Home | History | Annotate | Download | only in Analysis
      1 //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Calculate a program structure tree built out of single entry single exit
     11 // regions.
     12 // The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
     13 // David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
     14 // Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
     15 // Koehler - 2009".
     16 // The algorithm to calculate these data structures however is completely
     17 // different, as it takes advantage of existing information already available
     18 // in (Post)dominace tree and dominance frontier passes. This leads to a simpler
     19 // and in practice hopefully better performing algorithm. The runtime of the
     20 // algorithms described in the papers above are both linear in graph size,
     21 // O(V+E), whereas this algorithm is not, as the dominance frontier information
     22 // itself is not, but in practice runtime seems to be in the order of magnitude
     23 // of dominance tree calculation.
     24 //
     25 // WARNING: LLVM is generally very concerned about compile time such that
     26 //          the use of additional analysis passes in the default
     27 //          optimization sequence is avoided as much as possible.
     28 //          Specifically, if you do not need the RegionInfo, but dominance
     29 //          information could be sufficient please base your work only on
     30 //          the dominator tree. Most passes maintain it, such that using
     31 //          it has often near zero cost. In contrast RegionInfo is by
     32 //          default not available, is not maintained by existing
     33 //          transformations and there is no intention to do so.
     34 //
     35 //===----------------------------------------------------------------------===//
     36 
     37 #ifndef LLVM_ANALYSIS_REGIONINFO_H
     38 #define LLVM_ANALYSIS_REGIONINFO_H
     39 
     40 #include "llvm/ADT/DenseMap.h"
     41 #include "llvm/ADT/DepthFirstIterator.h"
     42 #include "llvm/ADT/GraphTraits.h"
     43 #include "llvm/ADT/PointerIntPair.h"
     44 #include "llvm/ADT/iterator_range.h"
     45 #include "llvm/IR/BasicBlock.h"
     46 #include "llvm/IR/Dominators.h"
     47 #include "llvm/IR/PassManager.h"
     48 #include "llvm/Pass.h"
     49 #include "llvm/Support/raw_ostream.h"
     50 #include <algorithm>
     51 #include <cassert>
     52 #include <map>
     53 #include <memory>
     54 #include <set>
     55 #include <string>
     56 #include <type_traits>
     57 #include <vector>
     58 
     59 namespace llvm {
     60 
     61 class DominanceFrontier;
     62 class DominatorTree;
     63 class Loop;
     64 class LoopInfo;
     65 struct PostDominatorTree;
     66 class Region;
     67 template <class RegionTr> class RegionBase;
     68 class RegionInfo;
     69 template <class RegionTr> class RegionInfoBase;
     70 class RegionNode;
     71 
     72 // Class to be specialized for different users of RegionInfo
     73 // (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to
     74 // pass around an unreasonable number of template parameters.
     75 template <class FuncT_>
     76 struct RegionTraits {
     77   // FuncT
     78   // BlockT
     79   // RegionT
     80   // RegionNodeT
     81   // RegionInfoT
     82   using BrokenT = typename FuncT_::UnknownRegionTypeError;
     83 };
     84 
     85 template <>
     86 struct RegionTraits<Function> {
     87   using FuncT = Function;
     88   using BlockT = BasicBlock;
     89   using RegionT = Region;
     90   using RegionNodeT = RegionNode;
     91   using RegionInfoT = RegionInfo;
     92   using DomTreeT = DominatorTree;
     93   using DomTreeNodeT = DomTreeNode;
     94   using DomFrontierT = DominanceFrontier;
     95   using PostDomTreeT = PostDominatorTree;
     96   using InstT = Instruction;
     97   using LoopT = Loop;
     98   using LoopInfoT = LoopInfo;
     99 
    100   static unsigned getNumSuccessors(BasicBlock *BB) {
    101     return BB->getTerminator()->getNumSuccessors();
    102   }
    103 };
    104 
    105 /// @brief Marker class to iterate over the elements of a Region in flat mode.
    106 ///
    107 /// The class is used to either iterate in Flat mode or by not using it to not
    108 /// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
    109 /// and the iteration returns every BasicBlock.  If the Flat mode is not
    110 /// selected for SubRegions just one RegionNode containing the subregion is
    111 /// returned.
    112 template <class GraphType>
    113 class FlatIt {};
    114 
    115 /// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
    116 /// Region.
    117 template <class Tr>
    118 class RegionNodeBase {
    119   friend class RegionBase<Tr>;
    120 
    121 public:
    122   using BlockT = typename Tr::BlockT;
    123   using RegionT = typename Tr::RegionT;
    124 
    125 private:
    126   /// This is the entry basic block that starts this region node.  If this is a
    127   /// BasicBlock RegionNode, then entry is just the basic block, that this
    128   /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
    129   ///
    130   /// In the BBtoRegionNode map of the parent of this node, BB will always map
    131   /// to this node no matter which kind of node this one is.
    132   ///
    133   /// The node can hold either a Region or a BasicBlock.
    134   /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
    135   /// RegionNode.
    136   PointerIntPair<BlockT *, 1, bool> entry;
    137 
    138   /// @brief The parent Region of this RegionNode.
    139   /// @see getParent()
    140   RegionT *parent;
    141 
    142 protected:
    143   /// @brief Create a RegionNode.
    144   ///
    145   /// @param Parent      The parent of this RegionNode.
    146   /// @param Entry       The entry BasicBlock of the RegionNode.  If this
    147   ///                    RegionNode represents a BasicBlock, this is the
    148   ///                    BasicBlock itself.  If it represents a subregion, this
    149   ///                    is the entry BasicBlock of the subregion.
    150   /// @param isSubRegion If this RegionNode represents a SubRegion.
    151   inline RegionNodeBase(RegionT *Parent, BlockT *Entry,
    152                         bool isSubRegion = false)
    153       : entry(Entry, isSubRegion), parent(Parent) {}
    154 
    155 public:
    156   RegionNodeBase(const RegionNodeBase &) = delete;
    157   RegionNodeBase &operator=(const RegionNodeBase &) = delete;
    158 
    159   /// @brief Get the parent Region of this RegionNode.
    160   ///
    161   /// The parent Region is the Region this RegionNode belongs to. If for
    162   /// example a BasicBlock is element of two Regions, there exist two
    163   /// RegionNodes for this BasicBlock. Each with the getParent() function
    164   /// pointing to the Region this RegionNode belongs to.
    165   ///
    166   /// @return Get the parent Region of this RegionNode.
    167   inline RegionT *getParent() const { return parent; }
    168 
    169   /// @brief Get the entry BasicBlock of this RegionNode.
    170   ///
    171   /// If this RegionNode represents a BasicBlock this is just the BasicBlock
    172   /// itself, otherwise we return the entry BasicBlock of the Subregion
    173   ///
    174   /// @return The entry BasicBlock of this RegionNode.
    175   inline BlockT *getEntry() const { return entry.getPointer(); }
    176 
    177   /// @brief Get the content of this RegionNode.
    178   ///
    179   /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
    180   /// check the type of the content with the isSubRegion() function call.
    181   ///
    182   /// @return The content of this RegionNode.
    183   template <class T> inline T *getNodeAs() const;
    184 
    185   /// @brief Is this RegionNode a subregion?
    186   ///
    187   /// @return True if it contains a subregion. False if it contains a
    188   ///         BasicBlock.
    189   inline bool isSubRegion() const { return entry.getInt(); }
    190 };
    191 
    192 //===----------------------------------------------------------------------===//
    193 /// @brief A single entry single exit Region.
    194 ///
    195 /// A Region is a connected subgraph of a control flow graph that has exactly
    196 /// two connections to the remaining graph. It can be used to analyze or
    197 /// optimize parts of the control flow graph.
    198 ///
    199 /// A <em> simple Region </em> is connected to the remaining graph by just two
    200 /// edges. One edge entering the Region and another one leaving the Region.
    201 ///
    202 /// An <em> extended Region </em> (or just Region) is a subgraph that can be
    203 /// transform into a simple Region. The transformation is done by adding
    204 /// BasicBlocks that merge several entry or exit edges so that after the merge
    205 /// just one entry and one exit edge exists.
    206 ///
    207 /// The \e Entry of a Region is the first BasicBlock that is passed after
    208 /// entering the Region. It is an element of the Region. The entry BasicBlock
    209 /// dominates all BasicBlocks in the Region.
    210 ///
    211 /// The \e Exit of a Region is the first BasicBlock that is passed after
    212 /// leaving the Region. It is not an element of the Region. The exit BasicBlock,
    213 /// postdominates all BasicBlocks in the Region.
    214 ///
    215 /// A <em> canonical Region </em> cannot be constructed by combining smaller
    216 /// Regions.
    217 ///
    218 /// Region A is the \e parent of Region B, if B is completely contained in A.
    219 ///
    220 /// Two canonical Regions either do not intersect at all or one is
    221 /// the parent of the other.
    222 ///
    223 /// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
    224 /// Regions in the control flow graph and E is the \e parent relation of these
    225 /// Regions.
    226 ///
    227 /// Example:
    228 ///
    229 /// \verbatim
    230 /// A simple control flow graph, that contains two regions.
    231 ///
    232 ///        1
    233 ///       / |
    234 ///      2   |
    235 ///     / \   3
    236 ///    4   5  |
    237 ///    |   |  |
    238 ///    6   7  8
    239 ///     \  | /
    240 ///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
    241 ///        9        Region B: 2 -> 9 {2,4,5,6,7}
    242 /// \endverbatim
    243 ///
    244 /// You can obtain more examples by either calling
    245 ///
    246 /// <tt> "opt -regions -analyze anyprogram.ll" </tt>
    247 /// or
    248 /// <tt> "opt -view-regions-only anyprogram.ll" </tt>
    249 ///
    250 /// on any LLVM file you are interested in.
    251 ///
    252 /// The first call returns a textual representation of the program structure
    253 /// tree, the second one creates a graphical representation using graphviz.
    254 template <class Tr>
    255 class RegionBase : public RegionNodeBase<Tr> {
    256   friend class RegionInfoBase<Tr>;
    257 
    258   using FuncT = typename Tr::FuncT;
    259   using BlockT = typename Tr::BlockT;
    260   using RegionInfoT = typename Tr::RegionInfoT;
    261   using RegionT = typename Tr::RegionT;
    262   using RegionNodeT = typename Tr::RegionNodeT;
    263   using DomTreeT = typename Tr::DomTreeT;
    264   using LoopT = typename Tr::LoopT;
    265   using LoopInfoT = typename Tr::LoopInfoT;
    266   using InstT = typename Tr::InstT;
    267 
    268   using BlockTraits = GraphTraits<BlockT *>;
    269   using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
    270   using SuccIterTy = typename BlockTraits::ChildIteratorType;
    271   using PredIterTy = typename InvBlockTraits::ChildIteratorType;
    272 
    273   // Information necessary to manage this Region.
    274   RegionInfoT *RI;
    275   DomTreeT *DT;
    276 
    277   // The exit BasicBlock of this region.
    278   // (The entry BasicBlock is part of RegionNode)
    279   BlockT *exit;
    280 
    281   using RegionSet = std::vector<std::unique_ptr<RegionT>>;
    282 
    283   // The subregions of this region.
    284   RegionSet children;
    285 
    286   using BBNodeMapT = std::map<BlockT *, std::unique_ptr<RegionNodeT>>;
    287 
    288   // Save the BasicBlock RegionNodes that are element of this Region.
    289   mutable BBNodeMapT BBNodeMap;
    290 
    291   /// Check if a BB is in this Region. This check also works
    292   /// if the region is incorrectly built. (EXPENSIVE!)
    293   void verifyBBInRegion(BlockT *BB) const;
    294 
    295   /// Walk over all the BBs of the region starting from BB and
    296   /// verify that all reachable basic blocks are elements of the region.
    297   /// (EXPENSIVE!)
    298   void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const;
    299 
    300   /// Verify if the region and its children are valid regions (EXPENSIVE!)
    301   void verifyRegionNest() const;
    302 
    303 public:
    304   /// @brief Create a new region.
    305   ///
    306   /// @param Entry  The entry basic block of the region.
    307   /// @param Exit   The exit basic block of the region.
    308   /// @param RI     The region info object that is managing this region.
    309   /// @param DT     The dominator tree of the current function.
    310   /// @param Parent The surrounding region or NULL if this is a top level
    311   ///               region.
    312   RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT,
    313              RegionT *Parent = nullptr);
    314 
    315   RegionBase(const RegionBase &) = delete;
    316   RegionBase &operator=(const RegionBase &) = delete;
    317 
    318   /// Delete the Region and all its subregions.
    319   ~RegionBase();
    320 
    321   /// @brief Get the entry BasicBlock of the Region.
    322   /// @return The entry BasicBlock of the region.
    323   BlockT *getEntry() const {
    324     return RegionNodeBase<Tr>::getEntry();
    325   }
    326 
    327   /// @brief Replace the entry basic block of the region with the new basic
    328   ///        block.
    329   ///
    330   /// @param BB  The new entry basic block of the region.
    331   void replaceEntry(BlockT *BB);
    332 
    333   /// @brief Replace the exit basic block of the region with the new basic
    334   ///        block.
    335   ///
    336   /// @param BB  The new exit basic block of the region.
    337   void replaceExit(BlockT *BB);
    338 
    339   /// @brief Recursively replace the entry basic block of the region.
    340   ///
    341   /// This function replaces the entry basic block with a new basic block. It
    342   /// also updates all child regions that have the same entry basic block as
    343   /// this region.
    344   ///
    345   /// @param NewEntry The new entry basic block.
    346   void replaceEntryRecursive(BlockT *NewEntry);
    347 
    348   /// @brief Recursively replace the exit basic block of the region.
    349   ///
    350   /// This function replaces the exit basic block with a new basic block. It
    351   /// also updates all child regions that have the same exit basic block as
    352   /// this region.
    353   ///
    354   /// @param NewExit The new exit basic block.
    355   void replaceExitRecursive(BlockT *NewExit);
    356 
    357   /// @brief Get the exit BasicBlock of the Region.
    358   /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
    359   ///         Region.
    360   BlockT *getExit() const { return exit; }
    361 
    362   /// @brief Get the parent of the Region.
    363   /// @return The parent of the Region or NULL if this is a top level
    364   ///         Region.
    365   RegionT *getParent() const {
    366     return RegionNodeBase<Tr>::getParent();
    367   }
    368 
    369   /// @brief Get the RegionNode representing the current Region.
    370   /// @return The RegionNode representing the current Region.
    371   RegionNodeT *getNode() const {
    372     return const_cast<RegionNodeT *>(
    373         reinterpret_cast<const RegionNodeT *>(this));
    374   }
    375 
    376   /// @brief Get the nesting level of this Region.
    377   ///
    378   /// An toplevel Region has depth 0.
    379   ///
    380   /// @return The depth of the region.
    381   unsigned getDepth() const;
    382 
    383   /// @brief Check if a Region is the TopLevel region.
    384   ///
    385   /// The toplevel region represents the whole function.
    386   bool isTopLevelRegion() const { return exit == nullptr; }
    387 
    388   /// @brief Return a new (non-canonical) region, that is obtained by joining
    389   ///        this region with its predecessors.
    390   ///
    391   /// @return A region also starting at getEntry(), but reaching to the next
    392   ///         basic block that forms with getEntry() a (non-canonical) region.
    393   ///         NULL if such a basic block does not exist.
    394   RegionT *getExpandedRegion() const;
    395 
    396   /// @brief Return the first block of this region's single entry edge,
    397   ///        if existing.
    398   ///
    399   /// @return The BasicBlock starting this region's single entry edge,
    400   ///         else NULL.
    401   BlockT *getEnteringBlock() const;
    402 
    403   /// @brief Return the first block of this region's single exit edge,
    404   ///        if existing.
    405   ///
    406   /// @return The BasicBlock starting this region's single exit edge,
    407   ///         else NULL.
    408   BlockT *getExitingBlock() const;
    409 
    410   /// @brief Collect all blocks of this region's single exit edge, if existing.
    411   ///
    412   /// @return True if this region contains all the predecessors of the exit.
    413   bool getExitingBlocks(SmallVectorImpl<BlockT *> &Exitings) const;
    414 
    415   /// @brief Is this a simple region?
    416   ///
    417   /// A region is simple if it has exactly one exit and one entry edge.
    418   ///
    419   /// @return True if the Region is simple.
    420   bool isSimple() const;
    421 
    422   /// @brief Returns the name of the Region.
    423   /// @return The Name of the Region.
    424   std::string getNameStr() const;
    425 
    426   /// @brief Return the RegionInfo object, that belongs to this Region.
    427   RegionInfoT *getRegionInfo() const { return RI; }
    428 
    429   /// PrintStyle - Print region in difference ways.
    430   enum PrintStyle { PrintNone, PrintBB, PrintRN };
    431 
    432   /// @brief Print the region.
    433   ///
    434   /// @param OS The output stream the Region is printed to.
    435   /// @param printTree Print also the tree of subregions.
    436   /// @param level The indentation level used for printing.
    437   void print(raw_ostream &OS, bool printTree = true, unsigned level = 0,
    438              PrintStyle Style = PrintNone) const;
    439 
    440 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    441   /// @brief Print the region to stderr.
    442   void dump() const;
    443 #endif
    444 
    445   /// @brief Check if the region contains a BasicBlock.
    446   ///
    447   /// @param BB The BasicBlock that might be contained in this Region.
    448   /// @return True if the block is contained in the region otherwise false.
    449   bool contains(const BlockT *BB) const;
    450 
    451   /// @brief Check if the region contains another region.
    452   ///
    453   /// @param SubRegion The region that might be contained in this Region.
    454   /// @return True if SubRegion is contained in the region otherwise false.
    455   bool contains(const RegionT *SubRegion) const {
    456     // Toplevel Region.
    457     if (!getExit())
    458       return true;
    459 
    460     return contains(SubRegion->getEntry()) &&
    461            (contains(SubRegion->getExit()) ||
    462             SubRegion->getExit() == getExit());
    463   }
    464 
    465   /// @brief Check if the region contains an Instruction.
    466   ///
    467   /// @param Inst The Instruction that might be contained in this region.
    468   /// @return True if the Instruction is contained in the region otherwise
    469   /// false.
    470   bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }
    471 
    472   /// @brief Check if the region contains a loop.
    473   ///
    474   /// @param L The loop that might be contained in this region.
    475   /// @return True if the loop is contained in the region otherwise false.
    476   ///         In case a NULL pointer is passed to this function the result
    477   ///         is false, except for the region that describes the whole function.
    478   ///         In that case true is returned.
    479   bool contains(const LoopT *L) const;
    480 
    481   /// @brief Get the outermost loop in the region that contains a loop.
    482   ///
    483   /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
    484   /// and is itself contained in the region.
    485   ///
    486   /// @param L The loop the lookup is started.
    487   /// @return The outermost loop in the region, NULL if such a loop does not
    488   ///         exist or if the region describes the whole function.
    489   LoopT *outermostLoopInRegion(LoopT *L) const;
    490 
    491   /// @brief Get the outermost loop in the region that contains a basic block.
    492   ///
    493   /// Find for a basic block BB the outermost loop L that contains BB and is
    494   /// itself contained in the region.
    495   ///
    496   /// @param LI A pointer to a LoopInfo analysis.
    497   /// @param BB The basic block surrounded by the loop.
    498   /// @return The outermost loop in the region, NULL if such a loop does not
    499   ///         exist or if the region describes the whole function.
    500   LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const;
    501 
    502   /// @brief Get the subregion that starts at a BasicBlock
    503   ///
    504   /// @param BB The BasicBlock the subregion should start.
    505   /// @return The Subregion if available, otherwise NULL.
    506   RegionT *getSubRegionNode(BlockT *BB) const;
    507 
    508   /// @brief Get the RegionNode for a BasicBlock
    509   ///
    510   /// @param BB The BasicBlock at which the RegionNode should start.
    511   /// @return If available, the RegionNode that represents the subregion
    512   ///         starting at BB. If no subregion starts at BB, the RegionNode
    513   ///         representing BB.
    514   RegionNodeT *getNode(BlockT *BB) const;
    515 
    516   /// @brief Get the BasicBlock RegionNode for a BasicBlock
    517   ///
    518   /// @param BB The BasicBlock for which the RegionNode is requested.
    519   /// @return The RegionNode representing the BB.
    520   RegionNodeT *getBBNode(BlockT *BB) const;
    521 
    522   /// @brief Add a new subregion to this Region.
    523   ///
    524   /// @param SubRegion The new subregion that will be added.
    525   /// @param moveChildren Move the children of this region, that are also
    526   ///                     contained in SubRegion into SubRegion.
    527   void addSubRegion(RegionT *SubRegion, bool moveChildren = false);
    528 
    529   /// @brief Remove a subregion from this Region.
    530   ///
    531   /// The subregion is not deleted, as it will probably be inserted into another
    532   /// region.
    533   /// @param SubRegion The SubRegion that will be removed.
    534   RegionT *removeSubRegion(RegionT *SubRegion);
    535 
    536   /// @brief Move all direct child nodes of this Region to another Region.
    537   ///
    538   /// @param To The Region the child nodes will be transferred to.
    539   void transferChildrenTo(RegionT *To);
    540 
    541   /// @brief Verify if the region is a correct region.
    542   ///
    543   /// Check if this is a correctly build Region. This is an expensive check, as
    544   /// the complete CFG of the Region will be walked.
    545   void verifyRegion() const;
    546 
    547   /// @brief Clear the cache for BB RegionNodes.
    548   ///
    549   /// After calling this function the BasicBlock RegionNodes will be stored at
    550   /// different memory locations. RegionNodes obtained before this function is
    551   /// called are therefore not comparable to RegionNodes abtained afterwords.
    552   void clearNodeCache();
    553 
    554   /// @name Subregion Iterators
    555   ///
    556   /// These iterators iterator over all subregions of this Region.
    557   //@{
    558   using iterator = typename RegionSet::iterator;
    559   using const_iterator = typename RegionSet::const_iterator;
    560 
    561   iterator begin() { return children.begin(); }
    562   iterator end() { return children.end(); }
    563 
    564   const_iterator begin() const { return children.begin(); }
    565   const_iterator end() const { return children.end(); }
    566   //@}
    567 
    568   /// @name BasicBlock Iterators
    569   ///
    570   /// These iterators iterate over all BasicBlocks that are contained in this
    571   /// Region. The iterator also iterates over BasicBlocks that are elements of
    572   /// a subregion of this Region. It is therefore called a flat iterator.
    573   //@{
    574   template <bool IsConst>
    575   class block_iterator_wrapper
    576       : public df_iterator<
    577             typename std::conditional<IsConst, const BlockT, BlockT>::type *> {
    578     using super =
    579         df_iterator<
    580             typename std::conditional<IsConst, const BlockT, BlockT>::type *>;
    581 
    582   public:
    583     using Self = block_iterator_wrapper<IsConst>;
    584     using value_type = typename super::value_type;
    585 
    586     // Construct the begin iterator.
    587     block_iterator_wrapper(value_type Entry, value_type Exit)
    588         : super(df_begin(Entry)) {
    589       // Mark the exit of the region as visited, so that the children of the
    590       // exit and the exit itself, i.e. the block outside the region will never
    591       // be visited.
    592       super::Visited.insert(Exit);
    593     }
    594 
    595     // Construct the end iterator.
    596     block_iterator_wrapper() : super(df_end<value_type>((BlockT *)nullptr)) {}
    597 
    598     /*implicit*/ block_iterator_wrapper(super I) : super(I) {}
    599 
    600     // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
    601     //        This was introduced for backwards compatibility, but should
    602     //        be removed as soon as all users are fixed.
    603     BlockT *operator*() const {
    604       return const_cast<BlockT *>(super::operator*());
    605     }
    606   };
    607 
    608   using block_iterator = block_iterator_wrapper<false>;
    609   using const_block_iterator = block_iterator_wrapper<true>;
    610 
    611   block_iterator block_begin() { return block_iterator(getEntry(), getExit()); }
    612 
    613   block_iterator block_end() { return block_iterator(); }
    614 
    615   const_block_iterator block_begin() const {
    616     return const_block_iterator(getEntry(), getExit());
    617   }
    618   const_block_iterator block_end() const { return const_block_iterator(); }
    619 
    620   using block_range = iterator_range<block_iterator>;
    621   using const_block_range = iterator_range<const_block_iterator>;
    622 
    623   /// @brief Returns a range view of the basic blocks in the region.
    624   inline block_range blocks() {
    625     return block_range(block_begin(), block_end());
    626   }
    627 
    628   /// @brief Returns a range view of the basic blocks in the region.
    629   ///
    630   /// This is the 'const' version of the range view.
    631   inline const_block_range blocks() const {
    632     return const_block_range(block_begin(), block_end());
    633   }
    634   //@}
    635 
    636   /// @name Element Iterators
    637   ///
    638   /// These iterators iterate over all BasicBlock and subregion RegionNodes that
    639   /// are direct children of this Region. It does not iterate over any
    640   /// RegionNodes that are also element of a subregion of this Region.
    641   //@{
    642   using element_iterator =
    643       df_iterator<RegionNodeT *, df_iterator_default_set<RegionNodeT *>, false,
    644                   GraphTraits<RegionNodeT *>>;
    645 
    646   using const_element_iterator =
    647       df_iterator<const RegionNodeT *,
    648                   df_iterator_default_set<const RegionNodeT *>, false,
    649                   GraphTraits<const RegionNodeT *>>;
    650 
    651   element_iterator element_begin();
    652   element_iterator element_end();
    653   iterator_range<element_iterator> elements() {
    654     return make_range(element_begin(), element_end());
    655   }
    656 
    657   const_element_iterator element_begin() const;
    658   const_element_iterator element_end() const;
    659   iterator_range<const_element_iterator> elements() const {
    660     return make_range(element_begin(), element_end());
    661   }
    662   //@}
    663 };
    664 
    665 /// Print a RegionNode.
    666 template <class Tr>
    667 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node);
    668 
    669 //===----------------------------------------------------------------------===//
    670 /// @brief Analysis that detects all canonical Regions.
    671 ///
    672 /// The RegionInfo pass detects all canonical regions in a function. The Regions
    673 /// are connected using the parent relation. This builds a Program Structure
    674 /// Tree.
    675 template <class Tr>
    676 class RegionInfoBase {
    677   friend class RegionInfo;
    678   friend class MachineRegionInfo;
    679 
    680   using BlockT = typename Tr::BlockT;
    681   using FuncT = typename Tr::FuncT;
    682   using RegionT = typename Tr::RegionT;
    683   using RegionInfoT = typename Tr::RegionInfoT;
    684   using DomTreeT = typename Tr::DomTreeT;
    685   using DomTreeNodeT = typename Tr::DomTreeNodeT;
    686   using PostDomTreeT = typename Tr::PostDomTreeT;
    687   using DomFrontierT = typename Tr::DomFrontierT;
    688   using BlockTraits = GraphTraits<BlockT *>;
    689   using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
    690   using SuccIterTy = typename BlockTraits::ChildIteratorType;
    691   using PredIterTy = typename InvBlockTraits::ChildIteratorType;
    692 
    693   using BBtoBBMap = DenseMap<BlockT *, BlockT *>;
    694   using BBtoRegionMap = DenseMap<BlockT *, RegionT *>;
    695 
    696   RegionInfoBase();
    697 
    698   RegionInfoBase(RegionInfoBase &&Arg)
    699     : DT(std::move(Arg.DT)), PDT(std::move(Arg.PDT)), DF(std::move(Arg.DF)),
    700       TopLevelRegion(std::move(Arg.TopLevelRegion)),
    701       BBtoRegion(std::move(Arg.BBtoRegion)) {
    702     Arg.wipe();
    703   }
    704 
    705   RegionInfoBase &operator=(RegionInfoBase &&RHS) {
    706     DT = std::move(RHS.DT);
    707     PDT = std::move(RHS.PDT);
    708     DF = std::move(RHS.DF);
    709     TopLevelRegion = std::move(RHS.TopLevelRegion);
    710     BBtoRegion = std::move(RHS.BBtoRegion);
    711     RHS.wipe();
    712     return *this;
    713   }
    714 
    715   virtual ~RegionInfoBase();
    716 
    717   DomTreeT *DT;
    718   PostDomTreeT *PDT;
    719   DomFrontierT *DF;
    720 
    721   /// The top level region.
    722   RegionT *TopLevelRegion = nullptr;
    723 
    724   /// Map every BB to the smallest region, that contains BB.
    725   BBtoRegionMap BBtoRegion;
    726 
    727 protected:
    728   /// \brief Update refences to a RegionInfoT held by the RegionT managed here
    729   ///
    730   /// This is a post-move helper. Regions hold references to the owning
    731   /// RegionInfo object. After a move these need to be fixed.
    732   template<typename TheRegionT>
    733   void updateRegionTree(RegionInfoT &RI, TheRegionT *R) {
    734     if (!R)
    735       return;
    736     R->RI = &RI;
    737     for (auto &SubR : *R)
    738       updateRegionTree(RI, SubR.get());
    739   }
    740 
    741 private:
    742   /// \brief Wipe this region tree's state without releasing any resources.
    743   ///
    744   /// This is essentially a post-move helper only. It leaves the object in an
    745   /// assignable and destroyable state, but otherwise invalid.
    746   void wipe() {
    747     DT = nullptr;
    748     PDT = nullptr;
    749     DF = nullptr;
    750     TopLevelRegion = nullptr;
    751     BBtoRegion.clear();
    752   }
    753 
    754   // Check whether the entries of BBtoRegion for the BBs of region
    755   // SR are correct. Triggers an assertion if not. Calls itself recursively for
    756   // subregions.
    757   void verifyBBMap(const RegionT *SR) const;
    758 
    759   // Returns true if BB is in the dominance frontier of
    760   // entry, because it was inherited from exit. In the other case there is an
    761   // edge going from entry to BB without passing exit.
    762   bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const;
    763 
    764   // Check if entry and exit surround a valid region, based on
    765   // dominance tree and dominance frontier.
    766   bool isRegion(BlockT *entry, BlockT *exit) const;
    767 
    768   // Saves a shortcut pointing from entry to exit.
    769   // This function may extend this shortcut if possible.
    770   void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const;
    771 
    772   // Returns the next BB that postdominates N, while skipping
    773   // all post dominators that cannot finish a canonical region.
    774   DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const;
    775 
    776   // A region is trivial, if it contains only one BB.
    777   bool isTrivialRegion(BlockT *entry, BlockT *exit) const;
    778 
    779   // Creates a single entry single exit region.
    780   RegionT *createRegion(BlockT *entry, BlockT *exit);
    781 
    782   // Detect all regions starting with bb 'entry'.
    783   void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut);
    784 
    785   // Detects regions in F.
    786   void scanForRegions(FuncT &F, BBtoBBMap *ShortCut);
    787 
    788   // Get the top most parent with the same entry block.
    789   RegionT *getTopMostParent(RegionT *region);
    790 
    791   // Build the region hierarchy after all region detected.
    792   void buildRegionsTree(DomTreeNodeT *N, RegionT *region);
    793 
    794   // Update statistic about created regions.
    795   virtual void updateStatistics(RegionT *R) = 0;
    796 
    797   // Detect all regions in function and build the region tree.
    798   void calculate(FuncT &F);
    799 
    800 public:
    801   RegionInfoBase(const RegionInfoBase &) = delete;
    802   RegionInfoBase &operator=(const RegionInfoBase &) = delete;
    803 
    804   static bool VerifyRegionInfo;
    805   static typename RegionT::PrintStyle printStyle;
    806 
    807   void print(raw_ostream &OS) const;
    808 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    809   void dump() const;
    810 #endif
    811 
    812   void releaseMemory();
    813 
    814   /// @brief Get the smallest region that contains a BasicBlock.
    815   ///
    816   /// @param BB The basic block.
    817   /// @return The smallest region, that contains BB or NULL, if there is no
    818   /// region containing BB.
    819   RegionT *getRegionFor(BlockT *BB) const;
    820 
    821   /// @brief  Set the smallest region that surrounds a basic block.
    822   ///
    823   /// @param BB The basic block surrounded by a region.
    824   /// @param R The smallest region that surrounds BB.
    825   void setRegionFor(BlockT *BB, RegionT *R);
    826 
    827   /// @brief A shortcut for getRegionFor().
    828   ///
    829   /// @param BB The basic block.
    830   /// @return The smallest region, that contains BB or NULL, if there is no
    831   /// region containing BB.
    832   RegionT *operator[](BlockT *BB) const;
    833 
    834   /// @brief Return the exit of the maximal refined region, that starts at a
    835   /// BasicBlock.
    836   ///
    837   /// @param BB The BasicBlock the refined region starts.
    838   BlockT *getMaxRegionExit(BlockT *BB) const;
    839 
    840   /// @brief Find the smallest region that contains two regions.
    841   ///
    842   /// @param A The first region.
    843   /// @param B The second region.
    844   /// @return The smallest region containing A and B.
    845   RegionT *getCommonRegion(RegionT *A, RegionT *B) const;
    846 
    847   /// @brief Find the smallest region that contains two basic blocks.
    848   ///
    849   /// @param A The first basic block.
    850   /// @param B The second basic block.
    851   /// @return The smallest region that contains A and B.
    852   RegionT *getCommonRegion(BlockT *A, BlockT *B) const {
    853     return getCommonRegion(getRegionFor(A), getRegionFor(B));
    854   }
    855 
    856   /// @brief Find the smallest region that contains a set of regions.
    857   ///
    858   /// @param Regions A vector of regions.
    859   /// @return The smallest region that contains all regions in Regions.
    860   RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const;
    861 
    862   /// @brief Find the smallest region that contains a set of basic blocks.
    863   ///
    864   /// @param BBs A vector of basic blocks.
    865   /// @return The smallest region that contains all basic blocks in BBS.
    866   RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const;
    867 
    868   RegionT *getTopLevelRegion() const { return TopLevelRegion; }
    869 
    870   /// @brief Clear the Node Cache for all Regions.
    871   ///
    872   /// @see Region::clearNodeCache()
    873   void clearNodeCache() {
    874     if (TopLevelRegion)
    875       TopLevelRegion->clearNodeCache();
    876   }
    877 
    878   void verifyAnalysis() const;
    879 };
    880 
    881 class Region;
    882 
    883 class RegionNode : public RegionNodeBase<RegionTraits<Function>> {
    884 public:
    885   inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false)
    886       : RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {}
    887 
    888   bool operator==(const Region &RN) const {
    889     return this == reinterpret_cast<const RegionNode *>(&RN);
    890   }
    891 };
    892 
    893 class Region : public RegionBase<RegionTraits<Function>> {
    894 public:
    895   Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT,
    896          Region *Parent = nullptr);
    897   ~Region();
    898 
    899   bool operator==(const RegionNode &RN) const {
    900     return &RN == reinterpret_cast<const RegionNode *>(this);
    901   }
    902 };
    903 
    904 class RegionInfo : public RegionInfoBase<RegionTraits<Function>> {
    905 public:
    906   using Base = RegionInfoBase<RegionTraits<Function>>;
    907 
    908   explicit RegionInfo();
    909 
    910   RegionInfo(RegionInfo &&Arg) : Base(std::move(static_cast<Base &>(Arg))) {
    911     updateRegionTree(*this, TopLevelRegion);
    912   }
    913 
    914   RegionInfo &operator=(RegionInfo &&RHS) {
    915     Base::operator=(std::move(static_cast<Base &>(RHS)));
    916     updateRegionTree(*this, TopLevelRegion);
    917     return *this;
    918   }
    919 
    920   ~RegionInfo() override;
    921 
    922   /// Handle invalidation explicitly.
    923   bool invalidate(Function &F, const PreservedAnalyses &PA,
    924                   FunctionAnalysisManager::Invalidator &);
    925 
    926   // updateStatistics - Update statistic about created regions.
    927   void updateStatistics(Region *R) final;
    928 
    929   void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT,
    930                    DominanceFrontier *DF);
    931 
    932 #ifndef NDEBUG
    933   /// @brief Opens a viewer to show the GraphViz visualization of the regions.
    934   ///
    935   /// Useful during debugging as an alternative to dump().
    936   void view();
    937 
    938   /// @brief Opens a viewer to show the GraphViz visualization of this region
    939   /// without instructions in the BasicBlocks.
    940   ///
    941   /// Useful during debugging as an alternative to dump().
    942   void viewOnly();
    943 #endif
    944 };
    945 
    946 class RegionInfoPass : public FunctionPass {
    947   RegionInfo RI;
    948 
    949 public:
    950   static char ID;
    951 
    952   explicit RegionInfoPass();
    953   ~RegionInfoPass() override;
    954 
    955   RegionInfo &getRegionInfo() { return RI; }
    956 
    957   const RegionInfo &getRegionInfo() const { return RI; }
    958 
    959   /// @name FunctionPass interface
    960   //@{
    961   bool runOnFunction(Function &F) override;
    962   void releaseMemory() override;
    963   void verifyAnalysis() const override;
    964   void getAnalysisUsage(AnalysisUsage &AU) const override;
    965   void print(raw_ostream &OS, const Module *) const override;
    966   void dump() const;
    967   //@}
    968 };
    969 
    970 /// \brief Analysis pass that exposes the \c RegionInfo for a function.
    971 class RegionInfoAnalysis : public AnalysisInfoMixin<RegionInfoAnalysis> {
    972   friend AnalysisInfoMixin<RegionInfoAnalysis>;
    973 
    974   static AnalysisKey Key;
    975 
    976 public:
    977   using Result = RegionInfo;
    978 
    979   RegionInfo run(Function &F, FunctionAnalysisManager &AM);
    980 };
    981 
    982 /// \brief Printer pass for the \c RegionInfo.
    983 class RegionInfoPrinterPass : public PassInfoMixin<RegionInfoPrinterPass> {
    984   raw_ostream &OS;
    985 
    986 public:
    987   explicit RegionInfoPrinterPass(raw_ostream &OS);
    988 
    989   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
    990 };
    991 
    992 /// \brief Verifier pass for the \c RegionInfo.
    993 struct RegionInfoVerifierPass : PassInfoMixin<RegionInfoVerifierPass> {
    994   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
    995 };
    996 
    997 template <>
    998 template <>
    999 inline BasicBlock *
   1000 RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const {
   1001   assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
   1002   return getEntry();
   1003 }
   1004 
   1005 template <>
   1006 template <>
   1007 inline Region *
   1008 RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const {
   1009   assert(isSubRegion() && "This is not a subregion RegionNode!");
   1010   auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this);
   1011   return reinterpret_cast<Region *>(Unconst);
   1012 }
   1013 
   1014 template <class Tr>
   1015 inline raw_ostream &operator<<(raw_ostream &OS,
   1016                                const RegionNodeBase<Tr> &Node) {
   1017   using BlockT = typename Tr::BlockT;
   1018   using RegionT = typename Tr::RegionT;
   1019 
   1020   if (Node.isSubRegion())
   1021     return OS << Node.template getNodeAs<RegionT>()->getNameStr();
   1022   else
   1023     return OS << Node.template getNodeAs<BlockT>()->getName();
   1024 }
   1025 
   1026 extern template class RegionBase<RegionTraits<Function>>;
   1027 extern template class RegionNodeBase<RegionTraits<Function>>;
   1028 extern template class RegionInfoBase<RegionTraits<Function>>;
   1029 
   1030 } // end namespace llvm
   1031 
   1032 #endif // LLVM_ANALYSIS_REGIONINFO_H
   1033