Home | History | Annotate | Download | only in LTO
      1 //===-LTO.h - LLVM Link Time Optimizer ------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares functions and classes used to support LTO. It is intended
     11 // to be used both by LTO classes as well as by clients (gold-plugin) that
     12 // don't utilize the LTO code generator interfaces.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_LTO_LTO_H
     17 #define LLVM_LTO_LTO_H
     18 
     19 #include "llvm/ADT/MapVector.h"
     20 #include "llvm/ADT/StringMap.h"
     21 #include "llvm/ADT/StringSet.h"
     22 #include "llvm/Analysis/ObjectUtils.h"
     23 #include "llvm/IR/DiagnosticInfo.h"
     24 #include "llvm/IR/ModuleSummaryIndex.h"
     25 #include "llvm/LTO/Config.h"
     26 #include "llvm/Linker/IRMover.h"
     27 #include "llvm/Object/IRSymtab.h"
     28 #include "llvm/Support/Error.h"
     29 #include "llvm/Support/ToolOutputFile.h"
     30 #include "llvm/Support/thread.h"
     31 #include "llvm/Target/TargetOptions.h"
     32 #include "llvm/Transforms/IPO/FunctionImport.h"
     33 
     34 namespace llvm {
     35 
     36 class BitcodeModule;
     37 class Error;
     38 class LLVMContext;
     39 class MemoryBufferRef;
     40 class Module;
     41 class Target;
     42 class raw_pwrite_stream;
     43 
     44 /// Resolve Weak and LinkOnce values in the \p Index. Linkage changes recorded
     45 /// in the index and the ThinLTO backends must apply the changes to the Module
     46 /// via thinLTOResolveWeakForLinkerModule.
     47 ///
     48 /// This is done for correctness (if value exported, ensure we always
     49 /// emit a copy), and compile-time optimization (allow drop of duplicates).
     50 void thinLTOResolveWeakForLinkerInIndex(
     51     ModuleSummaryIndex &Index,
     52     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
     53         isPrevailing,
     54     function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
     55         recordNewLinkage);
     56 
     57 /// Update the linkages in the given \p Index to mark exported values
     58 /// as external and non-exported values as internal. The ThinLTO backends
     59 /// must apply the changes to the Module via thinLTOInternalizeModule.
     60 void thinLTOInternalizeAndPromoteInIndex(
     61     ModuleSummaryIndex &Index,
     62     function_ref<bool(StringRef, GlobalValue::GUID)> isExported);
     63 
     64 namespace lto {
     65 
     66 /// Given the original \p Path to an output file, replace any path
     67 /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the
     68 /// resulting directory if it does not yet exist.
     69 std::string getThinLTOOutputFile(const std::string &Path,
     70                                  const std::string &OldPrefix,
     71                                  const std::string &NewPrefix);
     72 
     73 /// Setup optimization remarks.
     74 Expected<std::unique_ptr<tool_output_file>>
     75 setupOptimizationRemarks(LLVMContext &Context, StringRef LTORemarksFilename,
     76                          bool LTOPassRemarksWithHotness, int Count = -1);
     77 
     78 class LTO;
     79 struct SymbolResolution;
     80 class ThinBackendProc;
     81 
     82 /// An input file. This is a symbol table wrapper that only exposes the
     83 /// information that an LTO client should need in order to do symbol resolution.
     84 class InputFile {
     85 public:
     86   class Symbol;
     87 
     88 private:
     89   // FIXME: Remove LTO class friendship once we have bitcode symbol tables.
     90   friend LTO;
     91   InputFile() = default;
     92 
     93   std::vector<BitcodeModule> Mods;
     94   SmallVector<char, 0> Strtab;
     95   std::vector<Symbol> Symbols;
     96 
     97   // [begin, end) for each module
     98   std::vector<std::pair<size_t, size_t>> ModuleSymIndices;
     99 
    100   StringRef SourceFileName, COFFLinkerOpts;
    101   std::vector<StringRef> ComdatTable;
    102 
    103 public:
    104   ~InputFile();
    105 
    106   /// Create an InputFile.
    107   static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object);
    108 
    109   /// The purpose of this class is to only expose the symbol information that an
    110   /// LTO client should need in order to do symbol resolution.
    111   class Symbol : irsymtab::Symbol {
    112     friend LTO;
    113 
    114   public:
    115     Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {}
    116 
    117     using irsymtab::Symbol::isUndefined;
    118     using irsymtab::Symbol::isCommon;
    119     using irsymtab::Symbol::isWeak;
    120     using irsymtab::Symbol::isIndirect;
    121     using irsymtab::Symbol::getName;
    122     using irsymtab::Symbol::getVisibility;
    123     using irsymtab::Symbol::canBeOmittedFromSymbolTable;
    124     using irsymtab::Symbol::isTLS;
    125     using irsymtab::Symbol::getComdatIndex;
    126     using irsymtab::Symbol::getCommonSize;
    127     using irsymtab::Symbol::getCommonAlignment;
    128     using irsymtab::Symbol::getCOFFWeakExternalFallback;
    129   };
    130 
    131   /// A range over the symbols in this InputFile.
    132   ArrayRef<Symbol> symbols() const { return Symbols; }
    133 
    134   /// Returns linker options specified in the input file.
    135   StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; }
    136 
    137   /// Returns the path to the InputFile.
    138   StringRef getName() const;
    139 
    140   /// Returns the source file path specified at compile time.
    141   StringRef getSourceFileName() const { return SourceFileName; }
    142 
    143   // Returns a table with all the comdats used by this file.
    144   ArrayRef<StringRef> getComdatTable() const { return ComdatTable; }
    145 
    146 private:
    147   ArrayRef<Symbol> module_symbols(unsigned I) const {
    148     const auto &Indices = ModuleSymIndices[I];
    149     return {Symbols.data() + Indices.first, Symbols.data() + Indices.second};
    150   }
    151 };
    152 
    153 /// This class wraps an output stream for a native object. Most clients should
    154 /// just be able to return an instance of this base class from the stream
    155 /// callback, but if a client needs to perform some action after the stream is
    156 /// written to, that can be done by deriving from this class and overriding the
    157 /// destructor.
    158 class NativeObjectStream {
    159 public:
    160   NativeObjectStream(std::unique_ptr<raw_pwrite_stream> OS) : OS(std::move(OS)) {}
    161   std::unique_ptr<raw_pwrite_stream> OS;
    162   virtual ~NativeObjectStream() = default;
    163 };
    164 
    165 /// This type defines the callback to add a native object that is generated on
    166 /// the fly.
    167 ///
    168 /// Stream callbacks must be thread safe.
    169 typedef std::function<std::unique_ptr<NativeObjectStream>(unsigned Task)>
    170     AddStreamFn;
    171 
    172 /// This is the type of a native object cache. To request an item from the
    173 /// cache, pass a unique string as the Key. For hits, the cached file will be
    174 /// added to the link and this function will return AddStreamFn(). For misses,
    175 /// the cache will return a stream callback which must be called at most once to
    176 /// produce content for the stream. The native object stream produced by the
    177 /// stream callback will add the file to the link after the stream is written
    178 /// to.
    179 ///
    180 /// Clients generally look like this:
    181 ///
    182 /// if (AddStreamFn AddStream = Cache(Task, Key))
    183 ///   ProduceContent(AddStream);
    184 typedef std::function<AddStreamFn(unsigned Task, StringRef Key)>
    185     NativeObjectCache;
    186 
    187 /// A ThinBackend defines what happens after the thin-link phase during ThinLTO.
    188 /// The details of this type definition aren't important; clients can only
    189 /// create a ThinBackend using one of the create*ThinBackend() functions below.
    190 typedef std::function<std::unique_ptr<ThinBackendProc>(
    191     Config &C, ModuleSummaryIndex &CombinedIndex,
    192     StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
    193     AddStreamFn AddStream, NativeObjectCache Cache)>
    194     ThinBackend;
    195 
    196 /// This ThinBackend runs the individual backend jobs in-process.
    197 ThinBackend createInProcessThinBackend(unsigned ParallelismLevel);
    198 
    199 /// This ThinBackend writes individual module indexes to files, instead of
    200 /// running the individual backend jobs. This backend is for distributed builds
    201 /// where separate processes will invoke the real backends.
    202 ///
    203 /// To find the path to write the index to, the backend checks if the path has a
    204 /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then
    205 /// appends ".thinlto.bc" and writes the index to that path. If
    206 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a
    207 /// similar path with ".imports" appended instead.
    208 ThinBackend createWriteIndexesThinBackend(std::string OldPrefix,
    209                                           std::string NewPrefix,
    210                                           bool ShouldEmitImportsFiles,
    211                                           std::string LinkedObjectsFile);
    212 
    213 /// This class implements a resolution-based interface to LLVM's LTO
    214 /// functionality. It supports regular LTO, parallel LTO code generation and
    215 /// ThinLTO. You can use it from a linker in the following way:
    216 /// - Set hooks and code generation options (see lto::Config struct defined in
    217 ///   Config.h), and use the lto::Config object to create an lto::LTO object.
    218 /// - Create lto::InputFile objects using lto::InputFile::create(), then use
    219 ///   the symbols() function to enumerate its symbols and compute a resolution
    220 ///   for each symbol (see SymbolResolution below).
    221 /// - After the linker has visited each input file (and each regular object
    222 ///   file) and computed a resolution for each symbol, take each lto::InputFile
    223 ///   and pass it and an array of symbol resolutions to the add() function.
    224 /// - Call the getMaxTasks() function to get an upper bound on the number of
    225 ///   native object files that LTO may add to the link.
    226 /// - Call the run() function. This function will use the supplied AddStream
    227 ///   and Cache functions to add up to getMaxTasks() native object files to
    228 ///   the link.
    229 class LTO {
    230   friend InputFile;
    231 
    232 public:
    233   /// Create an LTO object. A default constructed LTO object has a reasonable
    234   /// production configuration, but you can customize it by passing arguments to
    235   /// this constructor.
    236   /// FIXME: We do currently require the DiagHandler field to be set in Conf.
    237   /// Until that is fixed, a Config argument is required.
    238   LTO(Config Conf, ThinBackend Backend = nullptr,
    239       unsigned ParallelCodeGenParallelismLevel = 1);
    240   ~LTO();
    241 
    242   /// Add an input file to the LTO link, using the provided symbol resolutions.
    243   /// The symbol resolutions must appear in the enumeration order given by
    244   /// InputFile::symbols().
    245   Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res);
    246 
    247   /// Returns an upper bound on the number of tasks that the client may expect.
    248   /// This may only be called after all IR object files have been added. For a
    249   /// full description of tasks see LTOBackend.h.
    250   unsigned getMaxTasks() const;
    251 
    252   /// Runs the LTO pipeline. This function calls the supplied AddStream
    253   /// function to add native object files to the link.
    254   ///
    255   /// The Cache parameter is optional. If supplied, it will be used to cache
    256   /// native object files and add them to the link.
    257   ///
    258   /// The client will receive at most one callback (via either AddStream or
    259   /// Cache) for each task identifier.
    260   Error run(AddStreamFn AddStream, NativeObjectCache Cache = nullptr);
    261 
    262 private:
    263   Config Conf;
    264 
    265   struct RegularLTOState {
    266     RegularLTOState(unsigned ParallelCodeGenParallelismLevel, Config &Conf);
    267     struct CommonResolution {
    268       uint64_t Size = 0;
    269       unsigned Align = 0;
    270       /// Record if at least one instance of the common was marked as prevailing
    271       bool Prevailing = false;
    272     };
    273     std::map<std::string, CommonResolution> Commons;
    274 
    275     unsigned ParallelCodeGenParallelismLevel;
    276     LTOLLVMContext Ctx;
    277     bool HasModule = false;
    278     std::unique_ptr<Module> CombinedModule;
    279     std::unique_ptr<IRMover> Mover;
    280   } RegularLTO;
    281 
    282   struct ThinLTOState {
    283     ThinLTOState(ThinBackend Backend);
    284 
    285     ThinBackend Backend;
    286     ModuleSummaryIndex CombinedIndex;
    287     MapVector<StringRef, BitcodeModule> ModuleMap;
    288     DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID;
    289   } ThinLTO;
    290 
    291   // The global resolution for a particular (mangled) symbol name. This is in
    292   // particular necessary to track whether each symbol can be internalized.
    293   // Because any input file may introduce a new cross-partition reference, we
    294   // cannot make any final internalization decisions until all input files have
    295   // been added and the client has called run(). During run() we apply
    296   // internalization decisions either directly to the module (for regular LTO)
    297   // or to the combined index (for ThinLTO).
    298   struct GlobalResolution {
    299     /// The unmangled name of the global.
    300     std::string IRName;
    301 
    302     /// Keep track if the symbol is visible outside of ThinLTO (i.e. in
    303     /// either a regular object or the regular LTO partition).
    304     bool VisibleOutsideThinLTO = false;
    305 
    306     bool UnnamedAddr = true;
    307 
    308     /// This field keeps track of the partition number of this global. The
    309     /// regular LTO object is partition 0, while each ThinLTO object has its own
    310     /// partition number from 1 onwards.
    311     ///
    312     /// Any global that is defined or used by more than one partition, or that
    313     /// is referenced externally, may not be internalized.
    314     ///
    315     /// Partitions generally have a one-to-one correspondence with tasks, except
    316     /// that we use partition 0 for all parallel LTO code generation partitions.
    317     /// Any partitioning of the combined LTO object is done internally by the
    318     /// LTO backend.
    319     unsigned Partition = Unknown;
    320 
    321     /// Special partition numbers.
    322     enum : unsigned {
    323       /// A partition number has not yet been assigned to this global.
    324       Unknown = -1u,
    325 
    326       /// This global is either used by more than one partition or has an
    327       /// external reference, and therefore cannot be internalized.
    328       External = -2u,
    329 
    330       /// The RegularLTO partition
    331       RegularLTO = 0,
    332     };
    333   };
    334 
    335   // Global mapping from mangled symbol names to resolutions.
    336   StringMap<GlobalResolution> GlobalResolutions;
    337 
    338   void addSymbolToGlobalRes(const InputFile::Symbol &Sym, SymbolResolution Res,
    339                             unsigned Partition);
    340 
    341   // These functions take a range of symbol resolutions [ResI, ResE) and consume
    342   // the resolutions used by a single input module by incrementing ResI. After
    343   // these functions return, [ResI, ResE) will refer to the resolution range for
    344   // the remaining modules in the InputFile.
    345   Error addModule(InputFile &Input, unsigned ModI,
    346                   const SymbolResolution *&ResI, const SymbolResolution *ResE);
    347   Error addRegularLTO(BitcodeModule BM,
    348                       ArrayRef<InputFile::Symbol> Syms,
    349                       const SymbolResolution *&ResI,
    350                       const SymbolResolution *ResE);
    351   Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
    352                    const SymbolResolution *&ResI, const SymbolResolution *ResE);
    353 
    354   Error runRegularLTO(AddStreamFn AddStream);
    355   Error runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache,
    356                    bool HasRegularLTO);
    357 
    358   mutable bool CalledGetMaxTasks = false;
    359 };
    360 
    361 /// The resolution for a symbol. The linker must provide a SymbolResolution for
    362 /// each global symbol based on its internal resolution of that symbol.
    363 struct SymbolResolution {
    364   SymbolResolution()
    365       : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0) {
    366   }
    367   /// The linker has chosen this definition of the symbol.
    368   unsigned Prevailing : 1;
    369 
    370   /// The definition of this symbol is unpreemptable at runtime and is known to
    371   /// be in this linkage unit.
    372   unsigned FinalDefinitionInLinkageUnit : 1;
    373 
    374   /// The definition of this symbol is visible outside of the LTO unit.
    375   unsigned VisibleToRegularObj : 1;
    376 };
    377 
    378 } // namespace lto
    379 } // namespace llvm
    380 
    381 #endif
    382