Home | History | Annotate | Download | only in ExecutionEngine
      1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the abstract interface that implements execution support
     11 // for LLVM.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
     16 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
     17 
     18 #include "llvm-c/ExecutionEngine.h"
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/ADT/Optional.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/StringMap.h"
     23 #include "llvm/ADT/StringRef.h"
     24 #include "llvm/ExecutionEngine/JITSymbol.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/Module.h"
     27 #include "llvm/Object/Binary.h"
     28 #include "llvm/Support/CBindingWrapping.h"
     29 #include "llvm/Support/CodeGen.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/Mutex.h"
     32 #include "llvm/Target/TargetMachine.h"
     33 #include "llvm/Target/TargetOptions.h"
     34 #include <algorithm>
     35 #include <cstdint>
     36 #include <functional>
     37 #include <map>
     38 #include <memory>
     39 #include <string>
     40 #include <vector>
     41 
     42 namespace llvm {
     43 
     44 class Constant;
     45 class Function;
     46 struct GenericValue;
     47 class GlobalValue;
     48 class GlobalVariable;
     49 class JITEventListener;
     50 class MCJITMemoryManager;
     51 class ObjectCache;
     52 class RTDyldMemoryManager;
     53 class Triple;
     54 class Type;
     55 
     56 namespace object {
     57 
     58 class Archive;
     59 class ObjectFile;
     60 
     61 } // end namespace object
     62 
     63 /// \brief Helper class for helping synchronize access to the global address map
     64 /// table.  Access to this class should be serialized under a mutex.
     65 class ExecutionEngineState {
     66 public:
     67   using GlobalAddressMapTy = StringMap<uint64_t>;
     68 
     69 private:
     70   /// GlobalAddressMap - A mapping between LLVM global symbol names values and
     71   /// their actualized version...
     72   GlobalAddressMapTy GlobalAddressMap;
     73 
     74   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
     75   /// used to convert raw addresses into the LLVM global value that is emitted
     76   /// at the address.  This map is not computed unless getGlobalValueAtAddress
     77   /// is called at some point.
     78   std::map<uint64_t, std::string> GlobalAddressReverseMap;
     79 
     80 public:
     81   GlobalAddressMapTy &getGlobalAddressMap() {
     82     return GlobalAddressMap;
     83   }
     84 
     85   std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
     86     return GlobalAddressReverseMap;
     87   }
     88 
     89   /// \brief Erase an entry from the mapping table.
     90   ///
     91   /// \returns The address that \p ToUnmap was happed to.
     92   uint64_t RemoveMapping(StringRef Name);
     93 };
     94 
     95 using FunctionCreator = std::function<void *(const std::string &)>;
     96 
     97 /// \brief Abstract interface for implementation execution of LLVM modules,
     98 /// designed to support both interpreter and just-in-time (JIT) compiler
     99 /// implementations.
    100 class ExecutionEngine {
    101   /// The state object holding the global address mapping, which must be
    102   /// accessed synchronously.
    103   //
    104   // FIXME: There is no particular need the entire map needs to be
    105   // synchronized.  Wouldn't a reader-writer design be better here?
    106   ExecutionEngineState EEState;
    107 
    108   /// The target data for the platform for which execution is being performed.
    109   ///
    110   /// Note: the DataLayout is LLVMContext specific because it has an
    111   /// internal cache based on type pointers. It makes unsafe to reuse the
    112   /// ExecutionEngine across context, we don't enforce this rule but undefined
    113   /// behavior can occurs if the user tries to do it.
    114   const DataLayout DL;
    115 
    116   /// Whether lazy JIT compilation is enabled.
    117   bool CompilingLazily;
    118 
    119   /// Whether JIT compilation of external global variables is allowed.
    120   bool GVCompilationDisabled;
    121 
    122   /// Whether the JIT should perform lookups of external symbols (e.g.,
    123   /// using dlsym).
    124   bool SymbolSearchingDisabled;
    125 
    126   /// Whether the JIT should verify IR modules during compilation.
    127   bool VerifyModules;
    128 
    129   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
    130 
    131 protected:
    132   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
    133   /// optimize for the case where there is only one module.
    134   SmallVector<std::unique_ptr<Module>, 1> Modules;
    135 
    136   /// getMemoryforGV - Allocate memory for a global variable.
    137   virtual char *getMemoryForGV(const GlobalVariable *GV);
    138 
    139   static ExecutionEngine *(*MCJITCtor)(
    140                                 std::unique_ptr<Module> M,
    141                                 std::string *ErrorStr,
    142                                 std::shared_ptr<MCJITMemoryManager> MM,
    143                                 std::shared_ptr<JITSymbolResolver> SR,
    144                                 std::unique_ptr<TargetMachine> TM);
    145 
    146   static ExecutionEngine *(*OrcMCJITReplacementCtor)(
    147                                 std::string *ErrorStr,
    148                                 std::shared_ptr<MCJITMemoryManager> MM,
    149                                 std::shared_ptr<JITSymbolResolver> SR,
    150                                 std::unique_ptr<TargetMachine> TM);
    151 
    152   static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
    153                                         std::string *ErrorStr);
    154 
    155   /// LazyFunctionCreator - If an unknown function is needed, this function
    156   /// pointer is invoked to create it.  If this returns null, the JIT will
    157   /// abort.
    158   FunctionCreator LazyFunctionCreator;
    159 
    160   /// getMangledName - Get mangled name.
    161   std::string getMangledName(const GlobalValue *GV);
    162 
    163 public:
    164   /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
    165   /// be held while changing the internal state of any of those classes.
    166   sys::Mutex lock;
    167 
    168   //===--------------------------------------------------------------------===//
    169   //  ExecutionEngine Startup
    170   //===--------------------------------------------------------------------===//
    171 
    172   virtual ~ExecutionEngine();
    173 
    174   /// Add a Module to the list of modules that we can JIT from.
    175   virtual void addModule(std::unique_ptr<Module> M) {
    176     Modules.push_back(std::move(M));
    177   }
    178 
    179   /// addObjectFile - Add an ObjectFile to the execution engine.
    180   ///
    181   /// This method is only supported by MCJIT.  MCJIT will immediately load the
    182   /// object into memory and adds its symbols to the list used to resolve
    183   /// external symbols while preparing other objects for execution.
    184   ///
    185   /// Objects added using this function will not be made executable until
    186   /// needed by another object.
    187   ///
    188   /// MCJIT will take ownership of the ObjectFile.
    189   virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
    190   virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O);
    191 
    192   /// addArchive - Add an Archive to the execution engine.
    193   ///
    194   /// This method is only supported by MCJIT.  MCJIT will use the archive to
    195   /// resolve external symbols in objects it is loading.  If a symbol is found
    196   /// in the Archive the contained object file will be extracted (in memory)
    197   /// and loaded for possible execution.
    198   virtual void addArchive(object::OwningBinary<object::Archive> A);
    199 
    200   //===--------------------------------------------------------------------===//
    201 
    202   const DataLayout &getDataLayout() const { return DL; }
    203 
    204   /// removeModule - Removes a Module from the list of modules, but does not
    205   /// free the module's memory. Returns true if M is found, in which case the
    206   /// caller assumes responsibility for deleting the module.
    207   //
    208   // FIXME: This stealth ownership transfer is horrible. This will probably be
    209   //        fixed by deleting ExecutionEngine.
    210   virtual bool removeModule(Module *M);
    211 
    212   /// FindFunctionNamed - Search all of the active modules to find the function that
    213   /// defines FnName.  This is very slow operation and shouldn't be used for
    214   /// general code.
    215   virtual Function *FindFunctionNamed(StringRef FnName);
    216 
    217   /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
    218   /// that defines Name.  This is very slow operation and shouldn't be used for
    219   /// general code.
    220   virtual GlobalVariable *FindGlobalVariableNamed(StringRef Name, bool AllowInternal = false);
    221 
    222   /// runFunction - Execute the specified function with the specified arguments,
    223   /// and return the result.
    224   ///
    225   /// For MCJIT execution engines, clients are encouraged to use the
    226   /// "GetFunctionAddress" method (rather than runFunction) and cast the
    227   /// returned uint64_t to the desired function pointer type. However, for
    228   /// backwards compatibility MCJIT's implementation can execute 'main-like'
    229   /// function (i.e. those returning void or int, and taking either no
    230   /// arguments or (int, char*[])).
    231   virtual GenericValue runFunction(Function *F,
    232                                    ArrayRef<GenericValue> ArgValues) = 0;
    233 
    234   /// getPointerToNamedFunction - This method returns the address of the
    235   /// specified function by using the dlsym function call.  As such it is only
    236   /// useful for resolving library symbols, not code generated symbols.
    237   ///
    238   /// If AbortOnFailure is false and no function with the given name is
    239   /// found, this function silently returns a null pointer. Otherwise,
    240   /// it prints a message to stderr and aborts.
    241   ///
    242   /// This function is deprecated for the MCJIT execution engine.
    243   virtual void *getPointerToNamedFunction(StringRef Name,
    244                                           bool AbortOnFailure = true) = 0;
    245 
    246   /// mapSectionAddress - map a section to its target address space value.
    247   /// Map the address of a JIT section as returned from the memory manager
    248   /// to the address in the target process as the running code will see it.
    249   /// This is the address which will be used for relocation resolution.
    250   virtual void mapSectionAddress(const void *LocalAddress,
    251                                  uint64_t TargetAddress) {
    252     llvm_unreachable("Re-mapping of section addresses not supported with this "
    253                      "EE!");
    254   }
    255 
    256   /// generateCodeForModule - Run code generation for the specified module and
    257   /// load it into memory.
    258   ///
    259   /// When this function has completed, all code and data for the specified
    260   /// module, and any module on which this module depends, will be generated
    261   /// and loaded into memory, but relocations will not yet have been applied
    262   /// and all memory will be readable and writable but not executable.
    263   ///
    264   /// This function is primarily useful when generating code for an external
    265   /// target, allowing the client an opportunity to remap section addresses
    266   /// before relocations are applied.  Clients that intend to execute code
    267   /// locally can use the getFunctionAddress call, which will generate code
    268   /// and apply final preparations all in one step.
    269   ///
    270   /// This method has no effect for the interpeter.
    271   virtual void generateCodeForModule(Module *M) {}
    272 
    273   /// finalizeObject - ensure the module is fully processed and is usable.
    274   ///
    275   /// It is the user-level function for completing the process of making the
    276   /// object usable for execution.  It should be called after sections within an
    277   /// object have been relocated using mapSectionAddress.  When this method is
    278   /// called the MCJIT execution engine will reapply relocations for a loaded
    279   /// object.  This method has no effect for the interpeter.
    280   virtual void finalizeObject() {}
    281 
    282   /// runStaticConstructorsDestructors - This method is used to execute all of
    283   /// the static constructors or destructors for a program.
    284   ///
    285   /// \param isDtors - Run the destructors instead of constructors.
    286   virtual void runStaticConstructorsDestructors(bool isDtors);
    287 
    288   /// This method is used to execute all of the static constructors or
    289   /// destructors for a particular module.
    290   ///
    291   /// \param isDtors - Run the destructors instead of constructors.
    292   void runStaticConstructorsDestructors(Module &module, bool isDtors);
    293 
    294 
    295   /// runFunctionAsMain - This is a helper function which wraps runFunction to
    296   /// handle the common task of starting up main with the specified argc, argv,
    297   /// and envp parameters.
    298   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
    299                         const char * const * envp);
    300 
    301 
    302   /// addGlobalMapping - Tell the execution engine that the specified global is
    303   /// at the specified location.  This is used internally as functions are JIT'd
    304   /// and as global variables are laid out in memory.  It can and should also be
    305   /// used by clients of the EE that want to have an LLVM global overlay
    306   /// existing data in memory. Values to be mapped should be named, and have
    307   /// external or weak linkage. Mappings are automatically removed when their
    308   /// GlobalValue is destroyed.
    309   void addGlobalMapping(const GlobalValue *GV, void *Addr);
    310   void addGlobalMapping(StringRef Name, uint64_t Addr);
    311 
    312   /// clearAllGlobalMappings - Clear all global mappings and start over again,
    313   /// for use in dynamic compilation scenarios to move globals.
    314   void clearAllGlobalMappings();
    315 
    316   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
    317   /// particular module, because it has been removed from the JIT.
    318   void clearGlobalMappingsFromModule(Module *M);
    319 
    320   /// updateGlobalMapping - Replace an existing mapping for GV with a new
    321   /// address.  This updates both maps as required.  If "Addr" is null, the
    322   /// entry for the global is removed from the mappings.  This returns the old
    323   /// value of the pointer, or null if it was not in the map.
    324   uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
    325   uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
    326 
    327   /// getAddressToGlobalIfAvailable - This returns the address of the specified
    328   /// global symbol.
    329   uint64_t getAddressToGlobalIfAvailable(StringRef S);
    330 
    331   /// getPointerToGlobalIfAvailable - This returns the address of the specified
    332   /// global value if it is has already been codegen'd, otherwise it returns
    333   /// null.
    334   void *getPointerToGlobalIfAvailable(StringRef S);
    335   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
    336 
    337   /// getPointerToGlobal - This returns the address of the specified global
    338   /// value. This may involve code generation if it's a function.
    339   ///
    340   /// This function is deprecated for the MCJIT execution engine.  Use
    341   /// getGlobalValueAddress instead.
    342   void *getPointerToGlobal(const GlobalValue *GV);
    343 
    344   /// getPointerToFunction - The different EE's represent function bodies in
    345   /// different ways.  They should each implement this to say what a function
    346   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
    347   /// remove its global mapping and free any machine code.  Be sure no threads
    348   /// are running inside F when that happens.
    349   ///
    350   /// This function is deprecated for the MCJIT execution engine.  Use
    351   /// getFunctionAddress instead.
    352   virtual void *getPointerToFunction(Function *F) = 0;
    353 
    354   /// getPointerToFunctionOrStub - If the specified function has been
    355   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
    356   /// a stub to implement lazy compilation if available.  See
    357   /// getPointerToFunction for the requirements on destroying F.
    358   ///
    359   /// This function is deprecated for the MCJIT execution engine.  Use
    360   /// getFunctionAddress instead.
    361   virtual void *getPointerToFunctionOrStub(Function *F) {
    362     // Default implementation, just codegen the function.
    363     return getPointerToFunction(F);
    364   }
    365 
    366   /// getGlobalValueAddress - Return the address of the specified global
    367   /// value. This may involve code generation.
    368   ///
    369   /// This function should not be called with the interpreter engine.
    370   virtual uint64_t getGlobalValueAddress(const std::string &Name) {
    371     // Default implementation for the interpreter.  MCJIT will override this.
    372     // JIT and interpreter clients should use getPointerToGlobal instead.
    373     return 0;
    374   }
    375 
    376   /// getFunctionAddress - Return the address of the specified function.
    377   /// This may involve code generation.
    378   virtual uint64_t getFunctionAddress(const std::string &Name) {
    379     // Default implementation for the interpreter.  MCJIT will override this.
    380     // Interpreter clients should use getPointerToFunction instead.
    381     return 0;
    382   }
    383 
    384   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
    385   /// at the specified address.
    386   ///
    387   const GlobalValue *getGlobalValueAtAddress(void *Addr);
    388 
    389   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
    390   /// Ptr is the address of the memory at which to store Val, cast to
    391   /// GenericValue *.  It is not a pointer to a GenericValue containing the
    392   /// address at which to store Val.
    393   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
    394                           Type *Ty);
    395 
    396   void InitializeMemory(const Constant *Init, void *Addr);
    397 
    398   /// getOrEmitGlobalVariable - Return the address of the specified global
    399   /// variable, possibly emitting it to memory if needed.  This is used by the
    400   /// Emitter.
    401   ///
    402   /// This function is deprecated for the MCJIT execution engine.  Use
    403   /// getGlobalValueAddress instead.
    404   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
    405     return getPointerToGlobal((const GlobalValue *)GV);
    406   }
    407 
    408   /// Registers a listener to be called back on various events within
    409   /// the JIT.  See JITEventListener.h for more details.  Does not
    410   /// take ownership of the argument.  The argument may be NULL, in
    411   /// which case these functions do nothing.
    412   virtual void RegisterJITEventListener(JITEventListener *) {}
    413   virtual void UnregisterJITEventListener(JITEventListener *) {}
    414 
    415   /// Sets the pre-compiled object cache.  The ownership of the ObjectCache is
    416   /// not changed.  Supported by MCJIT but not the interpreter.
    417   virtual void setObjectCache(ObjectCache *) {
    418     llvm_unreachable("No support for an object cache");
    419   }
    420 
    421   /// setProcessAllSections (MCJIT Only): By default, only sections that are
    422   /// "required for execution" are passed to the RTDyldMemoryManager, and other
    423   /// sections are discarded. Passing 'true' to this method will cause
    424   /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
    425   /// of whether they are "required to execute" in the usual sense.
    426   ///
    427   /// Rationale: Some MCJIT clients want to be able to inspect metadata
    428   /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
    429   /// performance. Passing these sections to the memory manager allows the
    430   /// client to make policy about the relevant sections, rather than having
    431   /// MCJIT do it.
    432   virtual void setProcessAllSections(bool ProcessAllSections) {
    433     llvm_unreachable("No support for ProcessAllSections option");
    434   }
    435 
    436   /// Return the target machine (if available).
    437   virtual TargetMachine *getTargetMachine() { return nullptr; }
    438 
    439   /// DisableLazyCompilation - When lazy compilation is off (the default), the
    440   /// JIT will eagerly compile every function reachable from the argument to
    441   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
    442   /// compile the one function and emit stubs to compile the rest when they're
    443   /// first called.  If lazy compilation is turned off again while some lazy
    444   /// stubs are still around, and one of those stubs is called, the program will
    445   /// abort.
    446   ///
    447   /// In order to safely compile lazily in a threaded program, the user must
    448   /// ensure that 1) only one thread at a time can call any particular lazy
    449   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
    450   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
    451   /// lazy stub.  See http://llvm.org/PR5184 for details.
    452   void DisableLazyCompilation(bool Disabled = true) {
    453     CompilingLazily = !Disabled;
    454   }
    455   bool isCompilingLazily() const {
    456     return CompilingLazily;
    457   }
    458 
    459   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
    460   /// allocate space and populate a GlobalVariable that is not internal to
    461   /// the module.
    462   void DisableGVCompilation(bool Disabled = true) {
    463     GVCompilationDisabled = Disabled;
    464   }
    465   bool isGVCompilationDisabled() const {
    466     return GVCompilationDisabled;
    467   }
    468 
    469   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
    470   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
    471   /// resolve symbols in a custom way.
    472   void DisableSymbolSearching(bool Disabled = true) {
    473     SymbolSearchingDisabled = Disabled;
    474   }
    475   bool isSymbolSearchingDisabled() const {
    476     return SymbolSearchingDisabled;
    477   }
    478 
    479   /// Enable/Disable IR module verification.
    480   ///
    481   /// Note: Module verification is enabled by default in Debug builds, and
    482   /// disabled by default in Release. Use this method to override the default.
    483   void setVerifyModules(bool Verify) {
    484     VerifyModules = Verify;
    485   }
    486   bool getVerifyModules() const {
    487     return VerifyModules;
    488   }
    489 
    490   /// InstallLazyFunctionCreator - If an unknown function is needed, the
    491   /// specified function pointer is invoked to create it.  If it returns null,
    492   /// the JIT will abort.
    493   void InstallLazyFunctionCreator(FunctionCreator C) {
    494     LazyFunctionCreator = std::move(C);
    495   }
    496 
    497 protected:
    498   ExecutionEngine(DataLayout DL) : DL(std::move(DL)) {}
    499   explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M);
    500   explicit ExecutionEngine(std::unique_ptr<Module> M);
    501 
    502   void emitGlobals();
    503 
    504   void EmitGlobalVariable(const GlobalVariable *GV);
    505 
    506   GenericValue getConstantValue(const Constant *C);
    507   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
    508                            Type *Ty);
    509 
    510 private:
    511   void Init(std::unique_ptr<Module> M);
    512 };
    513 
    514 namespace EngineKind {
    515 
    516   // These are actually bitmasks that get or-ed together.
    517   enum Kind {
    518     JIT         = 0x1,
    519     Interpreter = 0x2
    520   };
    521   const static Kind Either = (Kind)(JIT | Interpreter);
    522 
    523 } // end namespace EngineKind
    524 
    525 /// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
    526 /// chaining the various set* methods, and terminating it with a .create()
    527 /// call.
    528 class EngineBuilder {
    529 private:
    530   std::unique_ptr<Module> M;
    531   EngineKind::Kind WhichEngine;
    532   std::string *ErrorStr;
    533   CodeGenOpt::Level OptLevel;
    534   std::shared_ptr<MCJITMemoryManager> MemMgr;
    535   std::shared_ptr<JITSymbolResolver> Resolver;
    536   TargetOptions Options;
    537   Optional<Reloc::Model> RelocModel;
    538   Optional<CodeModel::Model> CMModel;
    539   std::string MArch;
    540   std::string MCPU;
    541   SmallVector<std::string, 4> MAttrs;
    542   bool VerifyModules;
    543   bool UseOrcMCJITReplacement;
    544 
    545 public:
    546   /// Default constructor for EngineBuilder.
    547   EngineBuilder();
    548 
    549   /// Constructor for EngineBuilder.
    550   EngineBuilder(std::unique_ptr<Module> M);
    551 
    552   // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
    553   ~EngineBuilder();
    554 
    555   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
    556   /// or whichever engine works.  This option defaults to EngineKind::Either.
    557   EngineBuilder &setEngineKind(EngineKind::Kind w) {
    558     WhichEngine = w;
    559     return *this;
    560   }
    561 
    562   /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
    563   /// clients to customize their memory allocation policies for the MCJIT. This
    564   /// is only appropriate for the MCJIT; setting this and configuring the builder
    565   /// to create anything other than MCJIT will cause a runtime error. If create()
    566   /// is called and is successful, the created engine takes ownership of the
    567   /// memory manager. This option defaults to NULL.
    568   EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
    569 
    570   EngineBuilder&
    571   setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
    572 
    573   EngineBuilder&
    574   setSymbolResolver(std::unique_ptr<JITSymbolResolver> SR);
    575 
    576   /// setErrorStr - Set the error string to write to on error.  This option
    577   /// defaults to NULL.
    578   EngineBuilder &setErrorStr(std::string *e) {
    579     ErrorStr = e;
    580     return *this;
    581   }
    582 
    583   /// setOptLevel - Set the optimization level for the JIT.  This option
    584   /// defaults to CodeGenOpt::Default.
    585   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
    586     OptLevel = l;
    587     return *this;
    588   }
    589 
    590   /// setTargetOptions - Set the target options that the ExecutionEngine
    591   /// target is using. Defaults to TargetOptions().
    592   EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
    593     Options = Opts;
    594     return *this;
    595   }
    596 
    597   /// setRelocationModel - Set the relocation model that the ExecutionEngine
    598   /// target is using. Defaults to target specific default "Reloc::Default".
    599   EngineBuilder &setRelocationModel(Reloc::Model RM) {
    600     RelocModel = RM;
    601     return *this;
    602   }
    603 
    604   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
    605   /// data is using. Defaults to target specific default
    606   /// "CodeModel::JITDefault".
    607   EngineBuilder &setCodeModel(CodeModel::Model M) {
    608     CMModel = M;
    609     return *this;
    610   }
    611 
    612   /// setMArch - Override the architecture set by the Module's triple.
    613   EngineBuilder &setMArch(StringRef march) {
    614     MArch.assign(march.begin(), march.end());
    615     return *this;
    616   }
    617 
    618   /// setMCPU - Target a specific cpu type.
    619   EngineBuilder &setMCPU(StringRef mcpu) {
    620     MCPU.assign(mcpu.begin(), mcpu.end());
    621     return *this;
    622   }
    623 
    624   /// setVerifyModules - Set whether the JIT implementation should verify
    625   /// IR modules during compilation.
    626   EngineBuilder &setVerifyModules(bool Verify) {
    627     VerifyModules = Verify;
    628     return *this;
    629   }
    630 
    631   /// setMAttrs - Set cpu-specific attributes.
    632   template<typename StringSequence>
    633   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
    634     MAttrs.clear();
    635     MAttrs.append(mattrs.begin(), mattrs.end());
    636     return *this;
    637   }
    638 
    639   // \brief Use OrcMCJITReplacement instead of MCJIT. Off by default.
    640   void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement) {
    641     this->UseOrcMCJITReplacement = UseOrcMCJITReplacement;
    642   }
    643 
    644   TargetMachine *selectTarget();
    645 
    646   /// selectTarget - Pick a target either via -march or by guessing the native
    647   /// arch.  Add any CPU features specified via -mcpu or -mattr.
    648   TargetMachine *selectTarget(const Triple &TargetTriple,
    649                               StringRef MArch,
    650                               StringRef MCPU,
    651                               const SmallVectorImpl<std::string>& MAttrs);
    652 
    653   ExecutionEngine *create() {
    654     return create(selectTarget());
    655   }
    656 
    657   ExecutionEngine *create(TargetMachine *TM);
    658 };
    659 
    660 // Create wrappers for C Binding types (see CBindingWrapping.h).
    661 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
    662 
    663 } // end namespace llvm
    664 
    665 #endif // LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
    666