Home | History | Annotate | Download | only in IR
      1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// This header defines various interfaces for pass management in LLVM. There
     12 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
     13 /// which supports a method to 'run' it over a unit of IR can be used as
     14 /// a pass. A pass manager is generally a tool to collect a sequence of passes
     15 /// which run over a particular IR construct, and run each of them in sequence
     16 /// over each such construct in the containing IR construct. As there is no
     17 /// containing IR construct for a Module, a manager for passes over modules
     18 /// forms the base case which runs its managed passes in sequence over the
     19 /// single module provided.
     20 ///
     21 /// The core IR library provides managers for running passes over
     22 /// modules and functions.
     23 ///
     24 /// * FunctionPassManager can run over a Module, runs each pass over
     25 ///   a Function.
     26 /// * ModulePassManager must be directly run, runs each pass over the Module.
     27 ///
     28 /// Note that the implementations of the pass managers use concept-based
     29 /// polymorphism as outlined in the "Value Semantics and Concept-based
     30 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
     31 /// Class of Evil") by Sean Parent:
     32 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
     33 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
     34 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
     35 ///
     36 //===----------------------------------------------------------------------===//
     37 
     38 #ifndef LLVM_IR_PASSMANAGER_H
     39 #define LLVM_IR_PASSMANAGER_H
     40 
     41 #include "llvm/ADT/DenseMap.h"
     42 #include "llvm/ADT/SmallPtrSet.h"
     43 #include "llvm/ADT/StringRef.h"
     44 #include "llvm/ADT/TinyPtrVector.h"
     45 #include "llvm/IR/Function.h"
     46 #include "llvm/IR/Module.h"
     47 #include "llvm/IR/PassManagerInternal.h"
     48 #include "llvm/Support/Debug.h"
     49 #include "llvm/Support/TypeName.h"
     50 #include "llvm/Support/raw_ostream.h"
     51 #include <algorithm>
     52 #include <cassert>
     53 #include <cstring>
     54 #include <iterator>
     55 #include <list>
     56 #include <memory>
     57 #include <tuple>
     58 #include <type_traits>
     59 #include <utility>
     60 #include <vector>
     61 
     62 namespace llvm {
     63 
     64 /// A special type used by analysis passes to provide an address that
     65 /// identifies that particular analysis pass type.
     66 ///
     67 /// Analysis passes should have a static data member of this type and derive
     68 /// from the \c AnalysisInfoMixin to get a static ID method used to identify
     69 /// the analysis in the pass management infrastructure.
     70 struct alignas(8) AnalysisKey {};
     71 
     72 /// A special type used to provide an address that identifies a set of related
     73 /// analyses.  These sets are primarily used below to mark sets of analyses as
     74 /// preserved.
     75 ///
     76 /// For example, a transformation can indicate that it preserves the CFG of a
     77 /// function by preserving the appropriate AnalysisSetKey.  An analysis that
     78 /// depends only on the CFG can then check if that AnalysisSetKey is preserved;
     79 /// if it is, the analysis knows that it itself is preserved.
     80 struct alignas(8) AnalysisSetKey {};
     81 
     82 /// This templated class represents "all analyses that operate over \<a
     83 /// particular IR unit\>" (e.g. a Function or a Module) in instances of
     84 /// PreservedAnalysis.
     85 ///
     86 /// This lets a transformation say e.g. "I preserved all function analyses".
     87 ///
     88 /// Note that you must provide an explicit instantiation declaration and
     89 /// definition for this template in order to get the correct behavior on
     90 /// Windows. Otherwise, the address of SetKey will not be stable.
     91 template <typename IRUnitT> class AllAnalysesOn {
     92 public:
     93   static AnalysisSetKey *ID() { return &SetKey; }
     94 
     95 private:
     96   static AnalysisSetKey SetKey;
     97 };
     98 
     99 template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey;
    100 
    101 extern template class AllAnalysesOn<Module>;
    102 extern template class AllAnalysesOn<Function>;
    103 
    104 /// Represents analyses that only rely on functions' control flow.
    105 ///
    106 /// This can be used with \c PreservedAnalyses to mark the CFG as preserved and
    107 /// to query whether it has been preserved.
    108 ///
    109 /// The CFG of a function is defined as the set of basic blocks and the edges
    110 /// between them. Changing the set of basic blocks in a function is enough to
    111 /// mutate the CFG. Mutating the condition of a branch or argument of an
    112 /// invoked function does not mutate the CFG, but changing the successor labels
    113 /// of those instructions does.
    114 class CFGAnalyses {
    115 public:
    116   static AnalysisSetKey *ID() { return &SetKey; }
    117 
    118 private:
    119   static AnalysisSetKey SetKey;
    120 };
    121 
    122 /// A set of analyses that are preserved following a run of a transformation
    123 /// pass.
    124 ///
    125 /// Transformation passes build and return these objects to communicate which
    126 /// analyses are still valid after the transformation. For most passes this is
    127 /// fairly simple: if they don't change anything all analyses are preserved,
    128 /// otherwise only a short list of analyses that have been explicitly updated
    129 /// are preserved.
    130 ///
    131 /// This class also lets transformation passes mark abstract *sets* of analyses
    132 /// as preserved. A transformation that (say) does not alter the CFG can
    133 /// indicate such by marking a particular AnalysisSetKey as preserved, and
    134 /// then analyses can query whether that AnalysisSetKey is preserved.
    135 ///
    136 /// Finally, this class can represent an "abandoned" analysis, which is
    137 /// not preserved even if it would be covered by some abstract set of analyses.
    138 ///
    139 /// Given a `PreservedAnalyses` object, an analysis will typically want to
    140 /// figure out whether it is preserved. In the example below, MyAnalysisType is
    141 /// preserved if it's not abandoned, and (a) it's explicitly marked as
    142 /// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both
    143 /// AnalysisSetA and AnalysisSetB are preserved.
    144 ///
    145 /// ```
    146 ///   auto PAC = PA.getChecker<MyAnalysisType>();
    147 ///   if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() ||
    148 ///       (PAC.preservedSet<AnalysisSetA>() &&
    149 ///        PAC.preservedSet<AnalysisSetB>())) {
    150 ///     // The analysis has been successfully preserved ...
    151 ///   }
    152 /// ```
    153 class PreservedAnalyses {
    154 public:
    155   /// \brief Convenience factory function for the empty preserved set.
    156   static PreservedAnalyses none() { return PreservedAnalyses(); }
    157 
    158   /// \brief Construct a special preserved set that preserves all passes.
    159   static PreservedAnalyses all() {
    160     PreservedAnalyses PA;
    161     PA.PreservedIDs.insert(&AllAnalysesKey);
    162     return PA;
    163   }
    164 
    165   /// \brief Construct a preserved analyses object with a single preserved set.
    166   template <typename AnalysisSetT>
    167   static PreservedAnalyses allInSet() {
    168     PreservedAnalyses PA;
    169     PA.preserveSet<AnalysisSetT>();
    170     return PA;
    171   }
    172 
    173   /// Mark an analysis as preserved.
    174   template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); }
    175 
    176   /// \brief Given an analysis's ID, mark the analysis as preserved, adding it
    177   /// to the set.
    178   void preserve(AnalysisKey *ID) {
    179     // Clear this ID from the explicit not-preserved set if present.
    180     NotPreservedAnalysisIDs.erase(ID);
    181 
    182     // If we're not already preserving all analyses (other than those in
    183     // NotPreservedAnalysisIDs).
    184     if (!areAllPreserved())
    185       PreservedIDs.insert(ID);
    186   }
    187 
    188   /// Mark an analysis set as preserved.
    189   template <typename AnalysisSetT> void preserveSet() {
    190     preserveSet(AnalysisSetT::ID());
    191   }
    192 
    193   /// Mark an analysis set as preserved using its ID.
    194   void preserveSet(AnalysisSetKey *ID) {
    195     // If we're not already in the saturated 'all' state, add this set.
    196     if (!areAllPreserved())
    197       PreservedIDs.insert(ID);
    198   }
    199 
    200   /// Mark an analysis as abandoned.
    201   ///
    202   /// An abandoned analysis is not preserved, even if it is nominally covered
    203   /// by some other set or was previously explicitly marked as preserved.
    204   ///
    205   /// Note that you can only abandon a specific analysis, not a *set* of
    206   /// analyses.
    207   template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); }
    208 
    209   /// Mark an analysis as abandoned using its ID.
    210   ///
    211   /// An abandoned analysis is not preserved, even if it is nominally covered
    212   /// by some other set or was previously explicitly marked as preserved.
    213   ///
    214   /// Note that you can only abandon a specific analysis, not a *set* of
    215   /// analyses.
    216   void abandon(AnalysisKey *ID) {
    217     PreservedIDs.erase(ID);
    218     NotPreservedAnalysisIDs.insert(ID);
    219   }
    220 
    221   /// \brief Intersect this set with another in place.
    222   ///
    223   /// This is a mutating operation on this preserved set, removing all
    224   /// preserved passes which are not also preserved in the argument.
    225   void intersect(const PreservedAnalyses &Arg) {
    226     if (Arg.areAllPreserved())
    227       return;
    228     if (areAllPreserved()) {
    229       *this = Arg;
    230       return;
    231     }
    232     // The intersection requires the *union* of the explicitly not-preserved
    233     // IDs and the *intersection* of the preserved IDs.
    234     for (auto ID : Arg.NotPreservedAnalysisIDs) {
    235       PreservedIDs.erase(ID);
    236       NotPreservedAnalysisIDs.insert(ID);
    237     }
    238     for (auto ID : PreservedIDs)
    239       if (!Arg.PreservedIDs.count(ID))
    240         PreservedIDs.erase(ID);
    241   }
    242 
    243   /// \brief Intersect this set with a temporary other set in place.
    244   ///
    245   /// This is a mutating operation on this preserved set, removing all
    246   /// preserved passes which are not also preserved in the argument.
    247   void intersect(PreservedAnalyses &&Arg) {
    248     if (Arg.areAllPreserved())
    249       return;
    250     if (areAllPreserved()) {
    251       *this = std::move(Arg);
    252       return;
    253     }
    254     // The intersection requires the *union* of the explicitly not-preserved
    255     // IDs and the *intersection* of the preserved IDs.
    256     for (auto ID : Arg.NotPreservedAnalysisIDs) {
    257       PreservedIDs.erase(ID);
    258       NotPreservedAnalysisIDs.insert(ID);
    259     }
    260     for (auto ID : PreservedIDs)
    261       if (!Arg.PreservedIDs.count(ID))
    262         PreservedIDs.erase(ID);
    263   }
    264 
    265   /// A checker object that makes it easy to query for whether an analysis or
    266   /// some set covering it is preserved.
    267   class PreservedAnalysisChecker {
    268     friend class PreservedAnalyses;
    269 
    270     const PreservedAnalyses &PA;
    271     AnalysisKey *const ID;
    272     const bool IsAbandoned;
    273 
    274     /// A PreservedAnalysisChecker is tied to a particular Analysis because
    275     /// `preserved()` and `preservedSet()` both return false if the Analysis
    276     /// was abandoned.
    277     PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID)
    278         : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {}
    279 
    280   public:
    281     /// Returns true if the checker's analysis was not abandoned and either
    282     ///  - the analysis is explicitly preserved or
    283     ///  - all analyses are preserved.
    284     bool preserved() {
    285       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
    286                               PA.PreservedIDs.count(ID));
    287     }
    288 
    289     /// Returns true if the checker's analysis was not abandoned and either
    290     ///  - \p AnalysisSetT is explicitly preserved or
    291     ///  - all analyses are preserved.
    292     template <typename AnalysisSetT> bool preservedSet() {
    293       AnalysisSetKey *SetID = AnalysisSetT::ID();
    294       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
    295                               PA.PreservedIDs.count(SetID));
    296     }
    297   };
    298 
    299   /// Build a checker for this `PreservedAnalyses` and the specified analysis
    300   /// type.
    301   ///
    302   /// You can use the returned object to query whether an analysis was
    303   /// preserved. See the example in the comment on `PreservedAnalysis`.
    304   template <typename AnalysisT> PreservedAnalysisChecker getChecker() const {
    305     return PreservedAnalysisChecker(*this, AnalysisT::ID());
    306   }
    307 
    308   /// Build a checker for this `PreservedAnalyses` and the specified analysis
    309   /// ID.
    310   ///
    311   /// You can use the returned object to query whether an analysis was
    312   /// preserved. See the example in the comment on `PreservedAnalysis`.
    313   PreservedAnalysisChecker getChecker(AnalysisKey *ID) const {
    314     return PreservedAnalysisChecker(*this, ID);
    315   }
    316 
    317   /// Test whether all analyses are preserved (and none are abandoned).
    318   ///
    319   /// This is used primarily to optimize for the common case of a transformation
    320   /// which makes no changes to the IR.
    321   bool areAllPreserved() const {
    322     return NotPreservedAnalysisIDs.empty() &&
    323            PreservedIDs.count(&AllAnalysesKey);
    324   }
    325 
    326   /// Directly test whether a set of analyses is preserved.
    327   ///
    328   /// This is only true when no analyses have been explicitly abandoned.
    329   template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const {
    330     return allAnalysesInSetPreserved(AnalysisSetT::ID());
    331   }
    332 
    333   /// Directly test whether a set of analyses is preserved.
    334   ///
    335   /// This is only true when no analyses have been explicitly abandoned.
    336   bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const {
    337     return NotPreservedAnalysisIDs.empty() &&
    338            (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID));
    339   }
    340 
    341 private:
    342   /// A special key used to indicate all analyses.
    343   static AnalysisSetKey AllAnalysesKey;
    344 
    345   /// The IDs of analyses and analysis sets that are preserved.
    346   SmallPtrSet<void *, 2> PreservedIDs;
    347 
    348   /// The IDs of explicitly not-preserved analyses.
    349   ///
    350   /// If an analysis in this set is covered by a set in `PreservedIDs`, we
    351   /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always
    352   /// "wins" over analysis sets in `PreservedIDs`.
    353   ///
    354   /// Also, a given ID should never occur both here and in `PreservedIDs`.
    355   SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs;
    356 };
    357 
    358 // Forward declare the analysis manager template.
    359 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
    360 
    361 /// A CRTP mix-in to automatically provide informational APIs needed for
    362 /// passes.
    363 ///
    364 /// This provides some boilerplate for types that are passes.
    365 template <typename DerivedT> struct PassInfoMixin {
    366   /// Gets the name of the pass we are mixed into.
    367   static StringRef name() {
    368     static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
    369                   "Must pass the derived type as the template argument!");
    370     StringRef Name = getTypeName<DerivedT>();
    371     if (Name.startswith("llvm::"))
    372       Name = Name.drop_front(strlen("llvm::"));
    373     return Name;
    374   }
    375 };
    376 
    377 /// A CRTP mix-in that provides informational APIs needed for analysis passes.
    378 ///
    379 /// This provides some boilerplate for types that are analysis passes. It
    380 /// automatically mixes in \c PassInfoMixin.
    381 template <typename DerivedT>
    382 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
    383   /// Returns an opaque, unique ID for this analysis type.
    384   ///
    385   /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
    386   /// suitable for use in sets, maps, and other data structures that use the low
    387   /// bits of pointers.
    388   ///
    389   /// Note that this requires the derived type provide a static \c AnalysisKey
    390   /// member called \c Key.
    391   ///
    392   /// FIXME: The only reason the mixin type itself can't declare the Key value
    393   /// is that some compilers cannot correctly unique a templated static variable
    394   /// so it has the same addresses in each instantiation. The only currently
    395   /// known platform with this limitation is Windows DLL builds, specifically
    396   /// building each part of LLVM as a DLL. If we ever remove that build
    397   /// configuration, this mixin can provide the static key as well.
    398   static AnalysisKey *ID() {
    399     static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
    400                   "Must pass the derived type as the template argument!");
    401     return &DerivedT::Key;
    402   }
    403 };
    404 
    405 /// \brief Manages a sequence of passes over a particular unit of IR.
    406 ///
    407 /// A pass manager contains a sequence of passes to run over a particular unit
    408 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
    409 /// IR, and when run over some given IR will run each of its contained passes in
    410 /// sequence. Pass managers are the primary and most basic building block of a
    411 /// pass pipeline.
    412 ///
    413 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
    414 /// argument. The pass manager will propagate that analysis manager to each
    415 /// pass it runs, and will call the analysis manager's invalidation routine with
    416 /// the PreservedAnalyses of each pass it runs.
    417 template <typename IRUnitT,
    418           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
    419           typename... ExtraArgTs>
    420 class PassManager : public PassInfoMixin<
    421                         PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
    422 public:
    423   /// \brief Construct a pass manager.
    424   ///
    425   /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
    426   explicit PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
    427 
    428   // FIXME: These are equivalent to the default move constructor/move
    429   // assignment. However, using = default triggers linker errors due to the
    430   // explicit instantiations below. Find away to use the default and remove the
    431   // duplicated code here.
    432   PassManager(PassManager &&Arg)
    433       : Passes(std::move(Arg.Passes)),
    434         DebugLogging(std::move(Arg.DebugLogging)) {}
    435 
    436   PassManager &operator=(PassManager &&RHS) {
    437     Passes = std::move(RHS.Passes);
    438     DebugLogging = std::move(RHS.DebugLogging);
    439     return *this;
    440   }
    441 
    442   /// \brief Run all of the passes in this manager over the given unit of IR.
    443   /// ExtraArgs are passed to each pass.
    444   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
    445                         ExtraArgTs... ExtraArgs) {
    446     PreservedAnalyses PA = PreservedAnalyses::all();
    447 
    448     if (DebugLogging)
    449       dbgs() << "Starting " << getTypeName<IRUnitT>() << " pass manager run.\n";
    450 
    451     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
    452       if (DebugLogging)
    453         dbgs() << "Running pass: " << Passes[Idx]->name() << " on "
    454                << IR.getName() << "\n";
    455 
    456       PreservedAnalyses PassPA = Passes[Idx]->run(IR, AM, ExtraArgs...);
    457 
    458       // Update the analysis manager as each pass runs and potentially
    459       // invalidates analyses.
    460       AM.invalidate(IR, PassPA);
    461 
    462       // Finally, intersect the preserved analyses to compute the aggregate
    463       // preserved set for this pass manager.
    464       PA.intersect(std::move(PassPA));
    465 
    466       // FIXME: Historically, the pass managers all called the LLVM context's
    467       // yield function here. We don't have a generic way to acquire the
    468       // context and it isn't yet clear what the right pattern is for yielding
    469       // in the new pass manager so it is currently omitted.
    470       //IR.getContext().yield();
    471     }
    472 
    473     // Invaliadtion was handled after each pass in the above loop for the
    474     // current unit of IR. Therefore, the remaining analysis results in the
    475     // AnalysisManager are preserved. We mark this with a set so that we don't
    476     // need to inspect each one individually.
    477     PA.preserveSet<AllAnalysesOn<IRUnitT>>();
    478 
    479     if (DebugLogging)
    480       dbgs() << "Finished " << getTypeName<IRUnitT>() << " pass manager run.\n";
    481 
    482     return PA;
    483   }
    484 
    485   template <typename PassT> void addPass(PassT Pass) {
    486     using PassModelT =
    487         detail::PassModel<IRUnitT, PassT, PreservedAnalyses, AnalysisManagerT,
    488                           ExtraArgTs...>;
    489 
    490     Passes.emplace_back(new PassModelT(std::move(Pass)));
    491   }
    492 
    493 private:
    494   using PassConceptT =
    495       detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
    496 
    497   std::vector<std::unique_ptr<PassConceptT>> Passes;
    498 
    499   /// \brief Flag indicating whether we should do debug logging.
    500   bool DebugLogging;
    501 };
    502 
    503 extern template class PassManager<Module>;
    504 
    505 /// \brief Convenience typedef for a pass manager over modules.
    506 using ModulePassManager = PassManager<Module>;
    507 
    508 extern template class PassManager<Function>;
    509 
    510 /// \brief Convenience typedef for a pass manager over functions.
    511 using FunctionPassManager = PassManager<Function>;
    512 
    513 /// \brief A container for analyses that lazily runs them and caches their
    514 /// results.
    515 ///
    516 /// This class can manage analyses for any IR unit where the address of the IR
    517 /// unit sufficies as its identity.
    518 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
    519 public:
    520   class Invalidator;
    521 
    522 private:
    523   // Now that we've defined our invalidator, we can define the concept types.
    524   using ResultConceptT =
    525       detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>;
    526   using PassConceptT =
    527       detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator,
    528                                   ExtraArgTs...>;
    529 
    530   /// \brief List of analysis pass IDs and associated concept pointers.
    531   ///
    532   /// Requires iterators to be valid across appending new entries and arbitrary
    533   /// erases. Provides the analysis ID to enable finding iterators to a given
    534   /// entry in maps below, and provides the storage for the actual result
    535   /// concept.
    536   using AnalysisResultListT =
    537       std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
    538 
    539   /// \brief Map type from IRUnitT pointer to our custom list type.
    540   using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
    541 
    542   /// \brief Map type from a pair of analysis ID and IRUnitT pointer to an
    543   /// iterator into a particular result list (which is where the actual analysis
    544   /// result is stored).
    545   using AnalysisResultMapT =
    546       DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
    547                typename AnalysisResultListT::iterator>;
    548 
    549 public:
    550   /// API to communicate dependencies between analyses during invalidation.
    551   ///
    552   /// When an analysis result embeds handles to other analysis results, it
    553   /// needs to be invalidated both when its own information isn't preserved and
    554   /// when any of its embedded analysis results end up invalidated. We pass an
    555   /// \c Invalidator object as an argument to \c invalidate() in order to let
    556   /// the analysis results themselves define the dependency graph on the fly.
    557   /// This lets us avoid building building an explicit representation of the
    558   /// dependencies between analysis results.
    559   class Invalidator {
    560   public:
    561     /// Trigger the invalidation of some other analysis pass if not already
    562     /// handled and return whether it was in fact invalidated.
    563     ///
    564     /// This is expected to be called from within a given analysis result's \c
    565     /// invalidate method to trigger a depth-first walk of all inter-analysis
    566     /// dependencies. The same \p IR unit and \p PA passed to that result's \c
    567     /// invalidate method should in turn be provided to this routine.
    568     ///
    569     /// The first time this is called for a given analysis pass, it will call
    570     /// the corresponding result's \c invalidate method.  Subsequent calls will
    571     /// use a cache of the results of that initial call.  It is an error to form
    572     /// cyclic dependencies between analysis results.
    573     ///
    574     /// This returns true if the given analysis's result is invalid. Any
    575     /// dependecies on it will become invalid as a result.
    576     template <typename PassT>
    577     bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
    578       using ResultModelT =
    579           detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
    580                                       PreservedAnalyses, Invalidator>;
    581 
    582       return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
    583     }
    584 
    585     /// A type-erased variant of the above invalidate method with the same core
    586     /// API other than passing an analysis ID rather than an analysis type
    587     /// parameter.
    588     ///
    589     /// This is sadly less efficient than the above routine, which leverages
    590     /// the type parameter to avoid the type erasure overhead.
    591     bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
    592       return invalidateImpl<>(ID, IR, PA);
    593     }
    594 
    595   private:
    596     friend class AnalysisManager;
    597 
    598     template <typename ResultT = ResultConceptT>
    599     bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
    600                         const PreservedAnalyses &PA) {
    601       // If we've already visited this pass, return true if it was invalidated
    602       // and false otherwise.
    603       auto IMapI = IsResultInvalidated.find(ID);
    604       if (IMapI != IsResultInvalidated.end())
    605         return IMapI->second;
    606 
    607       // Otherwise look up the result object.
    608       auto RI = Results.find({ID, &IR});
    609       assert(RI != Results.end() &&
    610              "Trying to invalidate a dependent result that isn't in the "
    611              "manager's cache is always an error, likely due to a stale result "
    612              "handle!");
    613 
    614       auto &Result = static_cast<ResultT &>(*RI->second->second);
    615 
    616       // Insert into the map whether the result should be invalidated and return
    617       // that. Note that we cannot reuse IMapI and must do a fresh insert here,
    618       // as calling invalidate could (recursively) insert things into the map,
    619       // making any iterator or reference invalid.
    620       bool Inserted;
    621       std::tie(IMapI, Inserted) =
    622           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
    623       (void)Inserted;
    624       assert(Inserted && "Should not have already inserted this ID, likely "
    625                          "indicates a dependency cycle!");
    626       return IMapI->second;
    627     }
    628 
    629     Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
    630                 const AnalysisResultMapT &Results)
    631         : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
    632 
    633     SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
    634     const AnalysisResultMapT &Results;
    635   };
    636 
    637   /// \brief Construct an empty analysis manager.
    638   ///
    639   /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
    640   AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
    641   AnalysisManager(AnalysisManager &&) = default;
    642   AnalysisManager &operator=(AnalysisManager &&) = default;
    643 
    644   /// \brief Returns true if the analysis manager has an empty results cache.
    645   bool empty() const {
    646     assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
    647            "The storage and index of analysis results disagree on how many "
    648            "there are!");
    649     return AnalysisResults.empty();
    650   }
    651 
    652   /// \brief Clear any cached analysis results for a single unit of IR.
    653   ///
    654   /// This doesn't invalidate, but instead simply deletes, the relevant results.
    655   /// It is useful when the IR is being removed and we want to clear out all the
    656   /// memory pinned for it.
    657   void clear(IRUnitT &IR, llvm::StringRef Name) {
    658     if (DebugLogging)
    659       dbgs() << "Clearing all analysis results for: " << Name << "\n";
    660 
    661     auto ResultsListI = AnalysisResultLists.find(&IR);
    662     if (ResultsListI == AnalysisResultLists.end())
    663       return;
    664     // Delete the map entries that point into the results list.
    665     for (auto &IDAndResult : ResultsListI->second)
    666       AnalysisResults.erase({IDAndResult.first, &IR});
    667 
    668     // And actually destroy and erase the results associated with this IR.
    669     AnalysisResultLists.erase(ResultsListI);
    670   }
    671 
    672   /// \brief Clear all analysis results cached by this AnalysisManager.
    673   ///
    674   /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
    675   /// deletes them.  This lets you clean up the AnalysisManager when the set of
    676   /// IR units itself has potentially changed, and thus we can't even look up a
    677   /// a result and invalidate/clear it directly.
    678   void clear() {
    679     AnalysisResults.clear();
    680     AnalysisResultLists.clear();
    681   }
    682 
    683   /// \brief Get the result of an analysis pass for a given IR unit.
    684   ///
    685   /// Runs the analysis if a cached result is not available.
    686   template <typename PassT>
    687   typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
    688     assert(AnalysisPasses.count(PassT::ID()) &&
    689            "This analysis pass was not registered prior to being queried");
    690     ResultConceptT &ResultConcept =
    691         getResultImpl(PassT::ID(), IR, ExtraArgs...);
    692 
    693     using ResultModelT =
    694         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
    695                                     PreservedAnalyses, Invalidator>;
    696 
    697     return static_cast<ResultModelT &>(ResultConcept).Result;
    698   }
    699 
    700   /// \brief Get the cached result of an analysis pass for a given IR unit.
    701   ///
    702   /// This method never runs the analysis.
    703   ///
    704   /// \returns null if there is no cached result.
    705   template <typename PassT>
    706   typename PassT::Result *getCachedResult(IRUnitT &IR) const {
    707     assert(AnalysisPasses.count(PassT::ID()) &&
    708            "This analysis pass was not registered prior to being queried");
    709 
    710     ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
    711     if (!ResultConcept)
    712       return nullptr;
    713 
    714     using ResultModelT =
    715         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
    716                                     PreservedAnalyses, Invalidator>;
    717 
    718     return &static_cast<ResultModelT *>(ResultConcept)->Result;
    719   }
    720 
    721   /// \brief Register an analysis pass with the manager.
    722   ///
    723   /// The parameter is a callable whose result is an analysis pass. This allows
    724   /// passing in a lambda to construct the analysis.
    725   ///
    726   /// The analysis type to register is the type returned by calling the \c
    727   /// PassBuilder argument. If that type has already been registered, then the
    728   /// argument will not be called and this function will return false.
    729   /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
    730   /// and this function returns true.
    731   ///
    732   /// (Note: Although the return value of this function indicates whether or not
    733   /// an analysis was previously registered, there intentionally isn't a way to
    734   /// query this directly.  Instead, you should just register all the analyses
    735   /// you might want and let this class run them lazily.  This idiom lets us
    736   /// minimize the number of times we have to look up analyses in our
    737   /// hashtable.)
    738   template <typename PassBuilderT>
    739   bool registerPass(PassBuilderT &&PassBuilder) {
    740     using PassT = decltype(PassBuilder());
    741     using PassModelT =
    742         detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses,
    743                                   Invalidator, ExtraArgTs...>;
    744 
    745     auto &PassPtr = AnalysisPasses[PassT::ID()];
    746     if (PassPtr)
    747       // Already registered this pass type!
    748       return false;
    749 
    750     // Construct a new model around the instance returned by the builder.
    751     PassPtr.reset(new PassModelT(PassBuilder()));
    752     return true;
    753   }
    754 
    755   /// \brief Invalidate a specific analysis pass for an IR module.
    756   ///
    757   /// Note that the analysis result can disregard invalidation, if it determines
    758   /// it is in fact still valid.
    759   template <typename PassT> void invalidate(IRUnitT &IR) {
    760     assert(AnalysisPasses.count(PassT::ID()) &&
    761            "This analysis pass was not registered prior to being invalidated");
    762     invalidateImpl(PassT::ID(), IR);
    763   }
    764 
    765   /// \brief Invalidate cached analyses for an IR unit.
    766   ///
    767   /// Walk through all of the analyses pertaining to this unit of IR and
    768   /// invalidate them, unless they are preserved by the PreservedAnalyses set.
    769   void invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
    770     // We're done if all analyses on this IR unit are preserved.
    771     if (PA.allAnalysesInSetPreserved<AllAnalysesOn<IRUnitT>>())
    772       return;
    773 
    774     if (DebugLogging)
    775       dbgs() << "Invalidating all non-preserved analyses for: " << IR.getName()
    776              << "\n";
    777 
    778     // Track whether each analysis's result is invalidated in
    779     // IsResultInvalidated.
    780     SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
    781     Invalidator Inv(IsResultInvalidated, AnalysisResults);
    782     AnalysisResultListT &ResultsList = AnalysisResultLists[&IR];
    783     for (auto &AnalysisResultPair : ResultsList) {
    784       // This is basically the same thing as Invalidator::invalidate, but we
    785       // can't call it here because we're operating on the type-erased result.
    786       // Moreover if we instead called invalidate() directly, it would do an
    787       // unnecessary look up in ResultsList.
    788       AnalysisKey *ID = AnalysisResultPair.first;
    789       auto &Result = *AnalysisResultPair.second;
    790 
    791       auto IMapI = IsResultInvalidated.find(ID);
    792       if (IMapI != IsResultInvalidated.end())
    793         // This result was already handled via the Invalidator.
    794         continue;
    795 
    796       // Try to invalidate the result, giving it the Invalidator so it can
    797       // recursively query for any dependencies it has and record the result.
    798       // Note that we cannot reuse 'IMapI' here or pre-insert the ID, as
    799       // Result.invalidate may insert things into the map, invalidating our
    800       // iterator.
    801       bool Inserted =
    802           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, Inv)})
    803               .second;
    804       (void)Inserted;
    805       assert(Inserted && "Should never have already inserted this ID, likely "
    806                          "indicates a cycle!");
    807     }
    808 
    809     // Now erase the results that were marked above as invalidated.
    810     if (!IsResultInvalidated.empty()) {
    811       for (auto I = ResultsList.begin(), E = ResultsList.end(); I != E;) {
    812         AnalysisKey *ID = I->first;
    813         if (!IsResultInvalidated.lookup(ID)) {
    814           ++I;
    815           continue;
    816         }
    817 
    818         if (DebugLogging)
    819           dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
    820                  << " on " << IR.getName() << "\n";
    821 
    822         I = ResultsList.erase(I);
    823         AnalysisResults.erase({ID, &IR});
    824       }
    825     }
    826 
    827     if (ResultsList.empty())
    828       AnalysisResultLists.erase(&IR);
    829   }
    830 
    831 private:
    832   /// \brief Look up a registered analysis pass.
    833   PassConceptT &lookUpPass(AnalysisKey *ID) {
    834     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
    835     assert(PI != AnalysisPasses.end() &&
    836            "Analysis passes must be registered prior to being queried!");
    837     return *PI->second;
    838   }
    839 
    840   /// \brief Look up a registered analysis pass.
    841   const PassConceptT &lookUpPass(AnalysisKey *ID) const {
    842     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
    843     assert(PI != AnalysisPasses.end() &&
    844            "Analysis passes must be registered prior to being queried!");
    845     return *PI->second;
    846   }
    847 
    848   /// \brief Get an analysis result, running the pass if necessary.
    849   ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
    850                                 ExtraArgTs... ExtraArgs) {
    851     typename AnalysisResultMapT::iterator RI;
    852     bool Inserted;
    853     std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair(
    854         std::make_pair(ID, &IR), typename AnalysisResultListT::iterator()));
    855 
    856     // If we don't have a cached result for this function, look up the pass and
    857     // run it to produce a result, which we then add to the cache.
    858     if (Inserted) {
    859       auto &P = this->lookUpPass(ID);
    860       if (DebugLogging)
    861         dbgs() << "Running analysis: " << P.name() << " on " << IR.getName()
    862                << "\n";
    863       AnalysisResultListT &ResultList = AnalysisResultLists[&IR];
    864       ResultList.emplace_back(ID, P.run(IR, *this, ExtraArgs...));
    865 
    866       // P.run may have inserted elements into AnalysisResults and invalidated
    867       // RI.
    868       RI = AnalysisResults.find({ID, &IR});
    869       assert(RI != AnalysisResults.end() && "we just inserted it!");
    870 
    871       RI->second = std::prev(ResultList.end());
    872     }
    873 
    874     return *RI->second->second;
    875   }
    876 
    877   /// \brief Get a cached analysis result or return null.
    878   ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
    879     typename AnalysisResultMapT::const_iterator RI =
    880         AnalysisResults.find({ID, &IR});
    881     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
    882   }
    883 
    884   /// \brief Invalidate a function pass result.
    885   void invalidateImpl(AnalysisKey *ID, IRUnitT &IR) {
    886     typename AnalysisResultMapT::iterator RI =
    887         AnalysisResults.find({ID, &IR});
    888     if (RI == AnalysisResults.end())
    889       return;
    890 
    891     if (DebugLogging)
    892       dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
    893              << " on " << IR.getName() << "\n";
    894     AnalysisResultLists[&IR].erase(RI->second);
    895     AnalysisResults.erase(RI);
    896   }
    897 
    898   /// \brief Map type from module analysis pass ID to pass concept pointer.
    899   using AnalysisPassMapT =
    900       DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
    901 
    902   /// \brief Collection of module analysis passes, indexed by ID.
    903   AnalysisPassMapT AnalysisPasses;
    904 
    905   /// \brief Map from function to a list of function analysis results.
    906   ///
    907   /// Provides linear time removal of all analysis results for a function and
    908   /// the ultimate storage for a particular cached analysis result.
    909   AnalysisResultListMapT AnalysisResultLists;
    910 
    911   /// \brief Map from an analysis ID and function to a particular cached
    912   /// analysis result.
    913   AnalysisResultMapT AnalysisResults;
    914 
    915   /// \brief Indicates whether we log to \c llvm::dbgs().
    916   bool DebugLogging;
    917 };
    918 
    919 extern template class AnalysisManager<Module>;
    920 
    921 /// \brief Convenience typedef for the Module analysis manager.
    922 using ModuleAnalysisManager = AnalysisManager<Module>;
    923 
    924 extern template class AnalysisManager<Function>;
    925 
    926 /// \brief Convenience typedef for the Function analysis manager.
    927 using FunctionAnalysisManager = AnalysisManager<Function>;
    928 
    929 /// \brief An analysis over an "outer" IR unit that provides access to an
    930 /// analysis manager over an "inner" IR unit.  The inner unit must be contained
    931 /// in the outer unit.
    932 ///
    933 /// Fore example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
    934 /// an analysis over Modules (the "outer" unit) that provides access to a
    935 /// Function analysis manager.  The FunctionAnalysisManager is the "inner"
    936 /// manager being proxied, and Functions are the "inner" unit.  The inner/outer
    937 /// relationship is valid because each Function is contained in one Module.
    938 ///
    939 /// If you're (transitively) within a pass manager for an IR unit U that
    940 /// contains IR unit V, you should never use an analysis manager over V, except
    941 /// via one of these proxies.
    942 ///
    943 /// Note that the proxy's result is a move-only RAII object.  The validity of
    944 /// the analyses in the inner analysis manager is tied to its lifetime.
    945 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
    946 class InnerAnalysisManagerProxy
    947     : public AnalysisInfoMixin<
    948           InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
    949 public:
    950   class Result {
    951   public:
    952     explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
    953 
    954     Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
    955       // We have to null out the analysis manager in the moved-from state
    956       // because we are taking ownership of the responsibilty to clear the
    957       // analysis state.
    958       Arg.InnerAM = nullptr;
    959     }
    960 
    961     ~Result() {
    962       // InnerAM is cleared in a moved from state where there is nothing to do.
    963       if (!InnerAM)
    964         return;
    965 
    966       // Clear out the analysis manager if we're being destroyed -- it means we
    967       // didn't even see an invalidate call when we got invalidated.
    968       InnerAM->clear();
    969     }
    970 
    971     Result &operator=(Result &&RHS) {
    972       InnerAM = RHS.InnerAM;
    973       // We have to null out the analysis manager in the moved-from state
    974       // because we are taking ownership of the responsibilty to clear the
    975       // analysis state.
    976       RHS.InnerAM = nullptr;
    977       return *this;
    978     }
    979 
    980     /// \brief Accessor for the analysis manager.
    981     AnalysisManagerT &getManager() { return *InnerAM; }
    982 
    983     /// \brief Handler for invalidation of the outer IR unit, \c IRUnitT.
    984     ///
    985     /// If the proxy analysis itself is not preserved, we assume that the set of
    986     /// inner IR objects contained in IRUnit may have changed.  In this case,
    987     /// we have to call \c clear() on the inner analysis manager, as it may now
    988     /// have stale pointers to its inner IR objects.
    989     ///
    990     /// Regardless of whether the proxy analysis is marked as preserved, all of
    991     /// the analyses in the inner analysis manager are potentially invalidated
    992     /// based on the set of preserved analyses.
    993     bool invalidate(
    994         IRUnitT &IR, const PreservedAnalyses &PA,
    995         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
    996 
    997   private:
    998     AnalysisManagerT *InnerAM;
    999   };
   1000 
   1001   explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
   1002       : InnerAM(&InnerAM) {}
   1003 
   1004   /// \brief Run the analysis pass and create our proxy result object.
   1005   ///
   1006   /// This doesn't do any interesting work; it is primarily used to insert our
   1007   /// proxy result object into the outer analysis cache so that we can proxy
   1008   /// invalidation to the inner analysis manager.
   1009   Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
   1010              ExtraArgTs...) {
   1011     return Result(*InnerAM);
   1012   }
   1013 
   1014 private:
   1015   friend AnalysisInfoMixin<
   1016       InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
   1017 
   1018   static AnalysisKey Key;
   1019 
   1020   AnalysisManagerT *InnerAM;
   1021 };
   1022 
   1023 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
   1024 AnalysisKey
   1025     InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
   1026 
   1027 /// Provide the \c FunctionAnalysisManager to \c Module proxy.
   1028 using FunctionAnalysisManagerModuleProxy =
   1029     InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
   1030 
   1031 /// Specialization of the invalidate method for the \c
   1032 /// FunctionAnalysisManagerModuleProxy's result.
   1033 template <>
   1034 bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
   1035     Module &M, const PreservedAnalyses &PA,
   1036     ModuleAnalysisManager::Invalidator &Inv);
   1037 
   1038 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
   1039 // template.
   1040 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
   1041                                                 Module>;
   1042 
   1043 /// \brief An analysis over an "inner" IR unit that provides access to an
   1044 /// analysis manager over a "outer" IR unit.  The inner unit must be contained
   1045 /// in the outer unit.
   1046 ///
   1047 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
   1048 /// analysis over Functions (the "inner" unit) which provides access to a Module
   1049 /// analysis manager.  The ModuleAnalysisManager is the "outer" manager being
   1050 /// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship
   1051 /// is valid because each Function is contained in one Module.
   1052 ///
   1053 /// This proxy only exposes the const interface of the outer analysis manager,
   1054 /// to indicate that you cannot cause an outer analysis to run from within an
   1055 /// inner pass.  Instead, you must rely on the \c getCachedResult API.
   1056 ///
   1057 /// This proxy doesn't manage invalidation in any way -- that is handled by the
   1058 /// recursive return path of each layer of the pass manager.  A consequence of
   1059 /// this is the outer analyses may be stale.  We invalidate the outer analyses
   1060 /// only when we're done running passes over the inner IR units.
   1061 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
   1062 class OuterAnalysisManagerProxy
   1063     : public AnalysisInfoMixin<
   1064           OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
   1065 public:
   1066   /// \brief Result proxy object for \c OuterAnalysisManagerProxy.
   1067   class Result {
   1068   public:
   1069     explicit Result(const AnalysisManagerT &AM) : AM(&AM) {}
   1070 
   1071     const AnalysisManagerT &getManager() const { return *AM; }
   1072 
   1073     /// When invalidation occurs, remove any registered invalidation events.
   1074     bool invalidate(
   1075         IRUnitT &IRUnit, const PreservedAnalyses &PA,
   1076         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
   1077       // Loop over the set of registered outer invalidation mappings and if any
   1078       // of them map to an analysis that is now invalid, clear it out.
   1079       SmallVector<AnalysisKey *, 4> DeadKeys;
   1080       for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
   1081         AnalysisKey *OuterID = KeyValuePair.first;
   1082         auto &InnerIDs = KeyValuePair.second;
   1083         InnerIDs.erase(llvm::remove_if(InnerIDs, [&](AnalysisKey *InnerID) {
   1084           return Inv.invalidate(InnerID, IRUnit, PA); }),
   1085                        InnerIDs.end());
   1086         if (InnerIDs.empty())
   1087           DeadKeys.push_back(OuterID);
   1088       }
   1089 
   1090       for (auto OuterID : DeadKeys)
   1091         OuterAnalysisInvalidationMap.erase(OuterID);
   1092 
   1093       // The proxy itself remains valid regardless of anything else.
   1094       return false;
   1095     }
   1096 
   1097     /// Register a deferred invalidation event for when the outer analysis
   1098     /// manager processes its invalidations.
   1099     template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
   1100     void registerOuterAnalysisInvalidation() {
   1101       AnalysisKey *OuterID = OuterAnalysisT::ID();
   1102       AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
   1103 
   1104       auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
   1105       // Note, this is a linear scan. If we end up with large numbers of
   1106       // analyses that all trigger invalidation on the same outer analysis,
   1107       // this entire system should be changed to some other deterministic
   1108       // data structure such as a `SetVector` of a pair of pointers.
   1109       auto InvalidatedIt = std::find(InvalidatedIDList.begin(),
   1110                                      InvalidatedIDList.end(), InvalidatedID);
   1111       if (InvalidatedIt == InvalidatedIDList.end())
   1112         InvalidatedIDList.push_back(InvalidatedID);
   1113     }
   1114 
   1115     /// Access the map from outer analyses to deferred invalidation requiring
   1116     /// analyses.
   1117     const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
   1118     getOuterInvalidations() const {
   1119       return OuterAnalysisInvalidationMap;
   1120     }
   1121 
   1122   private:
   1123     const AnalysisManagerT *AM;
   1124 
   1125     /// A map from an outer analysis ID to the set of this IR-unit's analyses
   1126     /// which need to be invalidated.
   1127     SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
   1128         OuterAnalysisInvalidationMap;
   1129   };
   1130 
   1131   OuterAnalysisManagerProxy(const AnalysisManagerT &AM) : AM(&AM) {}
   1132 
   1133   /// \brief Run the analysis pass and create our proxy result object.
   1134   /// Nothing to see here, it just forwards the \c AM reference into the
   1135   /// result.
   1136   Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
   1137              ExtraArgTs...) {
   1138     return Result(*AM);
   1139   }
   1140 
   1141 private:
   1142   friend AnalysisInfoMixin<
   1143       OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
   1144 
   1145   static AnalysisKey Key;
   1146 
   1147   const AnalysisManagerT *AM;
   1148 };
   1149 
   1150 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
   1151 AnalysisKey
   1152     OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
   1153 
   1154 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
   1155                                                 Function>;
   1156 /// Provide the \c ModuleAnalysisManager to \c Function proxy.
   1157 using ModuleAnalysisManagerFunctionProxy =
   1158     OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
   1159 
   1160 /// \brief Trivial adaptor that maps from a module to its functions.
   1161 ///
   1162 /// Designed to allow composition of a FunctionPass(Manager) and
   1163 /// a ModulePassManager, by running the FunctionPass(Manager) over every
   1164 /// function in the module.
   1165 ///
   1166 /// Function passes run within this adaptor can rely on having exclusive access
   1167 /// to the function they are run over. They should not read or modify any other
   1168 /// functions! Other threads or systems may be manipulating other functions in
   1169 /// the module, and so their state should never be relied on.
   1170 /// FIXME: Make the above true for all of LLVM's actual passes, some still
   1171 /// violate this principle.
   1172 ///
   1173 /// Function passes can also read the module containing the function, but they
   1174 /// should not modify that module outside of the use lists of various globals.
   1175 /// For example, a function pass is not permitted to add functions to the
   1176 /// module.
   1177 /// FIXME: Make the above true for all of LLVM's actual passes, some still
   1178 /// violate this principle.
   1179 ///
   1180 /// Note that although function passes can access module analyses, module
   1181 /// analyses are not invalidated while the function passes are running, so they
   1182 /// may be stale.  Function analyses will not be stale.
   1183 template <typename FunctionPassT>
   1184 class ModuleToFunctionPassAdaptor
   1185     : public PassInfoMixin<ModuleToFunctionPassAdaptor<FunctionPassT>> {
   1186 public:
   1187   explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
   1188       : Pass(std::move(Pass)) {}
   1189 
   1190   /// \brief Runs the function pass across every function in the module.
   1191   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM) {
   1192     FunctionAnalysisManager &FAM =
   1193         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
   1194 
   1195     PreservedAnalyses PA = PreservedAnalyses::all();
   1196     for (Function &F : M) {
   1197       if (F.isDeclaration())
   1198         continue;
   1199 
   1200       PreservedAnalyses PassPA = Pass.run(F, FAM);
   1201 
   1202       // We know that the function pass couldn't have invalidated any other
   1203       // function's analyses (that's the contract of a function pass), so
   1204       // directly handle the function analysis manager's invalidation here.
   1205       FAM.invalidate(F, PassPA);
   1206 
   1207       // Then intersect the preserved set so that invalidation of module
   1208       // analyses will eventually occur when the module pass completes.
   1209       PA.intersect(std::move(PassPA));
   1210     }
   1211 
   1212     // The FunctionAnalysisManagerModuleProxy is preserved because (we assume)
   1213     // the function passes we ran didn't add or remove any functions.
   1214     //
   1215     // We also preserve all analyses on Functions, because we did all the
   1216     // invalidation we needed to do above.
   1217     PA.preserveSet<AllAnalysesOn<Function>>();
   1218     PA.preserve<FunctionAnalysisManagerModuleProxy>();
   1219     return PA;
   1220   }
   1221 
   1222 private:
   1223   FunctionPassT Pass;
   1224 };
   1225 
   1226 /// \brief A function to deduce a function pass type and wrap it in the
   1227 /// templated adaptor.
   1228 template <typename FunctionPassT>
   1229 ModuleToFunctionPassAdaptor<FunctionPassT>
   1230 createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
   1231   return ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
   1232 }
   1233 
   1234 /// \brief A utility pass template to force an analysis result to be available.
   1235 ///
   1236 /// If there are extra arguments at the pass's run level there may also be
   1237 /// extra arguments to the analysis manager's \c getResult routine. We can't
   1238 /// guess how to effectively map the arguments from one to the other, and so
   1239 /// this specialization just ignores them.
   1240 ///
   1241 /// Specific patterns of run-method extra arguments and analysis manager extra
   1242 /// arguments will have to be defined as appropriate specializations.
   1243 template <typename AnalysisT, typename IRUnitT,
   1244           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
   1245           typename... ExtraArgTs>
   1246 struct RequireAnalysisPass
   1247     : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
   1248                                         ExtraArgTs...>> {
   1249   /// \brief Run this pass over some unit of IR.
   1250   ///
   1251   /// This pass can be run over any unit of IR and use any analysis manager
   1252   /// provided they satisfy the basic API requirements. When this pass is
   1253   /// created, these methods can be instantiated to satisfy whatever the
   1254   /// context requires.
   1255   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
   1256                         ExtraArgTs &&... Args) {
   1257     (void)AM.template getResult<AnalysisT>(Arg,
   1258                                            std::forward<ExtraArgTs>(Args)...);
   1259 
   1260     return PreservedAnalyses::all();
   1261   }
   1262 };
   1263 
   1264 /// \brief A no-op pass template which simply forces a specific analysis result
   1265 /// to be invalidated.
   1266 template <typename AnalysisT>
   1267 struct InvalidateAnalysisPass
   1268     : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
   1269   /// \brief Run this pass over some unit of IR.
   1270   ///
   1271   /// This pass can be run over any unit of IR and use any analysis manager,
   1272   /// provided they satisfy the basic API requirements. When this pass is
   1273   /// created, these methods can be instantiated to satisfy whatever the
   1274   /// context requires.
   1275   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
   1276   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
   1277     auto PA = PreservedAnalyses::all();
   1278     PA.abandon<AnalysisT>();
   1279     return PA;
   1280   }
   1281 };
   1282 
   1283 /// \brief A utility pass that does nothing, but preserves no analyses.
   1284 ///
   1285 /// Because this preserves no analyses, any analysis passes queried after this
   1286 /// pass runs will recompute fresh results.
   1287 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
   1288   /// \brief Run this pass over some unit of IR.
   1289   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
   1290   PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
   1291     return PreservedAnalyses::none();
   1292   }
   1293 };
   1294 
   1295 /// A utility pass template that simply runs another pass multiple times.
   1296 ///
   1297 /// This can be useful when debugging or testing passes. It also serves as an
   1298 /// example of how to extend the pass manager in ways beyond composition.
   1299 template <typename PassT>
   1300 class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
   1301 public:
   1302   RepeatedPass(int Count, PassT P) : Count(Count), P(std::move(P)) {}
   1303 
   1304   template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
   1305   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, Ts &&... Args) {
   1306     auto PA = PreservedAnalyses::all();
   1307     for (int i = 0; i < Count; ++i)
   1308       PA.intersect(P.run(Arg, AM, std::forward<Ts>(Args)...));
   1309     return PA;
   1310   }
   1311 
   1312 private:
   1313   int Count;
   1314   PassT P;
   1315 };
   1316 
   1317 template <typename PassT>
   1318 RepeatedPass<PassT> createRepeatedPass(int Count, PassT P) {
   1319   return RepeatedPass<PassT>(Count, std::move(P));
   1320 }
   1321 
   1322 } // end namespace llvm
   1323 
   1324 #endif // LLVM_IR_PASSMANAGER_H
   1325