Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the generic implementation of LoopInfo used for both Loops and
     11 // MachineLoops.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
     16 #define LLVM_ANALYSIS_LOOPINFOIMPL_H
     17 
     18 #include "llvm/ADT/DepthFirstIterator.h"
     19 #include "llvm/ADT/PostOrderIterator.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/SetVector.h"
     22 #include "llvm/Analysis/LoopInfo.h"
     23 #include "llvm/IR/Dominators.h"
     24 
     25 namespace llvm {
     26 
     27 //===----------------------------------------------------------------------===//
     28 // APIs for simple analysis of the loop. See header notes.
     29 
     30 /// getExitingBlocks - Return all blocks inside the loop that have successors
     31 /// outside of the loop.  These are the blocks _inside of the current loop_
     32 /// which branch out.  The returned list is always unique.
     33 ///
     34 template <class BlockT, class LoopT>
     35 void LoopBase<BlockT, LoopT>::getExitingBlocks(
     36     SmallVectorImpl<BlockT *> &ExitingBlocks) const {
     37   assert(!isInvalid() && "Loop not in a valid state!");
     38   for (const auto BB : blocks())
     39     for (const auto &Succ : children<BlockT *>(BB))
     40       if (!contains(Succ)) {
     41         // Not in current loop? It must be an exit block.
     42         ExitingBlocks.push_back(BB);
     43         break;
     44       }
     45 }
     46 
     47 /// getExitingBlock - If getExitingBlocks would return exactly one block,
     48 /// return that block. Otherwise return null.
     49 template <class BlockT, class LoopT>
     50 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
     51   assert(!isInvalid() && "Loop not in a valid state!");
     52   SmallVector<BlockT *, 8> ExitingBlocks;
     53   getExitingBlocks(ExitingBlocks);
     54   if (ExitingBlocks.size() == 1)
     55     return ExitingBlocks[0];
     56   return nullptr;
     57 }
     58 
     59 /// getExitBlocks - Return all of the successor blocks of this loop.  These
     60 /// are the blocks _outside of the current loop_ which are branched to.
     61 ///
     62 template <class BlockT, class LoopT>
     63 void LoopBase<BlockT, LoopT>::getExitBlocks(
     64     SmallVectorImpl<BlockT *> &ExitBlocks) const {
     65   assert(!isInvalid() && "Loop not in a valid state!");
     66   for (const auto BB : blocks())
     67     for (const auto &Succ : children<BlockT *>(BB))
     68       if (!contains(Succ))
     69         // Not in current loop? It must be an exit block.
     70         ExitBlocks.push_back(Succ);
     71 }
     72 
     73 /// getExitBlock - If getExitBlocks would return exactly one block,
     74 /// return that block. Otherwise return null.
     75 template <class BlockT, class LoopT>
     76 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
     77   assert(!isInvalid() && "Loop not in a valid state!");
     78   SmallVector<BlockT *, 8> ExitBlocks;
     79   getExitBlocks(ExitBlocks);
     80   if (ExitBlocks.size() == 1)
     81     return ExitBlocks[0];
     82   return nullptr;
     83 }
     84 
     85 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
     86 template <class BlockT, class LoopT>
     87 void LoopBase<BlockT, LoopT>::getExitEdges(
     88     SmallVectorImpl<Edge> &ExitEdges) const {
     89   assert(!isInvalid() && "Loop not in a valid state!");
     90   for (const auto BB : blocks())
     91     for (const auto &Succ : children<BlockT *>(BB))
     92       if (!contains(Succ))
     93         // Not in current loop? It must be an exit block.
     94         ExitEdges.emplace_back(BB, Succ);
     95 }
     96 
     97 /// getLoopPreheader - If there is a preheader for this loop, return it.  A
     98 /// loop has a preheader if there is only one edge to the header of the loop
     99 /// from outside of the loop and it is legal to hoist instructions into the
    100 /// predecessor. If this is the case, the block branching to the header of the
    101 /// loop is the preheader node.
    102 ///
    103 /// This method returns null if there is no preheader for the loop.
    104 ///
    105 template <class BlockT, class LoopT>
    106 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
    107   assert(!isInvalid() && "Loop not in a valid state!");
    108   // Keep track of nodes outside the loop branching to the header...
    109   BlockT *Out = getLoopPredecessor();
    110   if (!Out)
    111     return nullptr;
    112 
    113   // Make sure we are allowed to hoist instructions into the predecessor.
    114   if (!Out->isLegalToHoistInto())
    115     return nullptr;
    116 
    117   // Make sure there is only one exit out of the preheader.
    118   typedef GraphTraits<BlockT *> BlockTraits;
    119   typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
    120   ++SI;
    121   if (SI != BlockTraits::child_end(Out))
    122     return nullptr; // Multiple exits from the block, must not be a preheader.
    123 
    124   // The predecessor has exactly one successor, so it is a preheader.
    125   return Out;
    126 }
    127 
    128 /// getLoopPredecessor - If the given loop's header has exactly one unique
    129 /// predecessor outside the loop, return it. Otherwise return null.
    130 /// This is less strict that the loop "preheader" concept, which requires
    131 /// the predecessor to have exactly one successor.
    132 ///
    133 template <class BlockT, class LoopT>
    134 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
    135   assert(!isInvalid() && "Loop not in a valid state!");
    136   // Keep track of nodes outside the loop branching to the header...
    137   BlockT *Out = nullptr;
    138 
    139   // Loop over the predecessors of the header node...
    140   BlockT *Header = getHeader();
    141   for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
    142     if (!contains(Pred)) { // If the block is not in the loop...
    143       if (Out && Out != Pred)
    144         return nullptr; // Multiple predecessors outside the loop
    145       Out = Pred;
    146     }
    147   }
    148 
    149   // Make sure there is only one exit out of the preheader.
    150   assert(Out && "Header of loop has no predecessors from outside loop?");
    151   return Out;
    152 }
    153 
    154 /// getLoopLatch - If there is a single latch block for this loop, return it.
    155 /// A latch block is a block that contains a branch back to the header.
    156 template <class BlockT, class LoopT>
    157 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
    158   assert(!isInvalid() && "Loop not in a valid state!");
    159   BlockT *Header = getHeader();
    160   BlockT *Latch = nullptr;
    161   for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
    162     if (contains(Pred)) {
    163       if (Latch)
    164         return nullptr;
    165       Latch = Pred;
    166     }
    167   }
    168 
    169   return Latch;
    170 }
    171 
    172 //===----------------------------------------------------------------------===//
    173 // APIs for updating loop information after changing the CFG
    174 //
    175 
    176 /// addBasicBlockToLoop - This method is used by other analyses to update loop
    177 /// information.  NewBB is set to be a new member of the current loop.
    178 /// Because of this, it is added as a member of all parent loops, and is added
    179 /// to the specified LoopInfo object as being in the current basic block.  It
    180 /// is not valid to replace the loop header with this method.
    181 ///
    182 template <class BlockT, class LoopT>
    183 void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
    184     BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
    185   assert(!isInvalid() && "Loop not in a valid state!");
    186 #ifndef NDEBUG
    187   if (!Blocks.empty()) {
    188     auto SameHeader = LIB[getHeader()];
    189     assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
    190            "Incorrect LI specified for this loop!");
    191   }
    192 #endif
    193   assert(NewBB && "Cannot add a null basic block to the loop!");
    194   assert(!LIB[NewBB] && "BasicBlock already in the loop!");
    195 
    196   LoopT *L = static_cast<LoopT *>(this);
    197 
    198   // Add the loop mapping to the LoopInfo object...
    199   LIB.BBMap[NewBB] = L;
    200 
    201   // Add the basic block to this loop and all parent loops...
    202   while (L) {
    203     L->addBlockEntry(NewBB);
    204     L = L->getParentLoop();
    205   }
    206 }
    207 
    208 /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
    209 /// the OldChild entry in our children list with NewChild, and updates the
    210 /// parent pointer of OldChild to be null and the NewChild to be this loop.
    211 /// This updates the loop depth of the new child.
    212 template <class BlockT, class LoopT>
    213 void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
    214                                                    LoopT *NewChild) {
    215   assert(!isInvalid() && "Loop not in a valid state!");
    216   assert(OldChild->ParentLoop == this && "This loop is already broken!");
    217   assert(!NewChild->ParentLoop && "NewChild already has a parent!");
    218   typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
    219   assert(I != SubLoops.end() && "OldChild not in loop!");
    220   *I = NewChild;
    221   OldChild->ParentLoop = nullptr;
    222   NewChild->ParentLoop = static_cast<LoopT *>(this);
    223 }
    224 
    225 /// verifyLoop - Verify loop structure
    226 template <class BlockT, class LoopT>
    227 void LoopBase<BlockT, LoopT>::verifyLoop() const {
    228   assert(!isInvalid() && "Loop not in a valid state!");
    229 #ifndef NDEBUG
    230   assert(!Blocks.empty() && "Loop header is missing");
    231 
    232   // Setup for using a depth-first iterator to visit every block in the loop.
    233   SmallVector<BlockT *, 8> ExitBBs;
    234   getExitBlocks(ExitBBs);
    235   df_iterator_default_set<BlockT *> VisitSet;
    236   VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
    237   df_ext_iterator<BlockT *, df_iterator_default_set<BlockT *>>
    238       BI = df_ext_begin(getHeader(), VisitSet),
    239       BE = df_ext_end(getHeader(), VisitSet);
    240 
    241   // Keep track of the BBs visited.
    242   SmallPtrSet<BlockT *, 8> VisitedBBs;
    243 
    244   // Check the individual blocks.
    245   for (; BI != BE; ++BI) {
    246     BlockT *BB = *BI;
    247 
    248     assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
    249                        GraphTraits<BlockT *>::child_end(BB),
    250                        [&](BlockT *B) { return contains(B); }) &&
    251            "Loop block has no in-loop successors!");
    252 
    253     assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
    254                        GraphTraits<Inverse<BlockT *>>::child_end(BB),
    255                        [&](BlockT *B) { return contains(B); }) &&
    256            "Loop block has no in-loop predecessors!");
    257 
    258     SmallVector<BlockT *, 2> OutsideLoopPreds;
    259     std::for_each(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
    260                   GraphTraits<Inverse<BlockT *>>::child_end(BB),
    261                   [&](BlockT *B) {
    262                     if (!contains(B))
    263                       OutsideLoopPreds.push_back(B);
    264                   });
    265 
    266     if (BB == getHeader()) {
    267       assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
    268     } else if (!OutsideLoopPreds.empty()) {
    269       // A non-header loop shouldn't be reachable from outside the loop,
    270       // though it is permitted if the predecessor is not itself actually
    271       // reachable.
    272       BlockT *EntryBB = &BB->getParent()->front();
    273       for (BlockT *CB : depth_first(EntryBB))
    274         for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
    275           assert(CB != OutsideLoopPreds[i] &&
    276                  "Loop has multiple entry points!");
    277     }
    278     assert(BB != &getHeader()->getParent()->front() &&
    279            "Loop contains function entry block!");
    280 
    281     VisitedBBs.insert(BB);
    282   }
    283 
    284   if (VisitedBBs.size() != getNumBlocks()) {
    285     dbgs() << "The following blocks are unreachable in the loop: ";
    286     for (auto BB : Blocks) {
    287       if (!VisitedBBs.count(BB)) {
    288         dbgs() << *BB << "\n";
    289       }
    290     }
    291     assert(false && "Unreachable block in loop");
    292   }
    293 
    294   // Check the subloops.
    295   for (iterator I = begin(), E = end(); I != E; ++I)
    296     // Each block in each subloop should be contained within this loop.
    297     for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
    298          BI != BE; ++BI) {
    299       assert(contains(*BI) &&
    300              "Loop does not contain all the blocks of a subloop!");
    301     }
    302 
    303   // Check the parent loop pointer.
    304   if (ParentLoop) {
    305     assert(is_contained(*ParentLoop, this) &&
    306            "Loop is not a subloop of its parent!");
    307   }
    308 #endif
    309 }
    310 
    311 /// verifyLoop - Verify loop structure of this loop and all nested loops.
    312 template <class BlockT, class LoopT>
    313 void LoopBase<BlockT, LoopT>::verifyLoopNest(
    314     DenseSet<const LoopT *> *Loops) const {
    315   assert(!isInvalid() && "Loop not in a valid state!");
    316   Loops->insert(static_cast<const LoopT *>(this));
    317   // Verify this loop.
    318   verifyLoop();
    319   // Verify the subloops.
    320   for (iterator I = begin(), E = end(); I != E; ++I)
    321     (*I)->verifyLoopNest(Loops);
    322 }
    323 
    324 template <class BlockT, class LoopT>
    325 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth,
    326                                     bool Verbose) const {
    327   OS.indent(Depth * 2) << "Loop at depth " << getLoopDepth() << " containing: ";
    328 
    329   BlockT *H = getHeader();
    330   for (unsigned i = 0; i < getBlocks().size(); ++i) {
    331     BlockT *BB = getBlocks()[i];
    332     if (!Verbose) {
    333       if (i)
    334         OS << ",";
    335       BB->printAsOperand(OS, false);
    336     } else
    337       OS << "\n";
    338 
    339     if (BB == H)
    340       OS << "<header>";
    341     if (isLoopLatch(BB))
    342       OS << "<latch>";
    343     if (isLoopExiting(BB))
    344       OS << "<exiting>";
    345     if (Verbose)
    346       BB->print(OS);
    347   }
    348   OS << "\n";
    349 
    350   for (iterator I = begin(), E = end(); I != E; ++I)
    351     (*I)->print(OS, Depth + 2);
    352 }
    353 
    354 //===----------------------------------------------------------------------===//
    355 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
    356 /// result does / not depend on use list (block predecessor) order.
    357 ///
    358 
    359 /// Discover a subloop with the specified backedges such that: All blocks within
    360 /// this loop are mapped to this loop or a subloop. And all subloops within this
    361 /// loop have their parent loop set to this loop or a subloop.
    362 template <class BlockT, class LoopT>
    363 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
    364                                   LoopInfoBase<BlockT, LoopT> *LI,
    365                                   const DomTreeBase<BlockT> &DomTree) {
    366   typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
    367 
    368   unsigned NumBlocks = 0;
    369   unsigned NumSubloops = 0;
    370 
    371   // Perform a backward CFG traversal using a worklist.
    372   std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
    373   while (!ReverseCFGWorklist.empty()) {
    374     BlockT *PredBB = ReverseCFGWorklist.back();
    375     ReverseCFGWorklist.pop_back();
    376 
    377     LoopT *Subloop = LI->getLoopFor(PredBB);
    378     if (!Subloop) {
    379       if (!DomTree.isReachableFromEntry(PredBB))
    380         continue;
    381 
    382       // This is an undiscovered block. Map it to the current loop.
    383       LI->changeLoopFor(PredBB, L);
    384       ++NumBlocks;
    385       if (PredBB == L->getHeader())
    386         continue;
    387       // Push all block predecessors on the worklist.
    388       ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
    389                                 InvBlockTraits::child_begin(PredBB),
    390                                 InvBlockTraits::child_end(PredBB));
    391     } else {
    392       // This is a discovered block. Find its outermost discovered loop.
    393       while (LoopT *Parent = Subloop->getParentLoop())
    394         Subloop = Parent;
    395 
    396       // If it is already discovered to be a subloop of this loop, continue.
    397       if (Subloop == L)
    398         continue;
    399 
    400       // Discover a subloop of this loop.
    401       Subloop->setParentLoop(L);
    402       ++NumSubloops;
    403       NumBlocks += Subloop->getBlocks().capacity();
    404       PredBB = Subloop->getHeader();
    405       // Continue traversal along predecessors that are not loop-back edges from
    406       // within this subloop tree itself. Note that a predecessor may directly
    407       // reach another subloop that is not yet discovered to be a subloop of
    408       // this loop, which we must traverse.
    409       for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
    410         if (LI->getLoopFor(Pred) != Subloop)
    411           ReverseCFGWorklist.push_back(Pred);
    412       }
    413     }
    414   }
    415   L->getSubLoopsVector().reserve(NumSubloops);
    416   L->reserveBlocks(NumBlocks);
    417 }
    418 
    419 /// Populate all loop data in a stable order during a single forward DFS.
    420 template <class BlockT, class LoopT> class PopulateLoopsDFS {
    421   typedef GraphTraits<BlockT *> BlockTraits;
    422   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
    423 
    424   LoopInfoBase<BlockT, LoopT> *LI;
    425 
    426 public:
    427   PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
    428 
    429   void traverse(BlockT *EntryBlock);
    430 
    431 protected:
    432   void insertIntoLoop(BlockT *Block);
    433 };
    434 
    435 /// Top-level driver for the forward DFS within the loop.
    436 template <class BlockT, class LoopT>
    437 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
    438   for (BlockT *BB : post_order(EntryBlock))
    439     insertIntoLoop(BB);
    440 }
    441 
    442 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
    443 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
    444 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
    445 template <class BlockT, class LoopT>
    446 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
    447   LoopT *Subloop = LI->getLoopFor(Block);
    448   if (Subloop && Block == Subloop->getHeader()) {
    449     // We reach this point once per subloop after processing all the blocks in
    450     // the subloop.
    451     if (Subloop->getParentLoop())
    452       Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
    453     else
    454       LI->addTopLevelLoop(Subloop);
    455 
    456     // For convenience, Blocks and Subloops are inserted in postorder. Reverse
    457     // the lists, except for the loop header, which is always at the beginning.
    458     Subloop->reverseBlock(1);
    459     std::reverse(Subloop->getSubLoopsVector().begin(),
    460                  Subloop->getSubLoopsVector().end());
    461 
    462     Subloop = Subloop->getParentLoop();
    463   }
    464   for (; Subloop; Subloop = Subloop->getParentLoop())
    465     Subloop->addBlockEntry(Block);
    466 }
    467 
    468 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
    469 /// interleaved with backward CFG traversals within each subloop
    470 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
    471 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
    472 /// Block vectors are then populated during a single forward CFG traversal
    473 /// (PopulateLoopDFS).
    474 ///
    475 /// During the two CFG traversals each block is seen three times:
    476 /// 1) Discovered and mapped by a reverse CFG traversal.
    477 /// 2) Visited during a forward DFS CFG traversal.
    478 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
    479 ///
    480 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
    481 /// insertions per block.
    482 template <class BlockT, class LoopT>
    483 void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
    484   // Postorder traversal of the dominator tree.
    485   const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
    486   for (auto DomNode : post_order(DomRoot)) {
    487 
    488     BlockT *Header = DomNode->getBlock();
    489     SmallVector<BlockT *, 4> Backedges;
    490 
    491     // Check each predecessor of the potential loop header.
    492     for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
    493       // If Header dominates predBB, this is a new loop. Collect the backedges.
    494       if (DomTree.dominates(Header, Backedge) &&
    495           DomTree.isReachableFromEntry(Backedge)) {
    496         Backedges.push_back(Backedge);
    497       }
    498     }
    499     // Perform a backward CFG traversal to discover and map blocks in this loop.
    500     if (!Backedges.empty()) {
    501       LoopT *L = AllocateLoop(Header);
    502       discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
    503     }
    504   }
    505   // Perform a single forward CFG traversal to populate block and subloop
    506   // vectors for all loops.
    507   PopulateLoopsDFS<BlockT, LoopT> DFS(this);
    508   DFS.traverse(DomRoot->getBlock());
    509 }
    510 
    511 template <class BlockT, class LoopT>
    512 SmallVector<LoopT *, 4> LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() {
    513   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
    514   // The outer-most loop actually goes into the result in the same relative
    515   // order as we walk it. But LoopInfo stores the top level loops in reverse
    516   // program order so for here we reverse it to get forward program order.
    517   // FIXME: If we change the order of LoopInfo we will want to remove the
    518   // reverse here.
    519   for (LoopT *RootL : reverse(*this)) {
    520     assert(PreOrderWorklist.empty() &&
    521            "Must start with an empty preorder walk worklist.");
    522     PreOrderWorklist.push_back(RootL);
    523     do {
    524       LoopT *L = PreOrderWorklist.pop_back_val();
    525       // Sub-loops are stored in forward program order, but will process the
    526       // worklist backwards so append them in reverse order.
    527       PreOrderWorklist.append(L->rbegin(), L->rend());
    528       PreOrderLoops.push_back(L);
    529     } while (!PreOrderWorklist.empty());
    530   }
    531 
    532   return PreOrderLoops;
    533 }
    534 
    535 template <class BlockT, class LoopT>
    536 SmallVector<LoopT *, 4>
    537 LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() {
    538   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
    539   // The outer-most loop actually goes into the result in the same relative
    540   // order as we walk it. LoopInfo stores the top level loops in reverse
    541   // program order so we walk in order here.
    542   // FIXME: If we change the order of LoopInfo we will want to add a reverse
    543   // here.
    544   for (LoopT *RootL : *this) {
    545     assert(PreOrderWorklist.empty() &&
    546            "Must start with an empty preorder walk worklist.");
    547     PreOrderWorklist.push_back(RootL);
    548     do {
    549       LoopT *L = PreOrderWorklist.pop_back_val();
    550       // Sub-loops are stored in forward program order, but will process the
    551       // worklist backwards so we can just append them in order.
    552       PreOrderWorklist.append(L->begin(), L->end());
    553       PreOrderLoops.push_back(L);
    554     } while (!PreOrderWorklist.empty());
    555   }
    556 
    557   return PreOrderLoops;
    558 }
    559 
    560 // Debugging
    561 template <class BlockT, class LoopT>
    562 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
    563   for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
    564     TopLevelLoops[i]->print(OS);
    565 #if 0
    566   for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
    567          E = BBMap.end(); I != E; ++I)
    568     OS << "BB '" << I->first->getName() << "' level = "
    569        << I->second->getLoopDepth() << "\n";
    570 #endif
    571 }
    572 
    573 template <typename T>
    574 bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
    575   std::sort(BB1.begin(), BB1.end());
    576   std::sort(BB2.begin(), BB2.end());
    577   return BB1 == BB2;
    578 }
    579 
    580 template <class BlockT, class LoopT>
    581 void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
    582                                const LoopInfoBase<BlockT, LoopT> &LI,
    583                                const LoopT &L) {
    584   LoopHeaders[L.getHeader()] = &L;
    585   for (LoopT *SL : L)
    586     addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
    587 }
    588 
    589 #ifndef NDEBUG
    590 template <class BlockT, class LoopT>
    591 static void compareLoops(const LoopT *L, const LoopT *OtherL,
    592                          DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
    593   BlockT *H = L->getHeader();
    594   BlockT *OtherH = OtherL->getHeader();
    595   assert(H == OtherH &&
    596          "Mismatched headers even though found in the same map entry!");
    597 
    598   assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
    599          "Mismatched loop depth!");
    600   const LoopT *ParentL = L, *OtherParentL = OtherL;
    601   do {
    602     assert(ParentL->getHeader() == OtherParentL->getHeader() &&
    603            "Mismatched parent loop headers!");
    604     ParentL = ParentL->getParentLoop();
    605     OtherParentL = OtherParentL->getParentLoop();
    606   } while (ParentL);
    607 
    608   for (const LoopT *SubL : *L) {
    609     BlockT *SubH = SubL->getHeader();
    610     const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
    611     assert(OtherSubL && "Inner loop is missing in computed loop info!");
    612     OtherLoopHeaders.erase(SubH);
    613     compareLoops(SubL, OtherSubL, OtherLoopHeaders);
    614   }
    615 
    616   std::vector<BlockT *> BBs = L->getBlocks();
    617   std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
    618   assert(compareVectors(BBs, OtherBBs) &&
    619          "Mismatched basic blocks in the loops!");
    620 }
    621 #endif
    622 
    623 template <class BlockT, class LoopT>
    624 void LoopInfoBase<BlockT, LoopT>::verify(
    625     const DomTreeBase<BlockT> &DomTree) const {
    626   DenseSet<const LoopT *> Loops;
    627   for (iterator I = begin(), E = end(); I != E; ++I) {
    628     assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
    629     (*I)->verifyLoopNest(&Loops);
    630   }
    631 
    632 // Verify that blocks are mapped to valid loops.
    633 #ifndef NDEBUG
    634   for (auto &Entry : BBMap) {
    635     const BlockT *BB = Entry.first;
    636     LoopT *L = Entry.second;
    637     assert(Loops.count(L) && "orphaned loop");
    638     assert(L->contains(BB) && "orphaned block");
    639   }
    640 
    641   // Recompute LoopInfo to verify loops structure.
    642   LoopInfoBase<BlockT, LoopT> OtherLI;
    643   OtherLI.analyze(DomTree);
    644 
    645   // Build a map we can use to move from our LI to the computed one. This
    646   // allows us to ignore the particular order in any layer of the loop forest
    647   // while still comparing the structure.
    648   DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
    649   for (LoopT *L : OtherLI)
    650     addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
    651 
    652   // Walk the top level loops and ensure there is a corresponding top-level
    653   // loop in the computed version and then recursively compare those loop
    654   // nests.
    655   for (LoopT *L : *this) {
    656     BlockT *Header = L->getHeader();
    657     const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
    658     assert(OtherL && "Top level loop is missing in computed loop info!");
    659     // Now that we've matched this loop, erase its header from the map.
    660     OtherLoopHeaders.erase(Header);
    661     // And recursively compare these loops.
    662     compareLoops(L, OtherL, OtherLoopHeaders);
    663   }
    664 
    665   // Any remaining entries in the map are loops which were found when computing
    666   // a fresh LoopInfo but not present in the current one.
    667   if (!OtherLoopHeaders.empty()) {
    668     for (const auto &HeaderAndLoop : OtherLoopHeaders)
    669       dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
    670     llvm_unreachable("Found new loops when recomputing LoopInfo!");
    671   }
    672 #endif
    673 }
    674 
    675 } // End llvm namespace
    676 
    677 #endif
    678