get the ModRef info associated with a pointer argument of a callsite. The
    674   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
    675   /// that these bits do not necessarily account for the overall behavior of
    676   /// the function, but rather only provide additional per-argument
    677   /// information.
    678   virtual ModRefInfo getArgModRefInfo(ImmutableCallSite CS,
    679                                       unsigned ArgIdx) = 0;
    680 
    681   /// Return the behavior of the given call site.
    682   virtual FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) = 0;
    683 
    684   /// Return the behavior when calling the given function.
    685   virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
    686 
    687   /// getModRefInfo (for call sites) - Return information about whether
    688   /// a particular call site modifies or reads the specified memory location.
    689   virtual ModRefInfo getModRefInfo(ImmutableCallSite CS,
    690                                    const MemoryLocation &Loc) = 0;
    691 
    692   /// Return information about whether two call sites may refer to the same set
    693   /// of memory locations. See the AA documentation for details:
    694   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
    695   virtual ModRefInfo getModRefInfo(ImmutableCallSite CS1,
    696                                    ImmutableCallSite CS2) = 0;
    697 
    698   /// @}
    699 };
    700 
    701 /// A private class template which derives from \c Concept and wraps some other
    702 /// type.
    703 ///
    704 /// This models the concept by directly forwarding each interface point to the
    705 /// wrapped type which must implement a compatible interface. This provides
    706 /// a type erased binding.
    707 template <typename AAResultT> class AAResults::Model final : public Concept {
    708   AAResultT &Result;
    709 
    710 public:
    711   explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
    712     Result.setAAResults(&AAR);
    713   }
    714   ~Model() override = default;
    715 
    716   void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
    717 
    718   AliasResult alias(const MemoryLocation &LocA,
    719                     const MemoryLocation &LocB) override {
    720     return Result.alias(LocA, LocB);
    721   }
    722 
    723   bool pointsToConstantMemory(const MemoryLocation &Loc,
    724                               bool OrLocal) override {
    725     return Result.pointsToConstantMemory(Loc, OrLocal);
    726   }
    727 
    728   ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) override {
    729     return Result.getArgModRefInfo(CS, ArgIdx);
    730   }
    731 
    732   FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
    733     return Result.getModRefBehavior(CS);
    734   }
    735 
    736   FunctionModRefBehavior getModRefBehavior(const Function *F) override {
    737     return Result.getModRefBehavior(F);
    738   }
    739 
    740   ModRefInfo getModRefInfo(ImmutableCallSite CS,
    741                            const MemoryLocation &Loc) override {
    742     return Result.getModRefInfo(CS, Loc);
    743   }
    744 
    745   ModRefInfo getModRefInfo(ImmutableCallSite CS1,
    746                            ImmutableCallSite CS2) override {
    747     return Result.getModRefInfo(CS1, CS2);
    748   }
    749 };
    750 
    751 /// A CRTP-driven "mixin" base class to help implement the function alias
    752 /// analysis results concept.
    753 ///
    754 /// Because of the nature of many alias analysis implementations, they often
    755 /// only implement a subset of the interface. This base class will attempt to
    756 /// implement the remaining portions of the interface in terms of simpler forms
    757 /// of the interface where possible, and otherwise provide conservatively
    758 /// correct fallback implementations.
    759 ///
    760 /// Implementors of an alias analysis should derive from this CRTP, and then
    761 /// override specific methods that they wish to customize. There is no need to
    762 /// use virtual anywhere, the CRTP base class does static dispatch to the
    763 /// derived type passed into it.
    764 template <typename DerivedT> class AAResultBase {
    765   // Expose some parts of the interface only to the AAResults::Model
    766   // for wrapping. Specifically, this allows the model to call our
    767   // setAAResults method without exposing it as a fully public API.
    768   friend class AAResults::Model<DerivedT>;
    769 
    770   /// A pointer to the AAResults object that this AAResult is
    771   /// aggregated within. May be null if not aggregated.
    772   AAResults *AAR;
    773 
    774   /// Helper to dispatch calls back through the derived type.
    775   DerivedT &derived() { return static_cast<DerivedT &>(*this); }
    776 
    777   /// A setter for the AAResults pointer, which is used to satisfy the
    778   /// AAResults::Model contract.
    779   void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
    780 
    781 protected:
    782   /// This proxy class models a common pattern where we delegate to either the
    783   /// top-level \c AAResults aggregation if one is registered, or to the
    784   /// current result if none are registered.
    785   class AAResultsProxy {
    786     AAResults *AAR;
    787     DerivedT &CurrentResult;
    788 
    789   public:
    790     AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
    791         : AAR(AAR), CurrentResult(CurrentResult) {}
    792 
    793     AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
    794       return AAR ? AAR->alias(LocA, LocB) : CurrentResult.alias(LocA, LocB);
    795     }
    796 
    797     bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
    798       return AAR ? AAR->pointsToConstantMemory(Loc, OrLocal)
    799                  : CurrentResult.pointsToConstantMemory(Loc, OrLocal);
    800     }
    801 
    802     ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
    803       return AAR ? AAR->getArgModRefInfo(CS, ArgIdx) : CurrentResult.getArgModRefInfo(CS, ArgIdx);
    804     }
    805 
    806     FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
    807       return AAR ? AAR->getModRefBehavior(CS) : CurrentResult.getModRefBehavior(CS);
    808     }
    809 
    810     FunctionModRefBehavior getModRefBehavior(const Function *F) {
    811       return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
    812     }
    813 
    814     ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
    815       return AAR ? AAR->getModRefInfo(CS, Loc)
    816                  : CurrentResult.getModRefInfo(CS, Loc);
    817     }
    818 
    819     ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
    820       return AAR ? AAR->getModRefInfo(CS1, CS2) : CurrentResult.getModRefInfo(CS1, CS2);
    821     }
    822   };
    823 
    824   explicit AAResultBase() = default;
    825 
    826   // Provide all the copy and move constructors so that derived types aren't
    827   // constrained.
    828   AAResultBase(const AAResultBase &Arg) {}
    829   AAResultBase(AAResultBase &&Arg) {}
    830 
    831   /// Get a proxy for the best AA result set to query at this time.
    832   ///
    833   /// When this result is part of a larger aggregation, this will proxy to that
    834   /// aggregation. When this result is used in isolation, it will just delegate
    835   /// back to the derived class's implementation.
    836   ///
    837   /// Note that callers of this need to take considerable care to not cause
    838   /// performance problems when they use this routine, in the case of a large
    839   /// number of alias analyses being aggregated, it can be expensive to walk
    840   /// back across the chain.
    841   AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
    842 
    843 public:
    844   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
    845     return MayAlias;
    846   }
    847 
    848   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
    849     return false;
    850   }
    851 
    852   ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
    853     return MRI_ModRef;
    854   }
    855 
    856   FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
    857     return FMRB_UnknownModRefBehavior;
    858   }
    859 
    860   FunctionModRefBehavior getModRefBehavior(const Function *F) {
    861     return FMRB_UnknownModRefBehavior;
    862   }
    863 
    864   ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
    865     return MRI_ModRef;
    866   }
    867 
    868   ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
    869     return MRI_ModRef;
    870   }
    871 };
    872 
    873 /// Return true if this pointer is returned by a noalias function.
    874 bool isNoAliasCall(const Value *V);
    875 
    876 /// Return true if this is an argument with the noalias attribute.
    877 bool isNoAliasArgument(const Value *V);
    878 
    879 /// Return true if this pointer refers to a distinct and identifiable object.
    880 /// This returns true for:
    881 ///    Global Variables and Functions (but not Global Aliases)
    882 ///    Allocas
    883 ///    ByVal and NoAlias Arguments
    884 ///    NoAlias returns (e.g. calls to malloc)
    885 ///
    886 bool isIdentifiedObject(const Value *V);
    887 
    888 /// Return true if V is umabigously identified at the function-level.
    889 /// Different IdentifiedFunctionLocals can't alias.
    890 /// Further, an IdentifiedFunctionLocal can not alias with any function
    891 /// arguments other than itself, which is not necessarily true for
    892 /// IdentifiedObjects.
    893 bool isIdentifiedFunctionLocal(const Value *V);
    894 
    895 /// A manager for alias analyses.
    896 ///
    897 /// This class can have analyses registered with it and when run, it will run
    898 /// all of them and aggregate their results into single AA results interface
    899 /// that dispatches across all of the alias analysis results available.
    900 ///
    901 /// Note that the order in which analyses are registered is very significant.
    902 /// That is the order in which the results will be aggregated and queried.
    903 ///
    904 /// This manager effectively wraps the AnalysisManager for registering alias
    905 /// analyses. When you register your alias analysis with this manager, it will
    906 /// ensure the analysis itself is registered with its AnalysisManager.
    907 class AAManager : public AnalysisInfoMixin<AAManager> {
    908 public:
    909   using Result = AAResults;
    910 
    911   /// Register a specific AA result.
    912   template <typename AnalysisT> void registerFunctionAnalysis() {
    913     ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
    914   }
    915 
    916   /// Register a specific AA result.
    917   template <typename AnalysisT> void registerModuleAnalysis() {
    918     ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
    919   }
    920 
    921   Result run(Function &F, FunctionAnalysisManager &AM) {
    922     Result R(AM.getResult<TargetLibraryAnalysis>(F));
    923     for (auto &Getter : ResultGetters)
    924       (*Getter)(F, AM, R);
    925     return R;
    926   }
    927 
    928 private:
    929   friend AnalysisInfoMixin<AAManager>;
    930 
    931   static AnalysisKey Key;
    932 
    933   SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
    934                        AAResults &AAResults),
    935               4> ResultGetters;
    936 
    937   template <typename AnalysisT>
    938   static void getFunctionAAResultImpl(Function &F,
    939                                       FunctionAnalysisManager &AM,
    940                                       AAResults &AAResults) {
    941     AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
    942     AAResults.addAADependencyID(AnalysisT::ID());
    943   }
    944 
    945   template <typename AnalysisT>
    946   static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
    947                                     AAResults &AAResults) {
    948     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
    949     auto &MAM = MAMProxy.getManager();
    950     if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent())) {
    951       AAResults.addAAResult(*R);
    952       MAMProxy
    953           .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
    954     }
    955   }
    956 };
    957 
    958 /// A wrapper pass to provide the legacy pass manager access to a suitably
    959 /// prepared AAResults object.
    960 class AAResultsWrapperPass : public FunctionPass {
    961   std::unique_ptr<AAResults> AAR;
    962 
    963 public:
    964   static char ID;
    965 
    966   AAResultsWrapperPass();
    967 
    968   AAResults &getAAResults() { return *AAR; }
    969   const AAResults &getAAResults() const { return *AAR; }
    970 
    971   bool runOnFunction(Function &F) override;
    972 
    973   void getAnalysisUsage(AnalysisUsage &AU) const override;
    974 };
    975 
    976 FunctionPass *createAAResultsWrapperPass();
    977 
    978 /// A wrapper pass around a callback which can be used to populate the
    979 /// AAResults in the AAResultsWrapperPass from an external AA.
    980 ///
    981 /// The callback provided here will be used each time we prepare an AAResults
    982 /// object, and will receive a reference to the function wrapper pass, the
    983 /// function, and the AAResults object to populate. This should be used when
    984 /// setting up a custom pass pipeline to inject a hook into the AA results.
    985 ImmutablePass *createExternalAAWrapperPass(
    986     std::function<void(Pass &, Function &, AAResults &)> Callback);
    987 
    988 /// A helper for the legacy pass manager to create a \c AAResults
    989 /// object populated to the best of our ability for a particular function when
    990 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
    991 ///
    992 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
    993 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
    994 /// getAnalysisUsage.
    995 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
    996 
    997 /// A helper for the legacy pass manager to populate \p AU to add uses to make
    998 /// sure the analyses required by \p createLegacyPMAAResults are available.
    999 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
   1000 
   1001 } // end namespace llvm
   1002 
   1003 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
   1004