Home | History | Annotate | Download | only in IR
      1 //===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Represent a range of possible values that may occur when the program is run
     11 // for an integral value.  This keeps track of a lower and upper bound for the
     12 // constant, which MAY wrap around the end of the numeric range.  To do this, it
     13 // keeps track of a [lower, upper) bound, which specifies an interval just like
     14 // STL iterators.  When used with boolean values, the following are important
     15 // ranges: :
     16 //
     17 //  [F, F) = {}     = Empty set
     18 //  [T, F) = {T}
     19 //  [F, T) = {F}
     20 //  [T, T) = {F, T} = Full set
     21 //
     22 // The other integral ranges use min/max values for special range values. For
     23 // example, for 8-bit types, it uses:
     24 // [0, 0)     = {}       = Empty set
     25 // [255, 255) = {0..255} = Full Set
     26 //
     27 // Note that ConstantRange can be used to represent either signed or
     28 // unsigned ranges.
     29 //
     30 //===----------------------------------------------------------------------===//
     31 
     32 #ifndef LLVM_IR_CONSTANTRANGE_H
     33 #define LLVM_IR_CONSTANTRANGE_H
     34 
     35 #include "llvm/ADT/APInt.h"
     36 #include "llvm/IR/InstrTypes.h"
     37 #include "llvm/Support/DataTypes.h"
     38 
     39 namespace llvm {
     40 
     41 class MDNode;
     42 
     43 /// This class represents a range of values.
     44 ///
     45 class ConstantRange {
     46   APInt Lower, Upper;
     47 
     48   // If we have move semantics, pass APInts by value and move them into place.
     49   typedef APInt APIntMoveTy;
     50 
     51 public:
     52   /// Initialize a full (the default) or empty set for the specified bit width.
     53   ///
     54   explicit ConstantRange(uint32_t BitWidth, bool isFullSet = true);
     55 
     56   /// Initialize a range to hold the single specified value.
     57   ///
     58   ConstantRange(APIntMoveTy Value);
     59 
     60   /// @brief Initialize a range of values explicitly. This will assert out if
     61   /// Lower==Upper and Lower != Min or Max value for its type. It will also
     62   /// assert out if the two APInt's are not the same bit width.
     63   ConstantRange(APIntMoveTy Lower, APIntMoveTy Upper);
     64 
     65   /// Produce the smallest range such that all values that may satisfy the given
     66   /// predicate with any value contained within Other is contained in the
     67   /// returned range.  Formally, this returns a superset of
     68   /// 'union over all y in Other . { x : icmp op x y is true }'.  If the exact
     69   /// answer is not representable as a ConstantRange, the return value will be a
     70   /// proper superset of the above.
     71   ///
     72   /// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
     73   static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
     74                                              const ConstantRange &Other);
     75 
     76   /// Produce the largest range such that all values in the returned range
     77   /// satisfy the given predicate with all values contained within Other.
     78   /// Formally, this returns a subset of
     79   /// 'intersection over all y in Other . { x : icmp op x y is true }'.  If the
     80   /// exact answer is not representable as a ConstantRange, the return value
     81   /// will be a proper subset of the above.
     82   ///
     83   /// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
     84   static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
     85                                                 const ConstantRange &Other);
     86 
     87   /// Produce the exact range such that all values in the returned range satisfy
     88   /// the given predicate with any value contained within Other. Formally, this
     89   /// returns the exact answer when the superset of 'union over all y in Other
     90   /// is exactly same as the subset of intersection over all y in Other.
     91   /// { x : icmp op x y is true}'.
     92   ///
     93   /// Example: Pred = ult and Other = i8 3 returns [0, 3)
     94   static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
     95                                            const APInt &Other);
     96 
     97   /// Return the largest range containing all X such that "X BinOpC Y" is
     98   /// guaranteed not to wrap (overflow) for all Y in Other.
     99   ///
    100   /// NB! The returned set does *not* contain **all** possible values of X for
    101   /// which "X BinOpC Y" does not wrap -- some viable values of X may be
    102   /// missing, so you cannot use this to contrain X's range.  E.g. in the last
    103   /// example, "(-2) + 1" is both nsw and nuw (so the "X" could be -2), but (-2)
    104   /// is not in the set returned.
    105   ///
    106   /// Examples:
    107   ///  typedef OverflowingBinaryOperator OBO;
    108   ///  #define MGNR makeGuaranteedNoWrapRegion
    109   ///  MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
    110   ///  MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
    111   ///  MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
    112   ///  MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap | OBO::NoSignedWrap)
    113   ///    == [0,INT_MAX)
    114   ///  MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
    115   static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
    116                                                   const ConstantRange &Other,
    117                                                   unsigned NoWrapKind);
    118 
    119   /// Set up \p Pred and \p RHS such that
    120   /// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.  Return true if
    121   /// successful.
    122   bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;
    123 
    124   /// Return the lower value for this range.
    125   ///
    126   const APInt &getLower() const { return Lower; }
    127 
    128   /// Return the upper value for this range.
    129   ///
    130   const APInt &getUpper() const { return Upper; }
    131 
    132   /// Get the bit width of this ConstantRange.
    133   ///
    134   uint32_t getBitWidth() const { return Lower.getBitWidth(); }
    135 
    136   /// Return true if this set contains all of the elements possible
    137   /// for this data-type.
    138   ///
    139   bool isFullSet() const;
    140 
    141   /// Return true if this set contains no members.
    142   ///
    143   bool isEmptySet() const;
    144 
    145   /// Return true if this set wraps around the top of the range.
    146   /// For example: [100, 8).
    147   ///
    148   bool isWrappedSet() const;
    149 
    150   /// Return true if this set wraps around the INT_MIN of
    151   /// its bitwidth. For example: i8 [120, 140).
    152   ///
    153   bool isSignWrappedSet() const;
    154 
    155   /// Return true if the specified value is in the set.
    156   ///
    157   bool contains(const APInt &Val) const;
    158 
    159   /// Return true if the other range is a subset of this one.
    160   ///
    161   bool contains(const ConstantRange &CR) const;
    162 
    163   /// If this set contains a single element, return it, otherwise return null.
    164   ///
    165   const APInt *getSingleElement() const {
    166     if (Upper == Lower + 1)
    167       return &Lower;
    168     return nullptr;
    169   }
    170 
    171   /// If this set contains all but a single element, return it, otherwise return
    172   /// null.
    173   const APInt *getSingleMissingElement() const {
    174     if (Lower == Upper + 1)
    175       return &Upper;
    176     return nullptr;
    177   }
    178 
    179   /// Return true if this set contains exactly one member.
    180   ///
    181   bool isSingleElement() const { return getSingleElement() != nullptr; }
    182 
    183   /// Return the number of elements in this set.
    184   ///
    185   APInt getSetSize() const;
    186 
    187   /// Compare set size of this range with the range CR.
    188   ///
    189   bool isSizeStrictlySmallerThanOf(const ConstantRange &CR) const;
    190 
    191   /// Return the largest unsigned value contained in the ConstantRange.
    192   ///
    193   APInt getUnsignedMax() const;
    194 
    195   /// Return the smallest unsigned value contained in the ConstantRange.
    196   ///
    197   APInt getUnsignedMin() const;
    198 
    199   /// Return the largest signed value contained in the ConstantRange.
    200   ///
    201   APInt getSignedMax() const;
    202 
    203   /// Return the smallest signed value contained in the ConstantRange.
    204   ///
    205   APInt getSignedMin() const;
    206 
    207   /// Return true if this range is equal to another range.
    208   ///
    209   bool operator==(const ConstantRange &CR) const {
    210     return Lower == CR.Lower && Upper == CR.Upper;
    211   }
    212   bool operator!=(const ConstantRange &CR) const {
    213     return !operator==(CR);
    214   }
    215 
    216   /// Subtract the specified constant from the endpoints of this constant range.
    217   ConstantRange subtract(const APInt &CI) const;
    218 
    219   /// \brief Subtract the specified range from this range (aka relative
    220   /// complement of the sets).
    221   ConstantRange difference(const ConstantRange &CR) const;
    222 
    223   /// Return the range that results from the intersection of
    224   /// this range with another range.  The resultant range is guaranteed to
    225   /// include all elements contained in both input ranges, and to have the
    226   /// smallest possible set size that does so.  Because there may be two
    227   /// intersections with the same set size, A.intersectWith(B) might not
    228   /// be equal to B.intersectWith(A).
    229   ///
    230   ConstantRange intersectWith(const ConstantRange &CR) const;
    231 
    232   /// Return the range that results from the union of this range
    233   /// with another range.  The resultant range is guaranteed to include the
    234   /// elements of both sets, but may contain more.  For example, [3, 9) union
    235   /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
    236   /// in either set before.
    237   ///
    238   ConstantRange unionWith(const ConstantRange &CR) const;
    239 
    240   /// Return a new range representing the possible values resulting
    241   /// from an application of the specified cast operator to this range. \p
    242   /// BitWidth is the target bitwidth of the cast.  For casts which don't
    243   /// change bitwidth, it must be the same as the source bitwidth.  For casts
    244   /// which do change bitwidth, the bitwidth must be consistent with the
    245   /// requested cast and source bitwidth.
    246   ConstantRange castOp(Instruction::CastOps CastOp,
    247                        uint32_t BitWidth) const;
    248 
    249   /// Return a new range in the specified integer type, which must
    250   /// be strictly larger than the current type.  The returned range will
    251   /// correspond to the possible range of values if the source range had been
    252   /// zero extended to BitWidth.
    253   ConstantRange zeroExtend(uint32_t BitWidth) const;
    254 
    255   /// Return a new range in the specified integer type, which must
    256   /// be strictly larger than the current type.  The returned range will
    257   /// correspond to the possible range of values if the source range had been
    258   /// sign extended to BitWidth.
    259   ConstantRange signExtend(uint32_t BitWidth) const;
    260 
    261   /// Return a new range in the specified integer type, which must be
    262   /// strictly smaller than the current type.  The returned range will
    263   /// correspond to the possible range of values if the source range had been
    264   /// truncated to the specified type.
    265   ConstantRange truncate(uint32_t BitWidth) const;
    266 
    267   /// Make this range have the bit width given by \p BitWidth. The
    268   /// value is zero extended, truncated, or left alone to make it that width.
    269   ConstantRange zextOrTrunc(uint32_t BitWidth) const;
    270 
    271   /// Make this range have the bit width given by \p BitWidth. The
    272   /// value is sign extended, truncated, or left alone to make it that width.
    273   ConstantRange sextOrTrunc(uint32_t BitWidth) const;
    274 
    275   /// Return a new range representing the possible values resulting
    276   /// from an application of the specified binary operator to an left hand side
    277   /// of this range and a right hand side of \p Other.
    278   ConstantRange binaryOp(Instruction::BinaryOps BinOp,
    279                          const ConstantRange &Other) const;
    280 
    281   /// Return a new range representing the possible values resulting
    282   /// from an addition of a value in this range and a value in \p Other.
    283   ConstantRange add(const ConstantRange &Other) const;
    284 
    285   /// Return a new range representing the possible values resulting from a
    286   /// known NSW addition of a value in this range and \p Other constant.
    287   ConstantRange addWithNoSignedWrap(const APInt &Other) const;
    288 
    289   /// Return a new range representing the possible values resulting
    290   /// from a subtraction of a value in this range and a value in \p Other.
    291   ConstantRange sub(const ConstantRange &Other) const;
    292 
    293   /// Return a new range representing the possible values resulting
    294   /// from a multiplication of a value in this range and a value in \p Other,
    295   /// treating both this and \p Other as unsigned ranges.
    296   ConstantRange multiply(const ConstantRange &Other) const;
    297 
    298   /// Return a new range representing the possible values resulting
    299   /// from a signed maximum of a value in this range and a value in \p Other.
    300   ConstantRange smax(const ConstantRange &Other) const;
    301 
    302   /// Return a new range representing the possible values resulting
    303   /// from an unsigned maximum of a value in this range and a value in \p Other.
    304   ConstantRange umax(const ConstantRange &Other) const;
    305 
    306   /// Return a new range representing the possible values resulting
    307   /// from a signed minimum of a value in this range and a value in \p Other.
    308   ConstantRange smin(const ConstantRange &Other) const;
    309 
    310   /// Return a new range representing the possible values resulting
    311   /// from an unsigned minimum of a value in this range and a value in \p Other.
    312   ConstantRange umin(const ConstantRange &Other) const;
    313 
    314   /// Return a new range representing the possible values resulting
    315   /// from an unsigned division of a value in this range and a value in
    316   /// \p Other.
    317   ConstantRange udiv(const ConstantRange &Other) const;
    318 
    319   /// Return a new range representing the possible values resulting
    320   /// from a binary-and of a value in this range by a value in \p Other.
    321   ConstantRange binaryAnd(const ConstantRange &Other) const;
    322 
    323   /// Return a new range representing the possible values resulting
    324   /// from a binary-or of a value in this range by a value in \p Other.
    325   ConstantRange binaryOr(const ConstantRange &Other) const;
    326 
    327   /// Return a new range representing the possible values resulting
    328   /// from a left shift of a value in this range by a value in \p Other.
    329   /// TODO: This isn't fully implemented yet.
    330   ConstantRange shl(const ConstantRange &Other) const;
    331 
    332   /// Return a new range representing the possible values resulting from a
    333   /// logical right shift of a value in this range and a value in \p Other.
    334   ConstantRange lshr(const ConstantRange &Other) const;
    335 
    336   /// Return a new range that is the logical not of the current set.
    337   ///
    338   ConstantRange inverse() const;
    339 
    340   /// Print out the bounds to a stream.
    341   ///
    342   void print(raw_ostream &OS) const;
    343 
    344   /// Allow printing from a debugger easily.
    345   ///
    346   void dump() const;
    347 };
    348 
    349 inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
    350   CR.print(OS);
    351   return OS;
    352 }
    353 
    354 /// Parse out a conservative ConstantRange from !range metadata.
    355 ///
    356 /// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20).
    357 ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD);
    358 
    359 } // End llvm namespace
    360 
    361 #endif
    362