Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a coalescing interval map for small objects.
     11 //
     12 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the
     13 // same value are represented in a compressed form.
     14 //
     15 // Iterators provide ordered access to the compressed intervals rather than the
     16 // individual keys, and insert and erase operations use key intervals as well.
     17 //
     18 // Like SmallVector, IntervalMap will store the first N intervals in the map
     19 // object itself without any allocations. When space is exhausted it switches to
     20 // a B+-tree representation with very small overhead for small key and value
     21 // objects.
     22 //
     23 // A Traits class specifies how keys are compared. It also allows IntervalMap to
     24 // work with both closed and half-open intervals.
     25 //
     26 // Keys and values are not stored next to each other in a std::pair, so we don't
     27 // provide such a value_type. Dereferencing iterators only returns the mapped
     28 // value. The interval bounds are accessible through the start() and stop()
     29 // iterator methods.
     30 //
     31 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
     32 // is the optimal size. For large objects use std::map instead.
     33 //
     34 //===----------------------------------------------------------------------===//
     35 //
     36 // Synopsis:
     37 //
     38 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
     39 // class IntervalMap {
     40 // public:
     41 //   typedef KeyT key_type;
     42 //   typedef ValT mapped_type;
     43 //   typedef RecyclingAllocator<...> Allocator;
     44 //   class iterator;
     45 //   class const_iterator;
     46 //
     47 //   explicit IntervalMap(Allocator&);
     48 //   ~IntervalMap():
     49 //
     50 //   bool empty() const;
     51 //   KeyT start() const;
     52 //   KeyT stop() const;
     53 //   ValT lookup(KeyT x, Value NotFound = Value()) const;
     54 //
     55 //   const_iterator begin() const;
     56 //   const_iterator end() const;
     57 //   iterator begin();
     58 //   iterator end();
     59 //   const_iterator find(KeyT x) const;
     60 //   iterator find(KeyT x);
     61 //
     62 //   void insert(KeyT a, KeyT b, ValT y);
     63 //   void clear();
     64 // };
     65 //
     66 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
     67 // class IntervalMap::const_iterator :
     68 //   public std::iterator<std::bidirectional_iterator_tag, ValT> {
     69 // public:
     70 //   bool operator==(const const_iterator &) const;
     71 //   bool operator!=(const const_iterator &) const;
     72 //   bool valid() const;
     73 //
     74 //   const KeyT &start() const;
     75 //   const KeyT &stop() const;
     76 //   const ValT &value() const;
     77 //   const ValT &operator*() const;
     78 //   const ValT *operator->() const;
     79 //
     80 //   const_iterator &operator++();
     81 //   const_iterator &operator++(int);
     82 //   const_iterator &operator--();
     83 //   const_iterator &operator--(int);
     84 //   void goToBegin();
     85 //   void goToEnd();
     86 //   void find(KeyT x);
     87 //   void advanceTo(KeyT x);
     88 // };
     89 //
     90 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
     91 // class IntervalMap::iterator : public const_iterator {
     92 // public:
     93 //   void insert(KeyT a, KeyT b, Value y);
     94 //   void erase();
     95 // };
     96 //
     97 //===----------------------------------------------------------------------===//
     98 
     99 #ifndef LLVM_ADT_INTERVALMAP_H
    100 #define LLVM_ADT_INTERVALMAP_H
    101 
    102 #include "llvm/ADT/PointerIntPair.h"
    103 #include "llvm/ADT/SmallVector.h"
    104 #include "llvm/Support/AlignOf.h"
    105 #include "llvm/Support/Allocator.h"
    106 #include "llvm/Support/RecyclingAllocator.h"
    107 #include <algorithm>
    108 #include <cassert>
    109 #include <iterator>
    110 #include <new>
    111 #include <utility>
    112 
    113 namespace llvm {
    114 
    115 //===----------------------------------------------------------------------===//
    116 //---                              Key traits                              ---//
    117 //===----------------------------------------------------------------------===//
    118 //
    119 // The IntervalMap works with closed or half-open intervals.
    120 // Adjacent intervals that map to the same value are coalesced.
    121 //
    122 // The IntervalMapInfo traits class is used to determine if a key is contained
    123 // in an interval, and if two intervals are adjacent so they can be coalesced.
    124 // The provided implementation works for closed integer intervals, other keys
    125 // probably need a specialized version.
    126 //
    127 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
    128 //
    129 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is
    130 // allowed. This is so that stopLess(a, b) can be used to determine if two
    131 // intervals overlap.
    132 //
    133 //===----------------------------------------------------------------------===//
    134 
    135 template <typename T>
    136 struct IntervalMapInfo {
    137   /// startLess - Return true if x is not in [a;b].
    138   /// This is x < a both for closed intervals and for [a;b) half-open intervals.
    139   static inline bool startLess(const T &x, const T &a) {
    140     return x < a;
    141   }
    142 
    143   /// stopLess - Return true if x is not in [a;b].
    144   /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
    145   static inline bool stopLess(const T &b, const T &x) {
    146     return b < x;
    147   }
    148 
    149   /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
    150   /// This is a+1 == b for closed intervals, a == b for half-open intervals.
    151   static inline bool adjacent(const T &a, const T &b) {
    152     return a+1 == b;
    153   }
    154 
    155   /// nonEmpty - Return true if [a;b] is non-empty.
    156   /// This is a <= b for a closed interval, a < b for [a;b) half-open intervals.
    157   static inline bool nonEmpty(const T &a, const T &b) {
    158     return a <= b;
    159   }
    160 };
    161 
    162 template <typename T>
    163 struct IntervalMapHalfOpenInfo {
    164   /// startLess - Return true if x is not in [a;b).
    165   static inline bool startLess(const T &x, const T &a) {
    166     return x < a;
    167   }
    168 
    169   /// stopLess - Return true if x is not in [a;b).
    170   static inline bool stopLess(const T &b, const T &x) {
    171     return b <= x;
    172   }
    173 
    174   /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
    175   static inline bool adjacent(const T &a, const T &b) {
    176     return a == b;
    177   }
    178 
    179   /// nonEmpty - Return true if [a;b) is non-empty.
    180   static inline bool nonEmpty(const T &a, const T &b) {
    181     return a < b;
    182   }
    183 };
    184 
    185 /// IntervalMapImpl - Namespace used for IntervalMap implementation details.
    186 /// It should be considered private to the implementation.
    187 namespace IntervalMapImpl {
    188 
    189 typedef std::pair<unsigned,unsigned> IdxPair;
    190 
    191 //===----------------------------------------------------------------------===//
    192 //---                    IntervalMapImpl::NodeBase                         ---//
    193 //===----------------------------------------------------------------------===//
    194 //
    195 // Both leaf and branch nodes store vectors of pairs.
    196 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
    197 //
    198 // Keys and values are stored in separate arrays to avoid padding caused by
    199 // different object alignments. This also helps improve locality of reference
    200 // when searching the keys.
    201 //
    202 // The nodes don't know how many elements they contain - that information is
    203 // stored elsewhere. Omitting the size field prevents padding and allows a node
    204 // to fill the allocated cache lines completely.
    205 //
    206 // These are typical key and value sizes, the node branching factor (N), and
    207 // wasted space when nodes are sized to fit in three cache lines (192 bytes):
    208 //
    209 //   T1  T2   N Waste  Used by
    210 //    4   4  24   0    Branch<4> (32-bit pointers)
    211 //    8   4  16   0    Leaf<4,4>, Branch<4>
    212 //    8   8  12   0    Leaf<4,8>, Branch<8>
    213 //   16   4   9  12    Leaf<8,4>
    214 //   16   8   8   0    Leaf<8,8>
    215 //
    216 //===----------------------------------------------------------------------===//
    217 
    218 template <typename T1, typename T2, unsigned N>
    219 class NodeBase {
    220 public:
    221   enum { Capacity = N };
    222 
    223   T1 first[N];
    224   T2 second[N];
    225 
    226   /// copy - Copy elements from another node.
    227   /// @param Other Node elements are copied from.
    228   /// @param i     Beginning of the source range in other.
    229   /// @param j     Beginning of the destination range in this.
    230   /// @param Count Number of elements to copy.
    231   template <unsigned M>
    232   void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
    233             unsigned j, unsigned Count) {
    234     assert(i + Count <= M && "Invalid source range");
    235     assert(j + Count <= N && "Invalid dest range");
    236     for (unsigned e = i + Count; i != e; ++i, ++j) {
    237       first[j]  = Other.first[i];
    238       second[j] = Other.second[i];
    239     }
    240   }
    241 
    242   /// moveLeft - Move elements to the left.
    243   /// @param i     Beginning of the source range.
    244   /// @param j     Beginning of the destination range.
    245   /// @param Count Number of elements to copy.
    246   void moveLeft(unsigned i, unsigned j, unsigned Count) {
    247     assert(j <= i && "Use moveRight shift elements right");
    248     copy(*this, i, j, Count);
    249   }
    250 
    251   /// moveRight - Move elements to the right.
    252   /// @param i     Beginning of the source range.
    253   /// @param j     Beginning of the destination range.
    254   /// @param Count Number of elements to copy.
    255   void moveRight(unsigned i, unsigned j, unsigned Count) {
    256     assert(i <= j && "Use moveLeft shift elements left");
    257     assert(j + Count <= N && "Invalid range");
    258     while (Count--) {
    259       first[j + Count]  = first[i + Count];
    260       second[j + Count] = second[i + Count];
    261     }
    262   }
    263 
    264   /// erase - Erase elements [i;j).
    265   /// @param i    Beginning of the range to erase.
    266   /// @param j    End of the range. (Exclusive).
    267   /// @param Size Number of elements in node.
    268   void erase(unsigned i, unsigned j, unsigned Size) {
    269     moveLeft(j, i, Size - j);
    270   }
    271 
    272   /// erase - Erase element at i.
    273   /// @param i    Index of element to erase.
    274   /// @param Size Number of elements in node.
    275   void erase(unsigned i, unsigned Size) {
    276     erase(i, i+1, Size);
    277   }
    278 
    279   /// shift - Shift elements [i;size) 1 position to the right.
    280   /// @param i    Beginning of the range to move.
    281   /// @param Size Number of elements in node.
    282   void shift(unsigned i, unsigned Size) {
    283     moveRight(i, i + 1, Size - i);
    284   }
    285 
    286   /// transferToLeftSib - Transfer elements to a left sibling node.
    287   /// @param Size  Number of elements in this.
    288   /// @param Sib   Left sibling node.
    289   /// @param SSize Number of elements in sib.
    290   /// @param Count Number of elements to transfer.
    291   void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
    292                          unsigned Count) {
    293     Sib.copy(*this, 0, SSize, Count);
    294     erase(0, Count, Size);
    295   }
    296 
    297   /// transferToRightSib - Transfer elements to a right sibling node.
    298   /// @param Size  Number of elements in this.
    299   /// @param Sib   Right sibling node.
    300   /// @param SSize Number of elements in sib.
    301   /// @param Count Number of elements to transfer.
    302   void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
    303                           unsigned Count) {
    304     Sib.moveRight(0, Count, SSize);
    305     Sib.copy(*this, Size-Count, 0, Count);
    306   }
    307 
    308   /// adjustFromLeftSib - Adjust the number if elements in this node by moving
    309   /// elements to or from a left sibling node.
    310   /// @param Size  Number of elements in this.
    311   /// @param Sib   Right sibling node.
    312   /// @param SSize Number of elements in sib.
    313   /// @param Add   The number of elements to add to this node, possibly < 0.
    314   /// @return      Number of elements added to this node, possibly negative.
    315   int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
    316     if (Add > 0) {
    317       // We want to grow, copy from sib.
    318       unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
    319       Sib.transferToRightSib(SSize, *this, Size, Count);
    320       return Count;
    321     } else {
    322       // We want to shrink, copy to sib.
    323       unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
    324       transferToLeftSib(Size, Sib, SSize, Count);
    325       return -Count;
    326     }
    327   }
    328 };
    329 
    330 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
    331 /// @param Node  Array of pointers to sibling nodes.
    332 /// @param Nodes Number of nodes.
    333 /// @param CurSize Array of current node sizes, will be overwritten.
    334 /// @param NewSize Array of desired node sizes.
    335 template <typename NodeT>
    336 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
    337                         unsigned CurSize[], const unsigned NewSize[]) {
    338   // Move elements right.
    339   for (int n = Nodes - 1; n; --n) {
    340     if (CurSize[n] == NewSize[n])
    341       continue;
    342     for (int m = n - 1; m != -1; --m) {
    343       int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
    344                                          NewSize[n] - CurSize[n]);
    345       CurSize[m] -= d;
    346       CurSize[n] += d;
    347       // Keep going if the current node was exhausted.
    348       if (CurSize[n] >= NewSize[n])
    349           break;
    350     }
    351   }
    352 
    353   if (Nodes == 0)
    354     return;
    355 
    356   // Move elements left.
    357   for (unsigned n = 0; n != Nodes - 1; ++n) {
    358     if (CurSize[n] == NewSize[n])
    359       continue;
    360     for (unsigned m = n + 1; m != Nodes; ++m) {
    361       int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
    362                                         CurSize[n] -  NewSize[n]);
    363       CurSize[m] += d;
    364       CurSize[n] -= d;
    365       // Keep going if the current node was exhausted.
    366       if (CurSize[n] >= NewSize[n])
    367           break;
    368     }
    369   }
    370 
    371 #ifndef NDEBUG
    372   for (unsigned n = 0; n != Nodes; n++)
    373     assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
    374 #endif
    375 }
    376 
    377 /// IntervalMapImpl::distribute - Compute a new distribution of node elements
    378 /// after an overflow or underflow. Reserve space for a new element at Position,
    379 /// and compute the node that will hold Position after redistributing node
    380 /// elements.
    381 ///
    382 /// It is required that
    383 ///
    384 ///   Elements == sum(CurSize), and
    385 ///   Elements + Grow <= Nodes * Capacity.
    386 ///
    387 /// NewSize[] will be filled in such that:
    388 ///
    389 ///   sum(NewSize) == Elements, and
    390 ///   NewSize[i] <= Capacity.
    391 ///
    392 /// The returned index is the node where Position will go, so:
    393 ///
    394 ///   sum(NewSize[0..idx-1]) <= Position
    395 ///   sum(NewSize[0..idx])   >= Position
    396 ///
    397 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
    398 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
    399 /// before the one holding the Position'th element where there is room for an
    400 /// insertion.
    401 ///
    402 /// @param Nodes    The number of nodes.
    403 /// @param Elements Total elements in all nodes.
    404 /// @param Capacity The capacity of each node.
    405 /// @param CurSize  Array[Nodes] of current node sizes, or NULL.
    406 /// @param NewSize  Array[Nodes] to receive the new node sizes.
    407 /// @param Position Insert position.
    408 /// @param Grow     Reserve space for a new element at Position.
    409 /// @return         (node, offset) for Position.
    410 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
    411                    const unsigned *CurSize, unsigned NewSize[],
    412                    unsigned Position, bool Grow);
    413 
    414 //===----------------------------------------------------------------------===//
    415 //---                   IntervalMapImpl::NodeSizer                         ---//
    416 //===----------------------------------------------------------------------===//
    417 //
    418 // Compute node sizes from key and value types.
    419 //
    420 // The branching factors are chosen to make nodes fit in three cache lines.
    421 // This may not be possible if keys or values are very large. Such large objects
    422 // are handled correctly, but a std::map would probably give better performance.
    423 //
    424 //===----------------------------------------------------------------------===//
    425 
    426 enum {
    427   // Cache line size. Most architectures have 32 or 64 byte cache lines.
    428   // We use 64 bytes here because it provides good branching factors.
    429   Log2CacheLine = 6,
    430   CacheLineBytes = 1 << Log2CacheLine,
    431   DesiredNodeBytes = 3 * CacheLineBytes
    432 };
    433 
    434 template <typename KeyT, typename ValT>
    435 struct NodeSizer {
    436   enum {
    437     // Compute the leaf node branching factor that makes a node fit in three
    438     // cache lines. The branching factor must be at least 3, or some B+-tree
    439     // balancing algorithms won't work.
    440     // LeafSize can't be larger than CacheLineBytes. This is required by the
    441     // PointerIntPair used by NodeRef.
    442     DesiredLeafSize = DesiredNodeBytes /
    443       static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
    444     MinLeafSize = 3,
    445     LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
    446   };
    447 
    448   typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
    449 
    450   enum {
    451     // Now that we have the leaf branching factor, compute the actual allocation
    452     // unit size by rounding up to a whole number of cache lines.
    453     AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
    454 
    455     // Determine the branching factor for branch nodes.
    456     BranchSize = AllocBytes /
    457       static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
    458   };
    459 
    460   /// Allocator - The recycling allocator used for both branch and leaf nodes.
    461   /// This typedef is very likely to be identical for all IntervalMaps with
    462   /// reasonably sized entries, so the same allocator can be shared among
    463   /// different kinds of maps.
    464   typedef RecyclingAllocator<BumpPtrAllocator, char,
    465                              AllocBytes, CacheLineBytes> Allocator;
    466 };
    467 
    468 //===----------------------------------------------------------------------===//
    469 //---                     IntervalMapImpl::NodeRef                         ---//
    470 //===----------------------------------------------------------------------===//
    471 //
    472 // B+-tree nodes can be leaves or branches, so we need a polymorphic node
    473 // pointer that can point to both kinds.
    474 //
    475 // All nodes are cache line aligned and the low 6 bits of a node pointer are
    476 // always 0. These bits are used to store the number of elements in the
    477 // referenced node. Besides saving space, placing node sizes in the parents
    478 // allow tree balancing algorithms to run without faulting cache lines for nodes
    479 // that may not need to be modified.
    480 //
    481 // A NodeRef doesn't know whether it references a leaf node or a branch node.
    482 // It is the responsibility of the caller to use the correct types.
    483 //
    484 // Nodes are never supposed to be empty, and it is invalid to store a node size
    485 // of 0 in a NodeRef. The valid range of sizes is 1-64.
    486 //
    487 //===----------------------------------------------------------------------===//
    488 
    489 class NodeRef {
    490   struct CacheAlignedPointerTraits {
    491     static inline void *getAsVoidPointer(void *P) { return P; }
    492     static inline void *getFromVoidPointer(void *P) { return P; }
    493     enum { NumLowBitsAvailable = Log2CacheLine };
    494   };
    495   PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
    496 
    497 public:
    498   /// NodeRef - Create a null ref.
    499   NodeRef() = default;
    500 
    501   /// operator bool - Detect a null ref.
    502   explicit operator bool() const { return pip.getOpaqueValue(); }
    503 
    504   /// NodeRef - Create a reference to the node p with n elements.
    505   template <typename NodeT>
    506   NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
    507     assert(n <= NodeT::Capacity && "Size too big for node");
    508   }
    509 
    510   /// size - Return the number of elements in the referenced node.
    511   unsigned size() const { return pip.getInt() + 1; }
    512 
    513   /// setSize - Update the node size.
    514   void setSize(unsigned n) { pip.setInt(n - 1); }
    515 
    516   /// subtree - Access the i'th subtree reference in a branch node.
    517   /// This depends on branch nodes storing the NodeRef array as their first
    518   /// member.
    519   NodeRef &subtree(unsigned i) const {
    520     return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
    521   }
    522 
    523   /// get - Dereference as a NodeT reference.
    524   template <typename NodeT>
    525   NodeT &get() const {
    526     return *reinterpret_cast<NodeT*>(pip.getPointer());
    527   }
    528 
    529   bool operator==(const NodeRef &RHS) const {
    530     if (pip == RHS.pip)
    531       return true;
    532     assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
    533     return false;
    534   }
    535 
    536   bool operator!=(const NodeRef &RHS) const {
    537     return !operator==(RHS);
    538   }
    539 };
    540 
    541 //===----------------------------------------------------------------------===//
    542 //---                      IntervalMapImpl::LeafNode                       ---//
    543 //===----------------------------------------------------------------------===//
    544 //
    545 // Leaf nodes store up to N disjoint intervals with corresponding values.
    546 //
    547 // The intervals are kept sorted and fully coalesced so there are no adjacent
    548 // intervals mapping to the same value.
    549 //
    550 // These constraints are always satisfied:
    551 //
    552 // - Traits::stopLess(start(i), stop(i))    - Non-empty, sane intervals.
    553 //
    554 // - Traits::stopLess(stop(i), start(i + 1) - Sorted.
    555 //
    556 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
    557 //                                          - Fully coalesced.
    558 //
    559 //===----------------------------------------------------------------------===//
    560 
    561 template <typename KeyT, typename ValT, unsigned N, typename Traits>
    562 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
    563 public:
    564   const KeyT &start(unsigned i) const { return this->first[i].first; }
    565   const KeyT &stop(unsigned i) const { return this->first[i].second; }
    566   const ValT &value(unsigned i) const { return this->second[i]; }
    567 
    568   KeyT &start(unsigned i) { return this->first[i].first; }
    569   KeyT &stop(unsigned i) { return this->first[i].second; }
    570   ValT &value(unsigned i) { return this->second[i]; }
    571 
    572   /// findFrom - Find the first interval after i that may contain x.
    573   /// @param i    Starting index for the search.
    574   /// @param Size Number of elements in node.
    575   /// @param x    Key to search for.
    576   /// @return     First index with !stopLess(key[i].stop, x), or size.
    577   ///             This is the first interval that can possibly contain x.
    578   unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
    579     assert(i <= Size && Size <= N && "Bad indices");
    580     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
    581            "Index is past the needed point");
    582     while (i != Size && Traits::stopLess(stop(i), x)) ++i;
    583     return i;
    584   }
    585 
    586   /// safeFind - Find an interval that is known to exist. This is the same as
    587   /// findFrom except is it assumed that x is at least within range of the last
    588   /// interval.
    589   /// @param i Starting index for the search.
    590   /// @param x Key to search for.
    591   /// @return  First index with !stopLess(key[i].stop, x), never size.
    592   ///          This is the first interval that can possibly contain x.
    593   unsigned safeFind(unsigned i, KeyT x) const {
    594     assert(i < N && "Bad index");
    595     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
    596            "Index is past the needed point");
    597     while (Traits::stopLess(stop(i), x)) ++i;
    598     assert(i < N && "Unsafe intervals");
    599     return i;
    600   }
    601 
    602   /// safeLookup - Lookup mapped value for a safe key.
    603   /// It is assumed that x is within range of the last entry.
    604   /// @param x        Key to search for.
    605   /// @param NotFound Value to return if x is not in any interval.
    606   /// @return         The mapped value at x or NotFound.
    607   ValT safeLookup(KeyT x, ValT NotFound) const {
    608     unsigned i = safeFind(0, x);
    609     return Traits::startLess(x, start(i)) ? NotFound : value(i);
    610   }
    611 
    612   unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
    613 };
    614 
    615 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
    616 /// possible. This may cause the node to grow by 1, or it may cause the node
    617 /// to shrink because of coalescing.
    618 /// @param Pos  Starting index = insertFrom(0, size, a)
    619 /// @param Size Number of elements in node.
    620 /// @param a    Interval start.
    621 /// @param b    Interval stop.
    622 /// @param y    Value be mapped.
    623 /// @return     (insert position, new size), or (i, Capacity+1) on overflow.
    624 template <typename KeyT, typename ValT, unsigned N, typename Traits>
    625 unsigned LeafNode<KeyT, ValT, N, Traits>::
    626 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
    627   unsigned i = Pos;
    628   assert(i <= Size && Size <= N && "Invalid index");
    629   assert(!Traits::stopLess(b, a) && "Invalid interval");
    630 
    631   // Verify the findFrom invariant.
    632   assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
    633   assert((i == Size || !Traits::stopLess(stop(i), a)));
    634   assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
    635 
    636   // Coalesce with previous interval.
    637   if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
    638     Pos = i - 1;
    639     // Also coalesce with next interval?
    640     if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
    641       stop(i - 1) = stop(i);
    642       this->erase(i, Size);
    643       return Size - 1;
    644     }
    645     stop(i - 1) = b;
    646     return Size;
    647   }
    648 
    649   // Detect overflow.
    650   if (i == N)
    651     return N + 1;
    652 
    653   // Add new interval at end.
    654   if (i == Size) {
    655     start(i) = a;
    656     stop(i) = b;
    657     value(i) = y;
    658     return Size + 1;
    659   }
    660 
    661   // Try to coalesce with following interval.
    662   if (value(i) == y && Traits::adjacent(b, start(i))) {
    663     start(i) = a;
    664     return Size;
    665   }
    666 
    667   // We must insert before i. Detect overflow.
    668   if (Size == N)
    669     return N + 1;
    670 
    671   // Insert before i.
    672   this->shift(i, Size);
    673   start(i) = a;
    674   stop(i) = b;
    675   value(i) = y;
    676   return Size + 1;
    677 }
    678 
    679 //===----------------------------------------------------------------------===//
    680 //---                   IntervalMapImpl::BranchNode                        ---//
    681 //===----------------------------------------------------------------------===//
    682 //
    683 // A branch node stores references to 1--N subtrees all of the same height.
    684 //
    685 // The key array in a branch node holds the rightmost stop key of each subtree.
    686 // It is redundant to store the last stop key since it can be found in the
    687 // parent node, but doing so makes tree balancing a lot simpler.
    688 //
    689 // It is unusual for a branch node to only have one subtree, but it can happen
    690 // in the root node if it is smaller than the normal nodes.
    691 //
    692 // When all of the leaf nodes from all the subtrees are concatenated, they must
    693 // satisfy the same constraints as a single leaf node. They must be sorted,
    694 // sane, and fully coalesced.
    695 //
    696 //===----------------------------------------------------------------------===//
    697 
    698 template <typename KeyT, typename ValT, unsigned N, typename Traits>
    699 class BranchNode : public NodeBase<NodeRef, KeyT, N> {
    700 public:
    701   const KeyT &stop(unsigned i) const { return this->second[i]; }
    702   const NodeRef &subtree(unsigned i) const { return this->first[i]; }
    703 
    704   KeyT &stop(unsigned i) { return this->second[i]; }
    705   NodeRef &subtree(unsigned i) { return this->first[i]; }
    706 
    707   /// findFrom - Find the first subtree after i that may contain x.
    708   /// @param i    Starting index for the search.
    709   /// @param Size Number of elements in node.
    710   /// @param x    Key to search for.
    711   /// @return     First index with !stopLess(key[i], x), or size.
    712   ///             This is the first subtree that can possibly contain x.
    713   unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
    714     assert(i <= Size && Size <= N && "Bad indices");
    715     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
    716            "Index to findFrom is past the needed point");
    717     while (i != Size && Traits::stopLess(stop(i), x)) ++i;
    718     return i;
    719   }
    720 
    721   /// safeFind - Find a subtree that is known to exist. This is the same as
    722   /// findFrom except is it assumed that x is in range.
    723   /// @param i Starting index for the search.
    724   /// @param x Key to search for.
    725   /// @return  First index with !stopLess(key[i], x), never size.
    726   ///          This is the first subtree that can possibly contain x.
    727   unsigned safeFind(unsigned i, KeyT x) const {
    728     assert(i < N && "Bad index");
    729     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
    730            "Index is past the needed point");
    731     while (Traits::stopLess(stop(i), x)) ++i;
    732     assert(i < N && "Unsafe intervals");
    733     return i;
    734   }
    735 
    736   /// safeLookup - Get the subtree containing x, Assuming that x is in range.
    737   /// @param x Key to search for.
    738   /// @return  Subtree containing x
    739   NodeRef safeLookup(KeyT x) const {
    740     return subtree(safeFind(0, x));
    741   }
    742 
    743   /// insert - Insert a new (subtree, stop) pair.
    744   /// @param i    Insert position, following entries will be shifted.
    745   /// @param Size Number of elements in node.
    746   /// @param Node Subtree to insert.
    747   /// @param Stop Last key in subtree.
    748   void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
    749     assert(Size < N && "branch node overflow");
    750     assert(i <= Size && "Bad insert position");
    751     this->shift(i, Size);
    752     subtree(i) = Node;
    753     stop(i) = Stop;
    754   }
    755 };
    756 
    757 //===----------------------------------------------------------------------===//
    758 //---                         IntervalMapImpl::Path                        ---//
    759 //===----------------------------------------------------------------------===//
    760 //
    761 // A Path is used by iterators to represent a position in a B+-tree, and the
    762 // path to get there from the root.
    763 //
    764 // The Path class also contains the tree navigation code that doesn't have to
    765 // be templatized.
    766 //
    767 //===----------------------------------------------------------------------===//
    768 
    769 class Path {
    770   /// Entry - Each step in the path is a node pointer and an offset into that
    771   /// node.
    772   struct Entry {
    773     void *node;
    774     unsigned size;
    775     unsigned offset;
    776 
    777     Entry(void *Node, unsigned Size, unsigned Offset)
    778       : node(Node), size(Size), offset(Offset) {}
    779 
    780     Entry(NodeRef Node, unsigned Offset)
    781       : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
    782 
    783     NodeRef &subtree(unsigned i) const {
    784       return reinterpret_cast<NodeRef*>(node)[i];
    785     }
    786   };
    787 
    788   /// path - The path entries, path[0] is the root node, path.back() is a leaf.
    789   SmallVector<Entry, 4> path;
    790 
    791 public:
    792   // Node accessors.
    793   template <typename NodeT> NodeT &node(unsigned Level) const {
    794     return *reinterpret_cast<NodeT*>(path[Level].node);
    795   }
    796   unsigned size(unsigned Level) const { return path[Level].size; }
    797   unsigned offset(unsigned Level) const { return path[Level].offset; }
    798   unsigned &offset(unsigned Level) { return path[Level].offset; }
    799 
    800   // Leaf accessors.
    801   template <typename NodeT> NodeT &leaf() const {
    802     return *reinterpret_cast<NodeT*>(path.back().node);
    803   }
    804   unsigned leafSize() const { return path.back().size; }
    805   unsigned leafOffset() const { return path.back().offset; }
    806   unsigned &leafOffset() { return path.back().offset; }
    807 
    808   /// valid - Return true if path is at a valid node, not at end().
    809   bool valid() const {
    810     return !path.empty() && path.front().offset < path.front().size;
    811   }
    812 
    813   /// height - Return the height of the tree corresponding to this path.
    814   /// This matches map->height in a full path.
    815   unsigned height() const { return path.size() - 1; }
    816 
    817   /// subtree - Get the subtree referenced from Level. When the path is
    818   /// consistent, node(Level + 1) == subtree(Level).
    819   /// @param Level 0..height-1. The leaves have no subtrees.
    820   NodeRef &subtree(unsigned Level) const {
    821     return path[Level].subtree(path[Level].offset);
    822   }
    823 
    824   /// reset - Reset cached information about node(Level) from subtree(Level -1).
    825   /// @param Level 1..height. THe node to update after parent node changed.
    826   void reset(unsigned Level) {
    827     path[Level] = Entry(subtree(Level - 1), offset(Level));
    828   }
    829 
    830   /// push - Add entry to path.
    831   /// @param Node Node to add, should be subtree(path.size()-1).
    832   /// @param Offset Offset into Node.
    833   void push(NodeRef Node, unsigned Offset) {
    834     path.push_back(Entry(Node, Offset));
    835   }
    836 
    837   /// pop - Remove the last path entry.
    838   void pop() {
    839     path.pop_back();
    840   }
    841 
    842   /// setSize - Set the size of a node both in the path and in the tree.
    843   /// @param Level 0..height. Note that setting the root size won't change
    844   ///              map->rootSize.
    845   /// @param Size New node size.
    846   void setSize(unsigned Level, unsigned Size) {
    847     path[Level].size = Size;
    848     if (Level)
    849       subtree(Level - 1).setSize(Size);
    850   }
    851 
    852   /// setRoot - Clear the path and set a new root node.
    853   /// @param Node New root node.
    854   /// @param Size New root size.
    855   /// @param Offset Offset into root node.
    856   void setRoot(void *Node, unsigned Size, unsigned Offset) {
    857     path.clear();
    858     path.push_back(Entry(Node, Size, Offset));
    859   }
    860 
    861   /// replaceRoot - Replace the current root node with two new entries after the
    862   /// tree height has increased.
    863   /// @param Root The new root node.
    864   /// @param Size Number of entries in the new root.
    865   /// @param Offsets Offsets into the root and first branch nodes.
    866   void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
    867 
    868   /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
    869   /// @param Level Get the sibling to node(Level).
    870   /// @return Left sibling, or NodeRef().
    871   NodeRef getLeftSibling(unsigned Level) const;
    872 
    873   /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
    874   /// unaltered.
    875   /// @param Level Move node(Level).
    876   void moveLeft(unsigned Level);
    877 
    878   /// fillLeft - Grow path to Height by taking leftmost branches.
    879   /// @param Height The target height.
    880   void fillLeft(unsigned Height) {
    881     while (height() < Height)
    882       push(subtree(height()), 0);
    883   }
    884 
    885   /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
    886   /// @param Level Get the sinbling to node(Level).
    887   /// @return Left sibling, or NodeRef().
    888   NodeRef getRightSibling(unsigned Level) const;
    889 
    890   /// moveRight - Move path to the left sibling at Level. Leave nodes below
    891   /// Level unaltered.
    892   /// @param Level Move node(Level).
    893   void moveRight(unsigned Level);
    894 
    895   /// atBegin - Return true if path is at begin().
    896   bool atBegin() const {
    897     for (unsigned i = 0, e = path.size(); i != e; ++i)
    898       if (path[i].offset != 0)
    899         return false;
    900     return true;
    901   }
    902 
    903   /// atLastEntry - Return true if the path is at the last entry of the node at
    904   /// Level.
    905   /// @param Level Node to examine.
    906   bool atLastEntry(unsigned Level) const {
    907     return path[Level].offset == path[Level].size - 1;
    908   }
    909 
    910   /// legalizeForInsert - Prepare the path for an insertion at Level. When the
    911   /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
    912   /// ensures that node(Level) is real by moving back to the last node at Level,
    913   /// and setting offset(Level) to size(Level) if required.
    914   /// @param Level The level where an insertion is about to take place.
    915   void legalizeForInsert(unsigned Level) {
    916     if (valid())
    917       return;
    918     moveLeft(Level);
    919     ++path[Level].offset;
    920   }
    921 };
    922 
    923 } // end namespace IntervalMapImpl
    924 
    925 //===----------------------------------------------------------------------===//
    926 //---                          IntervalMap                                ----//
    927 //===----------------------------------------------------------------------===//
    928 
    929 template <typename KeyT, typename ValT,
    930           unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
    931           typename Traits = IntervalMapInfo<KeyT>>
    932 class IntervalMap {
    933   typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
    934   typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
    935   typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
    936     Branch;
    937   typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
    938   typedef IntervalMapImpl::IdxPair IdxPair;
    939 
    940   // The RootLeaf capacity is given as a template parameter. We must compute the
    941   // corresponding RootBranch capacity.
    942   enum {
    943     DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
    944       (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
    945     RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
    946   };
    947 
    948   typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
    949     RootBranch;
    950 
    951   // When branched, we store a global start key as well as the branch node.
    952   struct RootBranchData {
    953     KeyT start;
    954     RootBranch node;
    955   };
    956 
    957 public:
    958   typedef typename Sizer::Allocator Allocator;
    959   typedef KeyT KeyType;
    960   typedef ValT ValueType;
    961   typedef Traits KeyTraits;
    962 
    963 private:
    964   // The root data is either a RootLeaf or a RootBranchData instance.
    965   AlignedCharArrayUnion<RootLeaf, RootBranchData> data;
    966 
    967   // Tree height.
    968   // 0: Leaves in root.
    969   // 1: Root points to leaf.
    970   // 2: root->branch->leaf ...
    971   unsigned height;
    972 
    973   // Number of entries in the root node.
    974   unsigned rootSize;
    975 
    976   // Allocator used for creating external nodes.
    977   Allocator &allocator;
    978 
    979   /// dataAs - Represent data as a node type without breaking aliasing rules.
    980   template <typename T>
    981   T &dataAs() const {
    982     union {
    983       const char *d;
    984       T *t;
    985     } u;
    986     u.d = data.buffer;
    987     return *u.t;
    988   }
    989 
    990   const RootLeaf &rootLeaf() const {
    991     assert(!branched() && "Cannot acces leaf data in branched root");
    992     return dataAs<RootLeaf>();
    993   }
    994   RootLeaf &rootLeaf() {
    995     assert(!branched() && "Cannot acces leaf data in branched root");
    996     return dataAs<RootLeaf>();
    997   }
    998 
    999   RootBranchData &rootBranchData() const {
   1000     assert(branched() && "Cannot access branch data in non-branched root");
   1001     return dataAs<RootBranchData>();
   1002   }
   1003   RootBranchData &rootBranchData() {
   1004     assert(branched() && "Cannot access branch data in non-branched root");
   1005     return dataAs<RootBranchData>();
   1006   }
   1007 
   1008   const RootBranch &rootBranch() const { return rootBranchData().node; }
   1009   RootBranch &rootBranch()             { return rootBranchData().node; }
   1010   KeyT rootBranchStart() const { return rootBranchData().start; }
   1011   KeyT &rootBranchStart()      { return rootBranchData().start; }
   1012 
   1013   template <typename NodeT> NodeT *newNode() {
   1014     return new(allocator.template Allocate<NodeT>()) NodeT();
   1015   }
   1016 
   1017   template <typename NodeT> void deleteNode(NodeT *P) {
   1018     P->~NodeT();
   1019     allocator.Deallocate(P);
   1020   }
   1021 
   1022   IdxPair branchRoot(unsigned Position);
   1023   IdxPair splitRoot(unsigned Position);
   1024 
   1025   void switchRootToBranch() {
   1026     rootLeaf().~RootLeaf();
   1027     height = 1;
   1028     new (&rootBranchData()) RootBranchData();
   1029   }
   1030 
   1031   void switchRootToLeaf() {
   1032     rootBranchData().~RootBranchData();
   1033     height = 0;
   1034     new(&rootLeaf()) RootLeaf();
   1035   }
   1036 
   1037   bool branched() const { return height > 0; }
   1038 
   1039   ValT treeSafeLookup(KeyT x, ValT NotFound) const;
   1040   void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
   1041                   unsigned Level));
   1042   void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
   1043 
   1044 public:
   1045   explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
   1046     assert((uintptr_t(data.buffer) & (alignof(RootLeaf) - 1)) == 0 &&
   1047            "Insufficient alignment");
   1048     new(&rootLeaf()) RootLeaf();
   1049   }
   1050 
   1051   ~IntervalMap() {
   1052     clear();
   1053     rootLeaf().~RootLeaf();
   1054   }
   1055 
   1056   /// empty -  Return true when no intervals are mapped.
   1057   bool empty() const {
   1058     return rootSize == 0;
   1059   }
   1060 
   1061   /// start - Return the smallest mapped key in a non-empty map.
   1062   KeyT start() const {
   1063     assert(!empty() && "Empty IntervalMap has no start");
   1064     return !branched() ? rootLeaf().start(0) : rootBranchStart();
   1065   }
   1066 
   1067   /// stop - Return the largest mapped key in a non-empty map.
   1068   KeyT stop() const {
   1069     assert(!empty() && "Empty IntervalMap has no stop");
   1070     return !branched() ? rootLeaf().stop(rootSize - 1) :
   1071                          rootBranch().stop(rootSize - 1);
   1072   }
   1073 
   1074   /// lookup - Return the mapped value at x or NotFound.
   1075   ValT lookup(KeyT x, ValT NotFound = ValT()) const {
   1076     if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
   1077       return NotFound;
   1078     return branched() ? treeSafeLookup(x, NotFound) :
   1079                         rootLeaf().safeLookup(x, NotFound);
   1080   }
   1081 
   1082   /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
   1083   /// It is assumed that no key in the interval is mapped to another value, but
   1084   /// overlapping intervals already mapped to y will be coalesced.
   1085   void insert(KeyT a, KeyT b, ValT y) {
   1086     if (branched() || rootSize == RootLeaf::Capacity)
   1087       return find(a).insert(a, b, y);
   1088 
   1089     // Easy insert into root leaf.
   1090     unsigned p = rootLeaf().findFrom(0, rootSize, a);
   1091     rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
   1092   }
   1093 
   1094   /// clear - Remove all entries.
   1095   void clear();
   1096 
   1097   class const_iterator;
   1098   class iterator;
   1099   friend class const_iterator;
   1100   friend class iterator;
   1101 
   1102   const_iterator begin() const {
   1103     const_iterator I(*this);
   1104     I.goToBegin();
   1105     return I;
   1106   }
   1107 
   1108   iterator begin() {
   1109     iterator I(*this);
   1110     I.goToBegin();
   1111     return I;
   1112   }
   1113 
   1114   const_iterator end() const {
   1115     const_iterator I(*this);
   1116     I.goToEnd();
   1117     return I;
   1118   }
   1119 
   1120   iterator end() {
   1121     iterator I(*this);
   1122     I.goToEnd();
   1123     return I;
   1124   }
   1125 
   1126   /// find - Return an iterator pointing to the first interval ending at or
   1127   /// after x, or end().
   1128   const_iterator find(KeyT x) const {
   1129     const_iterator I(*this);
   1130     I.find(x);
   1131     return I;
   1132   }
   1133 
   1134   iterator find(KeyT x) {
   1135     iterator I(*this);
   1136     I.find(x);
   1137     return I;
   1138   }
   1139 };
   1140 
   1141 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
   1142 /// branched root.
   1143 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1144 ValT IntervalMap<KeyT, ValT, N, Traits>::
   1145 treeSafeLookup(KeyT x, ValT NotFound) const {
   1146   assert(branched() && "treeLookup assumes a branched root");
   1147 
   1148   IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
   1149   for (unsigned h = height-1; h; --h)
   1150     NR = NR.get<Branch>().safeLookup(x);
   1151   return NR.get<Leaf>().safeLookup(x, NotFound);
   1152 }
   1153 
   1154 // branchRoot - Switch from a leaf root to a branched root.
   1155 // Return the new (root offset, node offset) corresponding to Position.
   1156 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1157 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
   1158 branchRoot(unsigned Position) {
   1159   using namespace IntervalMapImpl;
   1160   // How many external leaf nodes to hold RootLeaf+1?
   1161   const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
   1162 
   1163   // Compute element distribution among new nodes.
   1164   unsigned size[Nodes];
   1165   IdxPair NewOffset(0, Position);
   1166 
   1167   // Is is very common for the root node to be smaller than external nodes.
   1168   if (Nodes == 1)
   1169     size[0] = rootSize;
   1170   else
   1171     NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, size,
   1172                            Position, true);
   1173 
   1174   // Allocate new nodes.
   1175   unsigned pos = 0;
   1176   NodeRef node[Nodes];
   1177   for (unsigned n = 0; n != Nodes; ++n) {
   1178     Leaf *L = newNode<Leaf>();
   1179     L->copy(rootLeaf(), pos, 0, size[n]);
   1180     node[n] = NodeRef(L, size[n]);
   1181     pos += size[n];
   1182   }
   1183 
   1184   // Destroy the old leaf node, construct branch node instead.
   1185   switchRootToBranch();
   1186   for (unsigned n = 0; n != Nodes; ++n) {
   1187     rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
   1188     rootBranch().subtree(n) = node[n];
   1189   }
   1190   rootBranchStart() = node[0].template get<Leaf>().start(0);
   1191   rootSize = Nodes;
   1192   return NewOffset;
   1193 }
   1194 
   1195 // splitRoot - Split the current BranchRoot into multiple Branch nodes.
   1196 // Return the new (root offset, node offset) corresponding to Position.
   1197 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1198 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
   1199 splitRoot(unsigned Position) {
   1200   using namespace IntervalMapImpl;
   1201   // How many external leaf nodes to hold RootBranch+1?
   1202   const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
   1203 
   1204   // Compute element distribution among new nodes.
   1205   unsigned Size[Nodes];
   1206   IdxPair NewOffset(0, Position);
   1207 
   1208   // Is is very common for the root node to be smaller than external nodes.
   1209   if (Nodes == 1)
   1210     Size[0] = rootSize;
   1211   else
   1212     NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, Size,
   1213                            Position, true);
   1214 
   1215   // Allocate new nodes.
   1216   unsigned Pos = 0;
   1217   NodeRef Node[Nodes];
   1218   for (unsigned n = 0; n != Nodes; ++n) {
   1219     Branch *B = newNode<Branch>();
   1220     B->copy(rootBranch(), Pos, 0, Size[n]);
   1221     Node[n] = NodeRef(B, Size[n]);
   1222     Pos += Size[n];
   1223   }
   1224 
   1225   for (unsigned n = 0; n != Nodes; ++n) {
   1226     rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
   1227     rootBranch().subtree(n) = Node[n];
   1228   }
   1229   rootSize = Nodes;
   1230   ++height;
   1231   return NewOffset;
   1232 }
   1233 
   1234 /// visitNodes - Visit each external node.
   1235 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1236 void IntervalMap<KeyT, ValT, N, Traits>::
   1237 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
   1238   if (!branched())
   1239     return;
   1240   SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
   1241 
   1242   // Collect level 0 nodes from the root.
   1243   for (unsigned i = 0; i != rootSize; ++i)
   1244     Refs.push_back(rootBranch().subtree(i));
   1245 
   1246   // Visit all branch nodes.
   1247   for (unsigned h = height - 1; h; --h) {
   1248     for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
   1249       for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
   1250         NextRefs.push_back(Refs[i].subtree(j));
   1251       (this->*f)(Refs[i], h);
   1252     }
   1253     Refs.clear();
   1254     Refs.swap(NextRefs);
   1255   }
   1256 
   1257   // Visit all leaf nodes.
   1258   for (unsigned i = 0, e = Refs.size(); i != e; ++i)
   1259     (this->*f)(Refs[i], 0);
   1260 }
   1261 
   1262 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1263 void IntervalMap<KeyT, ValT, N, Traits>::
   1264 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
   1265   if (Level)
   1266     deleteNode(&Node.get<Branch>());
   1267   else
   1268     deleteNode(&Node.get<Leaf>());
   1269 }
   1270 
   1271 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1272 void IntervalMap<KeyT, ValT, N, Traits>::
   1273 clear() {
   1274   if (branched()) {
   1275     visitNodes(&IntervalMap::deleteNode);
   1276     switchRootToLeaf();
   1277   }
   1278   rootSize = 0;
   1279 }
   1280 
   1281 //===----------------------------------------------------------------------===//
   1282 //---                   IntervalMap::const_iterator                       ----//
   1283 //===----------------------------------------------------------------------===//
   1284 
   1285 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1286 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
   1287   public std::iterator<std::bidirectional_iterator_tag, ValT> {
   1288 
   1289 protected:
   1290   friend class IntervalMap;
   1291 
   1292   // The map referred to.
   1293   IntervalMap *map;
   1294 
   1295   // We store a full path from the root to the current position.
   1296   // The path may be partially filled, but never between iterator calls.
   1297   IntervalMapImpl::Path path;
   1298 
   1299   explicit const_iterator(const IntervalMap &map) :
   1300     map(const_cast<IntervalMap*>(&map)) {}
   1301 
   1302   bool branched() const {
   1303     assert(map && "Invalid iterator");
   1304     return map->branched();
   1305   }
   1306 
   1307   void setRoot(unsigned Offset) {
   1308     if (branched())
   1309       path.setRoot(&map->rootBranch(), map->rootSize, Offset);
   1310     else
   1311       path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
   1312   }
   1313 
   1314   void pathFillFind(KeyT x);
   1315   void treeFind(KeyT x);
   1316   void treeAdvanceTo(KeyT x);
   1317 
   1318   /// unsafeStart - Writable access to start() for iterator.
   1319   KeyT &unsafeStart() const {
   1320     assert(valid() && "Cannot access invalid iterator");
   1321     return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
   1322                         path.leaf<RootLeaf>().start(path.leafOffset());
   1323   }
   1324 
   1325   /// unsafeStop - Writable access to stop() for iterator.
   1326   KeyT &unsafeStop() const {
   1327     assert(valid() && "Cannot access invalid iterator");
   1328     return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
   1329                         path.leaf<RootLeaf>().stop(path.leafOffset());
   1330   }
   1331 
   1332   /// unsafeValue - Writable access to value() for iterator.
   1333   ValT &unsafeValue() const {
   1334     assert(valid() && "Cannot access invalid iterator");
   1335     return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
   1336                         path.leaf<RootLeaf>().value(path.leafOffset());
   1337   }
   1338 
   1339 public:
   1340   /// const_iterator - Create an iterator that isn't pointing anywhere.
   1341   const_iterator() : map(nullptr) {}
   1342 
   1343   /// setMap - Change the map iterated over. This call must be followed by a
   1344   /// call to goToBegin(), goToEnd(), or find()
   1345   void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
   1346 
   1347   /// valid - Return true if the current position is valid, false for end().
   1348   bool valid() const { return path.valid(); }
   1349 
   1350   /// atBegin - Return true if the current position is the first map entry.
   1351   bool atBegin() const { return path.atBegin(); }
   1352 
   1353   /// start - Return the beginning of the current interval.
   1354   const KeyT &start() const { return unsafeStart(); }
   1355 
   1356   /// stop - Return the end of the current interval.
   1357   const KeyT &stop() const { return unsafeStop(); }
   1358 
   1359   /// value - Return the mapped value at the current interval.
   1360   const ValT &value() const { return unsafeValue(); }
   1361 
   1362   const ValT &operator*() const { return value(); }
   1363 
   1364   bool operator==(const const_iterator &RHS) const {
   1365     assert(map == RHS.map && "Cannot compare iterators from different maps");
   1366     if (!valid())
   1367       return !RHS.valid();
   1368     if (path.leafOffset() != RHS.path.leafOffset())
   1369       return false;
   1370     return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
   1371   }
   1372 
   1373   bool operator!=(const const_iterator &RHS) const {
   1374     return !operator==(RHS);
   1375   }
   1376 
   1377   /// goToBegin - Move to the first interval in map.
   1378   void goToBegin() {
   1379     setRoot(0);
   1380     if (branched())
   1381       path.fillLeft(map->height);
   1382   }
   1383 
   1384   /// goToEnd - Move beyond the last interval in map.
   1385   void goToEnd() {
   1386     setRoot(map->rootSize);
   1387   }
   1388 
   1389   /// preincrement - move to the next interval.
   1390   const_iterator &operator++() {
   1391     assert(valid() && "Cannot increment end()");
   1392     if (++path.leafOffset() == path.leafSize() && branched())
   1393       path.moveRight(map->height);
   1394     return *this;
   1395   }
   1396 
   1397   /// postincrement - Dont do that!
   1398   const_iterator operator++(int) {
   1399     const_iterator tmp = *this;
   1400     operator++();
   1401     return tmp;
   1402   }
   1403 
   1404   /// predecrement - move to the previous interval.
   1405   const_iterator &operator--() {
   1406     if (path.leafOffset() && (valid() || !branched()))
   1407       --path.leafOffset();
   1408     else
   1409       path.moveLeft(map->height);
   1410     return *this;
   1411   }
   1412 
   1413   /// postdecrement - Dont do that!
   1414   const_iterator operator--(int) {
   1415     const_iterator tmp = *this;
   1416     operator--();
   1417     return tmp;
   1418   }
   1419 
   1420   /// find - Move to the first interval with stop >= x, or end().
   1421   /// This is a full search from the root, the current position is ignored.
   1422   void find(KeyT x) {
   1423     if (branched())
   1424       treeFind(x);
   1425     else
   1426       setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
   1427   }
   1428 
   1429   /// advanceTo - Move to the first interval with stop >= x, or end().
   1430   /// The search is started from the current position, and no earlier positions
   1431   /// can be found. This is much faster than find() for small moves.
   1432   void advanceTo(KeyT x) {
   1433     if (!valid())
   1434       return;
   1435     if (branched())
   1436       treeAdvanceTo(x);
   1437     else
   1438       path.leafOffset() =
   1439         map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
   1440   }
   1441 };
   1442 
   1443 /// pathFillFind - Complete path by searching for x.
   1444 /// @param x Key to search for.
   1445 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1446 void IntervalMap<KeyT, ValT, N, Traits>::
   1447 const_iterator::pathFillFind(KeyT x) {
   1448   IntervalMapImpl::NodeRef NR = path.subtree(path.height());
   1449   for (unsigned i = map->height - path.height() - 1; i; --i) {
   1450     unsigned p = NR.get<Branch>().safeFind(0, x);
   1451     path.push(NR, p);
   1452     NR = NR.subtree(p);
   1453   }
   1454   path.push(NR, NR.get<Leaf>().safeFind(0, x));
   1455 }
   1456 
   1457 /// treeFind - Find in a branched tree.
   1458 /// @param x Key to search for.
   1459 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1460 void IntervalMap<KeyT, ValT, N, Traits>::
   1461 const_iterator::treeFind(KeyT x) {
   1462   setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
   1463   if (valid())
   1464     pathFillFind(x);
   1465 }
   1466 
   1467 /// treeAdvanceTo - Find position after the current one.
   1468 /// @param x Key to search for.
   1469 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1470 void IntervalMap<KeyT, ValT, N, Traits>::
   1471 const_iterator::treeAdvanceTo(KeyT x) {
   1472   // Can we stay on the same leaf node?
   1473   if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
   1474     path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
   1475     return;
   1476   }
   1477 
   1478   // Drop the current leaf.
   1479   path.pop();
   1480 
   1481   // Search towards the root for a usable subtree.
   1482   if (path.height()) {
   1483     for (unsigned l = path.height() - 1; l; --l) {
   1484       if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
   1485         // The branch node at l+1 is usable
   1486         path.offset(l + 1) =
   1487           path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
   1488         return pathFillFind(x);
   1489       }
   1490       path.pop();
   1491     }
   1492     // Is the level-1 Branch usable?
   1493     if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
   1494       path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
   1495       return pathFillFind(x);
   1496     }
   1497   }
   1498 
   1499   // We reached the root.
   1500   setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
   1501   if (valid())
   1502     pathFillFind(x);
   1503 }
   1504 
   1505 //===----------------------------------------------------------------------===//
   1506 //---                       IntervalMap::iterator                         ----//
   1507 //===----------------------------------------------------------------------===//
   1508 
   1509 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1510 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
   1511   friend class IntervalMap;
   1512   typedef IntervalMapImpl::IdxPair IdxPair;
   1513 
   1514   explicit iterator(IntervalMap &map) : const_iterator(map) {}
   1515 
   1516   void setNodeStop(unsigned Level, KeyT Stop);
   1517   bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
   1518   template <typename NodeT> bool overflow(unsigned Level);
   1519   void treeInsert(KeyT a, KeyT b, ValT y);
   1520   void eraseNode(unsigned Level);
   1521   void treeErase(bool UpdateRoot = true);
   1522   bool canCoalesceLeft(KeyT Start, ValT x);
   1523   bool canCoalesceRight(KeyT Stop, ValT x);
   1524 
   1525 public:
   1526   /// iterator - Create null iterator.
   1527   iterator() = default;
   1528 
   1529   /// setStart - Move the start of the current interval.
   1530   /// This may cause coalescing with the previous interval.
   1531   /// @param a New start key, must not overlap the previous interval.
   1532   void setStart(KeyT a);
   1533 
   1534   /// setStop - Move the end of the current interval.
   1535   /// This may cause coalescing with the following interval.
   1536   /// @param b New stop key, must not overlap the following interval.
   1537   void setStop(KeyT b);
   1538 
   1539   /// setValue - Change the mapped value of the current interval.
   1540   /// This may cause coalescing with the previous and following intervals.
   1541   /// @param x New value.
   1542   void setValue(ValT x);
   1543 
   1544   /// setStartUnchecked - Move the start of the current interval without
   1545   /// checking for coalescing or overlaps.
   1546   /// This should only be used when it is known that coalescing is not required.
   1547   /// @param a New start key.
   1548   void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
   1549 
   1550   /// setStopUnchecked - Move the end of the current interval without checking
   1551   /// for coalescing or overlaps.
   1552   /// This should only be used when it is known that coalescing is not required.
   1553   /// @param b New stop key.
   1554   void setStopUnchecked(KeyT b) {
   1555     this->unsafeStop() = b;
   1556     // Update keys in branch nodes as well.
   1557     if (this->path.atLastEntry(this->path.height()))
   1558       setNodeStop(this->path.height(), b);
   1559   }
   1560 
   1561   /// setValueUnchecked - Change the mapped value of the current interval
   1562   /// without checking for coalescing.
   1563   /// @param x New value.
   1564   void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
   1565 
   1566   /// insert - Insert mapping [a;b] -> y before the current position.
   1567   void insert(KeyT a, KeyT b, ValT y);
   1568 
   1569   /// erase - Erase the current interval.
   1570   void erase();
   1571 
   1572   iterator &operator++() {
   1573     const_iterator::operator++();
   1574     return *this;
   1575   }
   1576 
   1577   iterator operator++(int) {
   1578     iterator tmp = *this;
   1579     operator++();
   1580     return tmp;
   1581   }
   1582 
   1583   iterator &operator--() {
   1584     const_iterator::operator--();
   1585     return *this;
   1586   }
   1587 
   1588   iterator operator--(int) {
   1589     iterator tmp = *this;
   1590     operator--();
   1591     return tmp;
   1592   }
   1593 };
   1594 
   1595 /// canCoalesceLeft - Can the current interval coalesce to the left after
   1596 /// changing start or value?
   1597 /// @param Start New start of current interval.
   1598 /// @param Value New value for current interval.
   1599 /// @return True when updating the current interval would enable coalescing.
   1600 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1601 bool IntervalMap<KeyT, ValT, N, Traits>::
   1602 iterator::canCoalesceLeft(KeyT Start, ValT Value) {
   1603   using namespace IntervalMapImpl;
   1604   Path &P = this->path;
   1605   if (!this->branched()) {
   1606     unsigned i = P.leafOffset();
   1607     RootLeaf &Node = P.leaf<RootLeaf>();
   1608     return i && Node.value(i-1) == Value &&
   1609                 Traits::adjacent(Node.stop(i-1), Start);
   1610   }
   1611   // Branched.
   1612   if (unsigned i = P.leafOffset()) {
   1613     Leaf &Node = P.leaf<Leaf>();
   1614     return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
   1615   } else if (NodeRef NR = P.getLeftSibling(P.height())) {
   1616     unsigned i = NR.size() - 1;
   1617     Leaf &Node = NR.get<Leaf>();
   1618     return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
   1619   }
   1620   return false;
   1621 }
   1622 
   1623 /// canCoalesceRight - Can the current interval coalesce to the right after
   1624 /// changing stop or value?
   1625 /// @param Stop New stop of current interval.
   1626 /// @param Value New value for current interval.
   1627 /// @return True when updating the current interval would enable coalescing.
   1628 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1629 bool IntervalMap<KeyT, ValT, N, Traits>::
   1630 iterator::canCoalesceRight(KeyT Stop, ValT Value) {
   1631   using namespace IntervalMapImpl;
   1632   Path &P = this->path;
   1633   unsigned i = P.leafOffset() + 1;
   1634   if (!this->branched()) {
   1635     if (i >= P.leafSize())
   1636       return false;
   1637     RootLeaf &Node = P.leaf<RootLeaf>();
   1638     return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
   1639   }
   1640   // Branched.
   1641   if (i < P.leafSize()) {
   1642     Leaf &Node = P.leaf<Leaf>();
   1643     return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
   1644   } else if (NodeRef NR = P.getRightSibling(P.height())) {
   1645     Leaf &Node = NR.get<Leaf>();
   1646     return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
   1647   }
   1648   return false;
   1649 }
   1650 
   1651 /// setNodeStop - Update the stop key of the current node at level and above.
   1652 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1653 void IntervalMap<KeyT, ValT, N, Traits>::
   1654 iterator::setNodeStop(unsigned Level, KeyT Stop) {
   1655   // There are no references to the root node, so nothing to update.
   1656   if (!Level)
   1657     return;
   1658   IntervalMapImpl::Path &P = this->path;
   1659   // Update nodes pointing to the current node.
   1660   while (--Level) {
   1661     P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
   1662     if (!P.atLastEntry(Level))
   1663       return;
   1664   }
   1665   // Update root separately since it has a different layout.
   1666   P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
   1667 }
   1668 
   1669 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1670 void IntervalMap<KeyT, ValT, N, Traits>::
   1671 iterator::setStart(KeyT a) {
   1672   assert(Traits::nonEmpty(a, this->stop()) && "Cannot move start beyond stop");
   1673   KeyT &CurStart = this->unsafeStart();
   1674   if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
   1675     CurStart = a;
   1676     return;
   1677   }
   1678   // Coalesce with the interval to the left.
   1679   --*this;
   1680   a = this->start();
   1681   erase();
   1682   setStartUnchecked(a);
   1683 }
   1684 
   1685 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1686 void IntervalMap<KeyT, ValT, N, Traits>::
   1687 iterator::setStop(KeyT b) {
   1688   assert(Traits::nonEmpty(this->start(), b) && "Cannot move stop beyond start");
   1689   if (Traits::startLess(b, this->stop()) ||
   1690       !canCoalesceRight(b, this->value())) {
   1691     setStopUnchecked(b);
   1692     return;
   1693   }
   1694   // Coalesce with interval to the right.
   1695   KeyT a = this->start();
   1696   erase();
   1697   setStartUnchecked(a);
   1698 }
   1699 
   1700 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1701 void IntervalMap<KeyT, ValT, N, Traits>::
   1702 iterator::setValue(ValT x) {
   1703   setValueUnchecked(x);
   1704   if (canCoalesceRight(this->stop(), x)) {
   1705     KeyT a = this->start();
   1706     erase();
   1707     setStartUnchecked(a);
   1708   }
   1709   if (canCoalesceLeft(this->start(), x)) {
   1710     --*this;
   1711     KeyT a = this->start();
   1712     erase();
   1713     setStartUnchecked(a);
   1714   }
   1715 }
   1716 
   1717 /// insertNode - insert a node before the current path at level.
   1718 /// Leave the current path pointing at the new node.
   1719 /// @param Level path index of the node to be inserted.
   1720 /// @param Node The node to be inserted.
   1721 /// @param Stop The last index in the new node.
   1722 /// @return True if the tree height was increased.
   1723 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1724 bool IntervalMap<KeyT, ValT, N, Traits>::
   1725 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
   1726   assert(Level && "Cannot insert next to the root");
   1727   bool SplitRoot = false;
   1728   IntervalMap &IM = *this->map;
   1729   IntervalMapImpl::Path &P = this->path;
   1730 
   1731   if (Level == 1) {
   1732     // Insert into the root branch node.
   1733     if (IM.rootSize < RootBranch::Capacity) {
   1734       IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
   1735       P.setSize(0, ++IM.rootSize);
   1736       P.reset(Level);
   1737       return SplitRoot;
   1738     }
   1739 
   1740     // We need to split the root while keeping our position.
   1741     SplitRoot = true;
   1742     IdxPair Offset = IM.splitRoot(P.offset(0));
   1743     P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
   1744 
   1745     // Fall through to insert at the new higher level.
   1746     ++Level;
   1747   }
   1748 
   1749   // When inserting before end(), make sure we have a valid path.
   1750   P.legalizeForInsert(--Level);
   1751 
   1752   // Insert into the branch node at Level-1.
   1753   if (P.size(Level) == Branch::Capacity) {
   1754     // Branch node is full, handle handle the overflow.
   1755     assert(!SplitRoot && "Cannot overflow after splitting the root");
   1756     SplitRoot = overflow<Branch>(Level);
   1757     Level += SplitRoot;
   1758   }
   1759   P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
   1760   P.setSize(Level, P.size(Level) + 1);
   1761   if (P.atLastEntry(Level))
   1762     setNodeStop(Level, Stop);
   1763   P.reset(Level + 1);
   1764   return SplitRoot;
   1765 }
   1766 
   1767 // insert
   1768 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1769 void IntervalMap<KeyT, ValT, N, Traits>::
   1770 iterator::insert(KeyT a, KeyT b, ValT y) {
   1771   if (this->branched())
   1772     return treeInsert(a, b, y);
   1773   IntervalMap &IM = *this->map;
   1774   IntervalMapImpl::Path &P = this->path;
   1775 
   1776   // Try simple root leaf insert.
   1777   unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
   1778 
   1779   // Was the root node insert successful?
   1780   if (Size <= RootLeaf::Capacity) {
   1781     P.setSize(0, IM.rootSize = Size);
   1782     return;
   1783   }
   1784 
   1785   // Root leaf node is full, we must branch.
   1786   IdxPair Offset = IM.branchRoot(P.leafOffset());
   1787   P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
   1788 
   1789   // Now it fits in the new leaf.
   1790   treeInsert(a, b, y);
   1791 }
   1792 
   1793 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1794 void IntervalMap<KeyT, ValT, N, Traits>::
   1795 iterator::treeInsert(KeyT a, KeyT b, ValT y) {
   1796   using namespace IntervalMapImpl;
   1797   Path &P = this->path;
   1798 
   1799   if (!P.valid())
   1800     P.legalizeForInsert(this->map->height);
   1801 
   1802   // Check if this insertion will extend the node to the left.
   1803   if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
   1804     // Node is growing to the left, will it affect a left sibling node?
   1805     if (NodeRef Sib = P.getLeftSibling(P.height())) {
   1806       Leaf &SibLeaf = Sib.get<Leaf>();
   1807       unsigned SibOfs = Sib.size() - 1;
   1808       if (SibLeaf.value(SibOfs) == y &&
   1809           Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
   1810         // This insertion will coalesce with the last entry in SibLeaf. We can
   1811         // handle it in two ways:
   1812         //  1. Extend SibLeaf.stop to b and be done, or
   1813         //  2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
   1814         // We prefer 1., but need 2 when coalescing to the right as well.
   1815         Leaf &CurLeaf = P.leaf<Leaf>();
   1816         P.moveLeft(P.height());
   1817         if (Traits::stopLess(b, CurLeaf.start(0)) &&
   1818             (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
   1819           // Easy, just extend SibLeaf and we're done.
   1820           setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
   1821           return;
   1822         } else {
   1823           // We have both left and right coalescing. Erase the old SibLeaf entry
   1824           // and continue inserting the larger interval.
   1825           a = SibLeaf.start(SibOfs);
   1826           treeErase(/* UpdateRoot= */false);
   1827         }
   1828       }
   1829     } else {
   1830       // No left sibling means we are at begin(). Update cached bound.
   1831       this->map->rootBranchStart() = a;
   1832     }
   1833   }
   1834 
   1835   // When we are inserting at the end of a leaf node, we must update stops.
   1836   unsigned Size = P.leafSize();
   1837   bool Grow = P.leafOffset() == Size;
   1838   Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
   1839 
   1840   // Leaf insertion unsuccessful? Overflow and try again.
   1841   if (Size > Leaf::Capacity) {
   1842     overflow<Leaf>(P.height());
   1843     Grow = P.leafOffset() == P.leafSize();
   1844     Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
   1845     assert(Size <= Leaf::Capacity && "overflow() didn't make room");
   1846   }
   1847 
   1848   // Inserted, update offset and leaf size.
   1849   P.setSize(P.height(), Size);
   1850 
   1851   // Insert was the last node entry, update stops.
   1852   if (Grow)
   1853     setNodeStop(P.height(), b);
   1854 }
   1855 
   1856 /// erase - erase the current interval and move to the next position.
   1857 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1858 void IntervalMap<KeyT, ValT, N, Traits>::
   1859 iterator::erase() {
   1860   IntervalMap &IM = *this->map;
   1861   IntervalMapImpl::Path &P = this->path;
   1862   assert(P.valid() && "Cannot erase end()");
   1863   if (this->branched())
   1864     return treeErase();
   1865   IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
   1866   P.setSize(0, --IM.rootSize);
   1867 }
   1868 
   1869 /// treeErase - erase() for a branched tree.
   1870 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1871 void IntervalMap<KeyT, ValT, N, Traits>::
   1872 iterator::treeErase(bool UpdateRoot) {
   1873   IntervalMap &IM = *this->map;
   1874   IntervalMapImpl::Path &P = this->path;
   1875   Leaf &Node = P.leaf<Leaf>();
   1876 
   1877   // Nodes are not allowed to become empty.
   1878   if (P.leafSize() == 1) {
   1879     IM.deleteNode(&Node);
   1880     eraseNode(IM.height);
   1881     // Update rootBranchStart if we erased begin().
   1882     if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
   1883       IM.rootBranchStart() = P.leaf<Leaf>().start(0);
   1884     return;
   1885   }
   1886 
   1887   // Erase current entry.
   1888   Node.erase(P.leafOffset(), P.leafSize());
   1889   unsigned NewSize = P.leafSize() - 1;
   1890   P.setSize(IM.height, NewSize);
   1891   // When we erase the last entry, update stop and move to a legal position.
   1892   if (P.leafOffset() == NewSize) {
   1893     setNodeStop(IM.height, Node.stop(NewSize - 1));
   1894     P.moveRight(IM.height);
   1895   } else if (UpdateRoot && P.atBegin())
   1896     IM.rootBranchStart() = P.leaf<Leaf>().start(0);
   1897 }
   1898 
   1899 /// eraseNode - Erase the current node at Level from its parent and move path to
   1900 /// the first entry of the next sibling node.
   1901 /// The node must be deallocated by the caller.
   1902 /// @param Level 1..height, the root node cannot be erased.
   1903 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1904 void IntervalMap<KeyT, ValT, N, Traits>::
   1905 iterator::eraseNode(unsigned Level) {
   1906   assert(Level && "Cannot erase root node");
   1907   IntervalMap &IM = *this->map;
   1908   IntervalMapImpl::Path &P = this->path;
   1909 
   1910   if (--Level == 0) {
   1911     IM.rootBranch().erase(P.offset(0), IM.rootSize);
   1912     P.setSize(0, --IM.rootSize);
   1913     // If this cleared the root, switch to height=0.
   1914     if (IM.empty()) {
   1915       IM.switchRootToLeaf();
   1916       this->setRoot(0);
   1917       return;
   1918     }
   1919   } else {
   1920     // Remove node ref from branch node at Level.
   1921     Branch &Parent = P.node<Branch>(Level);
   1922     if (P.size(Level) == 1) {
   1923       // Branch node became empty, remove it recursively.
   1924       IM.deleteNode(&Parent);
   1925       eraseNode(Level);
   1926     } else {
   1927       // Branch node won't become empty.
   1928       Parent.erase(P.offset(Level), P.size(Level));
   1929       unsigned NewSize = P.size(Level) - 1;
   1930       P.setSize(Level, NewSize);
   1931       // If we removed the last branch, update stop and move to a legal pos.
   1932       if (P.offset(Level) == NewSize) {
   1933         setNodeStop(Level, Parent.stop(NewSize - 1));
   1934         P.moveRight(Level);
   1935       }
   1936     }
   1937   }
   1938   // Update path cache for the new right sibling position.
   1939   if (P.valid()) {
   1940     P.reset(Level + 1);
   1941     P.offset(Level + 1) = 0;
   1942   }
   1943 }
   1944 
   1945 /// overflow - Distribute entries of the current node evenly among
   1946 /// its siblings and ensure that the current node is not full.
   1947 /// This may require allocating a new node.
   1948 /// @tparam NodeT The type of node at Level (Leaf or Branch).
   1949 /// @param Level path index of the overflowing node.
   1950 /// @return True when the tree height was changed.
   1951 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1952 template <typename NodeT>
   1953 bool IntervalMap<KeyT, ValT, N, Traits>::
   1954 iterator::overflow(unsigned Level) {
   1955   using namespace IntervalMapImpl;
   1956   Path &P = this->path;
   1957   unsigned CurSize[4];
   1958   NodeT *Node[4];
   1959   unsigned Nodes = 0;
   1960   unsigned Elements = 0;
   1961   unsigned Offset = P.offset(Level);
   1962 
   1963   // Do we have a left sibling?
   1964   NodeRef LeftSib = P.getLeftSibling(Level);
   1965   if (LeftSib) {
   1966     Offset += Elements = CurSize[Nodes] = LeftSib.size();
   1967     Node[Nodes++] = &LeftSib.get<NodeT>();
   1968   }
   1969 
   1970   // Current node.
   1971   Elements += CurSize[Nodes] = P.size(Level);
   1972   Node[Nodes++] = &P.node<NodeT>(Level);
   1973 
   1974   // Do we have a right sibling?
   1975   NodeRef RightSib = P.getRightSibling(Level);
   1976   if (RightSib) {
   1977     Elements += CurSize[Nodes] = RightSib.size();
   1978     Node[Nodes++] = &RightSib.get<NodeT>();
   1979   }
   1980 
   1981   // Do we need to allocate a new node?
   1982   unsigned NewNode = 0;
   1983   if (Elements + 1 > Nodes * NodeT::Capacity) {
   1984     // Insert NewNode at the penultimate position, or after a single node.
   1985     NewNode = Nodes == 1 ? 1 : Nodes - 1;
   1986     CurSize[Nodes] = CurSize[NewNode];
   1987     Node[Nodes] = Node[NewNode];
   1988     CurSize[NewNode] = 0;
   1989     Node[NewNode] = this->map->template newNode<NodeT>();
   1990     ++Nodes;
   1991   }
   1992 
   1993   // Compute the new element distribution.
   1994   unsigned NewSize[4];
   1995   IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
   1996                                  CurSize, NewSize, Offset, true);
   1997   adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
   1998 
   1999   // Move current location to the leftmost node.
   2000   if (LeftSib)
   2001     P.moveLeft(Level);
   2002 
   2003   // Elements have been rearranged, now update node sizes and stops.
   2004   bool SplitRoot = false;
   2005   unsigned Pos = 0;
   2006   for (;;) {
   2007     KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
   2008     if (NewNode && Pos == NewNode) {
   2009       SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
   2010       Level += SplitRoot;
   2011     } else {
   2012       P.setSize(Level, NewSize[Pos]);
   2013       setNodeStop(Level, Stop);
   2014     }
   2015     if (Pos + 1 == Nodes)
   2016       break;
   2017     P.moveRight(Level);
   2018     ++Pos;
   2019   }
   2020 
   2021   // Where was I? Find NewOffset.
   2022   while(Pos != NewOffset.first) {
   2023     P.moveLeft(Level);
   2024     --Pos;
   2025   }
   2026   P.offset(Level) = NewOffset.second;
   2027   return SplitRoot;
   2028 }
   2029 
   2030 //===----------------------------------------------------------------------===//
   2031 //---                       IntervalMapOverlaps                           ----//
   2032 //===----------------------------------------------------------------------===//
   2033 
   2034 /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
   2035 /// IntervalMaps. The maps may be different, but the KeyT and Traits types
   2036 /// should be the same.
   2037 ///
   2038 /// Typical uses:
   2039 ///
   2040 /// 1. Test for overlap:
   2041 ///    bool overlap = IntervalMapOverlaps(a, b).valid();
   2042 ///
   2043 /// 2. Enumerate overlaps:
   2044 ///    for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
   2045 ///
   2046 template <typename MapA, typename MapB>
   2047 class IntervalMapOverlaps {
   2048   typedef typename MapA::KeyType KeyType;
   2049   typedef typename MapA::KeyTraits Traits;
   2050   typename MapA::const_iterator posA;
   2051   typename MapB::const_iterator posB;
   2052 
   2053   /// advance - Move posA and posB forward until reaching an overlap, or until
   2054   /// either meets end.
   2055   /// Don't move the iterators if they are already overlapping.
   2056   void advance() {
   2057     if (!valid())
   2058       return;
   2059 
   2060     if (Traits::stopLess(posA.stop(), posB.start())) {
   2061       // A ends before B begins. Catch up.
   2062       posA.advanceTo(posB.start());
   2063       if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
   2064         return;
   2065     } else if (Traits::stopLess(posB.stop(), posA.start())) {
   2066       // B ends before A begins. Catch up.
   2067       posB.advanceTo(posA.start());
   2068       if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
   2069         return;
   2070     } else
   2071       // Already overlapping.
   2072       return;
   2073 
   2074     for (;;) {
   2075       // Make a.end > b.start.
   2076       posA.advanceTo(posB.start());
   2077       if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
   2078         return;
   2079       // Make b.end > a.start.
   2080       posB.advanceTo(posA.start());
   2081       if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
   2082         return;
   2083     }
   2084   }
   2085 
   2086 public:
   2087   /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
   2088   IntervalMapOverlaps(const MapA &a, const MapB &b)
   2089     : posA(b.empty() ? a.end() : a.find(b.start())),
   2090       posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
   2091 
   2092   /// valid - Return true if iterator is at an overlap.
   2093   bool valid() const {
   2094     return posA.valid() && posB.valid();
   2095   }
   2096 
   2097   /// a - access the left hand side in the overlap.
   2098   const typename MapA::const_iterator &a() const { return posA; }
   2099 
   2100   /// b - access the right hand side in the overlap.
   2101   const typename MapB::const_iterator &b() const { return posB; }
   2102 
   2103   /// start - Beginning of the overlapping interval.
   2104   KeyType start() const {
   2105     KeyType ak = a().start();
   2106     KeyType bk = b().start();
   2107     return Traits::startLess(ak, bk) ? bk : ak;
   2108   }
   2109 
   2110   /// stop - End of the overlapping interval.
   2111   KeyType stop() const {
   2112     KeyType ak = a().stop();
   2113     KeyType bk = b().stop();
   2114     return Traits::startLess(ak, bk) ? ak : bk;
   2115   }
   2116 
   2117   /// skipA - Move to the next overlap that doesn't involve a().
   2118   void skipA() {
   2119     ++posA;
   2120     advance();
   2121   }
   2122 
   2123   /// skipB - Move to the next overlap that doesn't involve b().
   2124   void skipB() {
   2125     ++posB;
   2126     advance();
   2127   }
   2128 
   2129   /// Preincrement - Move to the next overlap.
   2130   IntervalMapOverlaps &operator++() {
   2131     // Bump the iterator that ends first. The other one may have more overlaps.
   2132     if (Traits::startLess(posB.stop(), posA.stop()))
   2133       skipB();
   2134     else
   2135       skipA();
   2136     return *this;
   2137   }
   2138 
   2139   /// advanceTo - Move to the first overlapping interval with
   2140   /// stopLess(x, stop()).
   2141   void advanceTo(KeyType x) {
   2142     if (!valid())
   2143       return;
   2144     // Make sure advanceTo sees monotonic keys.
   2145     if (Traits::stopLess(posA.stop(), x))
   2146       posA.advanceTo(x);
   2147     if (Traits::stopLess(posB.stop(), x))
   2148       posB.advanceTo(x);
   2149     advance();
   2150   }
   2151 };
   2152 
   2153 } // end namespace llvm
   2154 
   2155 #endif // LLVM_ADT_INTERVALMAP_H
   2156