Home | History | Annotate | Download | only in Utils
      1 //===- SSAUpdaterImpl.h - SSA Updater Implementation ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides a template that implements the core algorithm for the
     11 // SSAUpdater and MachineSSAUpdater.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
     16 #define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
     17 
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/Support/Allocator.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 
     24 #define DEBUG_TYPE "ssaupdater"
     25 
     26 namespace llvm {
     27 
     28 template<typename T> class SSAUpdaterTraits;
     29 
     30 template<typename UpdaterT>
     31 class SSAUpdaterImpl {
     32 private:
     33   UpdaterT *Updater;
     34 
     35   using Traits = SSAUpdaterTraits<UpdaterT>;
     36   using BlkT = typename Traits::BlkT;
     37   using ValT = typename Traits::ValT;
     38   using PhiT = typename Traits::PhiT;
     39 
     40   /// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
     41   /// The predecessors of each block are cached here since pred_iterator is
     42   /// slow and we need to iterate over the blocks at least a few times.
     43   class BBInfo {
     44   public:
     45     // Back-pointer to the corresponding block.
     46     BlkT *BB;
     47 
     48     // Value to use in this block.
     49     ValT AvailableVal;
     50 
     51     // Block that defines the available value.
     52     BBInfo *DefBB;
     53 
     54     // Postorder number.
     55     int BlkNum = 0;
     56 
     57     // Immediate dominator.
     58     BBInfo *IDom = nullptr;
     59 
     60     // Number of predecessor blocks.
     61     unsigned NumPreds = 0;
     62 
     63     // Array[NumPreds] of predecessor blocks.
     64     BBInfo **Preds = nullptr;
     65 
     66     // Marker for existing PHIs that match.
     67     PhiT *PHITag = nullptr;
     68 
     69     BBInfo(BlkT *ThisBB, ValT V)
     70       : BB(ThisBB), AvailableVal(V), DefBB(V ? this : nullptr) {}
     71   };
     72 
     73   using AvailableValsTy = DenseMap<BlkT *, ValT>;
     74 
     75   AvailableValsTy *AvailableVals;
     76 
     77   SmallVectorImpl<PhiT *> *InsertedPHIs;
     78 
     79   using BlockListTy = SmallVectorImpl<BBInfo *>;
     80   using BBMapTy = DenseMap<BlkT *, BBInfo *>;
     81 
     82   BBMapTy BBMap;
     83   BumpPtrAllocator Allocator;
     84 
     85 public:
     86   explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
     87                           SmallVectorImpl<PhiT *> *Ins) :
     88     Updater(U), AvailableVals(A), InsertedPHIs(Ins) {}
     89 
     90   /// GetValue - Check to see if AvailableVals has an entry for the specified
     91   /// BB and if so, return it.  If not, construct SSA form by first
     92   /// calculating the required placement of PHIs and then inserting new PHIs
     93   /// where needed.
     94   ValT GetValue(BlkT *BB) {
     95     SmallVector<BBInfo *, 100> BlockList;
     96     BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
     97 
     98     // Special case: bail out if BB is unreachable.
     99     if (BlockList.size() == 0) {
    100       ValT V = Traits::GetUndefVal(BB, Updater);
    101       (*AvailableVals)[BB] = V;
    102       return V;
    103     }
    104 
    105     FindDominators(&BlockList, PseudoEntry);
    106     FindPHIPlacement(&BlockList);
    107     FindAvailableVals(&BlockList);
    108 
    109     return BBMap[BB]->DefBB->AvailableVal;
    110   }
    111 
    112   /// BuildBlockList - Starting from the specified basic block, traverse back
    113   /// through its predecessors until reaching blocks with known values.
    114   /// Create BBInfo structures for the blocks and append them to the block
    115   /// list.
    116   BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
    117     SmallVector<BBInfo *, 10> RootList;
    118     SmallVector<BBInfo *, 64> WorkList;
    119 
    120     BBInfo *Info = new (Allocator) BBInfo(BB, 0);
    121     BBMap[BB] = Info;
    122     WorkList.push_back(Info);
    123 
    124     // Search backward from BB, creating BBInfos along the way and stopping
    125     // when reaching blocks that define the value.  Record those defining
    126     // blocks on the RootList.
    127     SmallVector<BlkT *, 10> Preds;
    128     while (!WorkList.empty()) {
    129       Info = WorkList.pop_back_val();
    130       Preds.clear();
    131       Traits::FindPredecessorBlocks(Info->BB, &Preds);
    132       Info->NumPreds = Preds.size();
    133       if (Info->NumPreds == 0)
    134         Info->Preds = nullptr;
    135       else
    136         Info->Preds = static_cast<BBInfo **>(Allocator.Allocate(
    137             Info->NumPreds * sizeof(BBInfo *), alignof(BBInfo *)));
    138 
    139       for (unsigned p = 0; p != Info->NumPreds; ++p) {
    140         BlkT *Pred = Preds[p];
    141         // Check if BBMap already has a BBInfo for the predecessor block.
    142         typename BBMapTy::value_type &BBMapBucket =
    143           BBMap.FindAndConstruct(Pred);
    144         if (BBMapBucket.second) {
    145           Info->Preds[p] = BBMapBucket.second;
    146           continue;
    147         }
    148 
    149         // Create a new BBInfo for the predecessor.
    150         ValT PredVal = AvailableVals->lookup(Pred);
    151         BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
    152         BBMapBucket.second = PredInfo;
    153         Info->Preds[p] = PredInfo;
    154 
    155         if (PredInfo->AvailableVal) {
    156           RootList.push_back(PredInfo);
    157           continue;
    158         }
    159         WorkList.push_back(PredInfo);
    160       }
    161     }
    162 
    163     // Now that we know what blocks are backwards-reachable from the starting
    164     // block, do a forward depth-first traversal to assign postorder numbers
    165     // to those blocks.
    166     BBInfo *PseudoEntry = new (Allocator) BBInfo(nullptr, 0);
    167     unsigned BlkNum = 1;
    168 
    169     // Initialize the worklist with the roots from the backward traversal.
    170     while (!RootList.empty()) {
    171       Info = RootList.pop_back_val();
    172       Info->IDom = PseudoEntry;
    173       Info->BlkNum = -1;
    174       WorkList.push_back(Info);
    175     }
    176 
    177     while (!WorkList.empty()) {
    178       Info = WorkList.back();
    179 
    180       if (Info->BlkNum == -2) {
    181         // All the successors have been handled; assign the postorder number.
    182         Info->BlkNum = BlkNum++;
    183         // If not a root, put it on the BlockList.
    184         if (!Info->AvailableVal)
    185           BlockList->push_back(Info);
    186         WorkList.pop_back();
    187         continue;
    188       }
    189 
    190       // Leave this entry on the worklist, but set its BlkNum to mark that its
    191       // successors have been put on the worklist.  When it returns to the top
    192       // the list, after handling its successors, it will be assigned a
    193       // number.
    194       Info->BlkNum = -2;
    195 
    196       // Add unvisited successors to the work list.
    197       for (typename Traits::BlkSucc_iterator SI =
    198              Traits::BlkSucc_begin(Info->BB),
    199              E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
    200         BBInfo *SuccInfo = BBMap[*SI];
    201         if (!SuccInfo || SuccInfo->BlkNum)
    202           continue;
    203         SuccInfo->BlkNum = -1;
    204         WorkList.push_back(SuccInfo);
    205       }
    206     }
    207     PseudoEntry->BlkNum = BlkNum;
    208     return PseudoEntry;
    209   }
    210 
    211   /// IntersectDominators - This is the dataflow lattice "meet" operation for
    212   /// finding dominators.  Given two basic blocks, it walks up the dominator
    213   /// tree until it finds a common dominator of both.  It uses the postorder
    214   /// number of the blocks to determine how to do that.
    215   BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
    216     while (Blk1 != Blk2) {
    217       while (Blk1->BlkNum < Blk2->BlkNum) {
    218         Blk1 = Blk1->IDom;
    219         if (!Blk1)
    220           return Blk2;
    221       }
    222       while (Blk2->BlkNum < Blk1->BlkNum) {
    223         Blk2 = Blk2->IDom;
    224         if (!Blk2)
    225           return Blk1;
    226       }
    227     }
    228     return Blk1;
    229   }
    230 
    231   /// FindDominators - Calculate the dominator tree for the subset of the CFG
    232   /// corresponding to the basic blocks on the BlockList.  This uses the
    233   /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
    234   /// and Kennedy, published in Software--Practice and Experience, 2001,
    235   /// 4:1-10.  Because the CFG subset does not include any edges leading into
    236   /// blocks that define the value, the results are not the usual dominator
    237   /// tree.  The CFG subset has a single pseudo-entry node with edges to a set
    238   /// of root nodes for blocks that define the value.  The dominators for this
    239   /// subset CFG are not the standard dominators but they are adequate for
    240   /// placing PHIs within the subset CFG.
    241   void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
    242     bool Changed;
    243     do {
    244       Changed = false;
    245       // Iterate over the list in reverse order, i.e., forward on CFG edges.
    246       for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
    247              E = BlockList->rend(); I != E; ++I) {
    248         BBInfo *Info = *I;
    249         BBInfo *NewIDom = nullptr;
    250 
    251         // Iterate through the block's predecessors.
    252         for (unsigned p = 0; p != Info->NumPreds; ++p) {
    253           BBInfo *Pred = Info->Preds[p];
    254 
    255           // Treat an unreachable predecessor as a definition with 'undef'.
    256           if (Pred->BlkNum == 0) {
    257             Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
    258             (*AvailableVals)[Pred->BB] = Pred->AvailableVal;
    259             Pred->DefBB = Pred;
    260             Pred->BlkNum = PseudoEntry->BlkNum;
    261             PseudoEntry->BlkNum++;
    262           }
    263 
    264           if (!NewIDom)
    265             NewIDom = Pred;
    266           else
    267             NewIDom = IntersectDominators(NewIDom, Pred);
    268         }
    269 
    270         // Check if the IDom value has changed.
    271         if (NewIDom && NewIDom != Info->IDom) {
    272           Info->IDom = NewIDom;
    273           Changed = true;
    274         }
    275       }
    276     } while (Changed);
    277   }
    278 
    279   /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
    280   /// any blocks containing definitions of the value.  If one is found, then
    281   /// the successor of Pred is in the dominance frontier for the definition,
    282   /// and this function returns true.
    283   bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
    284     for (; Pred != IDom; Pred = Pred->IDom) {
    285       if (Pred->DefBB == Pred)
    286         return true;
    287     }
    288     return false;
    289   }
    290 
    291   /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
    292   /// of the known definitions.  Iteratively add PHIs in the dom frontiers
    293   /// until nothing changes.  Along the way, keep track of the nearest
    294   /// dominating definitions for non-PHI blocks.
    295   void FindPHIPlacement(BlockListTy *BlockList) {
    296     bool Changed;
    297     do {
    298       Changed = false;
    299       // Iterate over the list in reverse order, i.e., forward on CFG edges.
    300       for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
    301              E = BlockList->rend(); I != E; ++I) {
    302         BBInfo *Info = *I;
    303 
    304         // If this block already needs a PHI, there is nothing to do here.
    305         if (Info->DefBB == Info)
    306           continue;
    307 
    308         // Default to use the same def as the immediate dominator.
    309         BBInfo *NewDefBB = Info->IDom->DefBB;
    310         for (unsigned p = 0; p != Info->NumPreds; ++p) {
    311           if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
    312             // Need a PHI here.
    313             NewDefBB = Info;
    314             break;
    315           }
    316         }
    317 
    318         // Check if anything changed.
    319         if (NewDefBB != Info->DefBB) {
    320           Info->DefBB = NewDefBB;
    321           Changed = true;
    322         }
    323       }
    324     } while (Changed);
    325   }
    326 
    327   /// FindAvailableVal - If this block requires a PHI, first check if an
    328   /// existing PHI matches the PHI placement and reaching definitions computed
    329   /// earlier, and if not, create a new PHI.  Visit all the block's
    330   /// predecessors to calculate the available value for each one and fill in
    331   /// the incoming values for a new PHI.
    332   void FindAvailableVals(BlockListTy *BlockList) {
    333     // Go through the worklist in forward order (i.e., backward through the CFG)
    334     // and check if existing PHIs can be used.  If not, create empty PHIs where
    335     // they are needed.
    336     for (typename BlockListTy::iterator I = BlockList->begin(),
    337            E = BlockList->end(); I != E; ++I) {
    338       BBInfo *Info = *I;
    339       // Check if there needs to be a PHI in BB.
    340       if (Info->DefBB != Info)
    341         continue;
    342 
    343       // Look for an existing PHI.
    344       FindExistingPHI(Info->BB, BlockList);
    345       if (Info->AvailableVal)
    346         continue;
    347 
    348       ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
    349       Info->AvailableVal = PHI;
    350       (*AvailableVals)[Info->BB] = PHI;
    351     }
    352 
    353     // Now go back through the worklist in reverse order to fill in the
    354     // arguments for any new PHIs added in the forward traversal.
    355     for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
    356            E = BlockList->rend(); I != E; ++I) {
    357       BBInfo *Info = *I;
    358 
    359       if (Info->DefBB != Info) {
    360         // Record the available value at join nodes to speed up subsequent
    361         // uses of this SSAUpdater for the same value.
    362         if (Info->NumPreds > 1)
    363           (*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
    364         continue;
    365       }
    366 
    367       // Check if this block contains a newly added PHI.
    368       PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
    369       if (!PHI)
    370         continue;
    371 
    372       // Iterate through the block's predecessors.
    373       for (unsigned p = 0; p != Info->NumPreds; ++p) {
    374         BBInfo *PredInfo = Info->Preds[p];
    375         BlkT *Pred = PredInfo->BB;
    376         // Skip to the nearest preceding definition.
    377         if (PredInfo->DefBB != PredInfo)
    378           PredInfo = PredInfo->DefBB;
    379         Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
    380       }
    381 
    382       DEBUG(dbgs() << "  Inserted PHI: " << *PHI << "\n");
    383 
    384       // If the client wants to know about all new instructions, tell it.
    385       if (InsertedPHIs) InsertedPHIs->push_back(PHI);
    386     }
    387   }
    388 
    389   /// FindExistingPHI - Look through the PHI nodes in a block to see if any of
    390   /// them match what is needed.
    391   void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
    392     for (typename BlkT::iterator BBI = BB->begin(), BBE = BB->end();
    393          BBI != BBE; ++BBI) {
    394       PhiT *SomePHI = Traits::InstrIsPHI(&*BBI);
    395       if (!SomePHI)
    396         break;
    397       if (CheckIfPHIMatches(SomePHI)) {
    398         RecordMatchingPHIs(BlockList);
    399         break;
    400       }
    401       // Match failed: clear all the PHITag values.
    402       for (typename BlockListTy::iterator I = BlockList->begin(),
    403              E = BlockList->end(); I != E; ++I)
    404         (*I)->PHITag = nullptr;
    405     }
    406   }
    407 
    408   /// CheckIfPHIMatches - Check if a PHI node matches the placement and values
    409   /// in the BBMap.
    410   bool CheckIfPHIMatches(PhiT *PHI) {
    411     SmallVector<PhiT *, 20> WorkList;
    412     WorkList.push_back(PHI);
    413 
    414     // Mark that the block containing this PHI has been visited.
    415     BBMap[PHI->getParent()]->PHITag = PHI;
    416 
    417     while (!WorkList.empty()) {
    418       PHI = WorkList.pop_back_val();
    419 
    420       // Iterate through the PHI's incoming values.
    421       for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
    422              E = Traits::PHI_end(PHI); I != E; ++I) {
    423         ValT IncomingVal = I.getIncomingValue();
    424         BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
    425         // Skip to the nearest preceding definition.
    426         if (PredInfo->DefBB != PredInfo)
    427           PredInfo = PredInfo->DefBB;
    428 
    429         // Check if it matches the expected value.
    430         if (PredInfo->AvailableVal) {
    431           if (IncomingVal == PredInfo->AvailableVal)
    432             continue;
    433           return false;
    434         }
    435 
    436         // Check if the value is a PHI in the correct block.
    437         PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
    438         if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
    439           return false;
    440 
    441         // If this block has already been visited, check if this PHI matches.
    442         if (PredInfo->PHITag) {
    443           if (IncomingPHIVal == PredInfo->PHITag)
    444             continue;
    445           return false;
    446         }
    447         PredInfo->PHITag = IncomingPHIVal;
    448 
    449         WorkList.push_back(IncomingPHIVal);
    450       }
    451     }
    452     return true;
    453   }
    454 
    455   /// RecordMatchingPHIs - For each PHI node that matches, record it in both
    456   /// the BBMap and the AvailableVals mapping.
    457   void RecordMatchingPHIs(BlockListTy *BlockList) {
    458     for (typename BlockListTy::iterator I = BlockList->begin(),
    459            E = BlockList->end(); I != E; ++I)
    460       if (PhiT *PHI = (*I)->PHITag) {
    461         BlkT *BB = PHI->getParent();
    462         ValT PHIVal = Traits::GetPHIValue(PHI);
    463         (*AvailableVals)[BB] = PHIVal;
    464         BBMap[BB]->AvailableVal = PHIVal;
    465       }
    466   }
    467 };
    468 
    469 } // end namespace llvm
    470 
    471 #undef DEBUG_TYPE // "ssaupdater"
    472 
    473 #endif // LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
    474