Home | History | Annotate | Download | only in Object
      1 //===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_OBJECT_ELFTYPES_H
     11 #define LLVM_OBJECT_ELFTYPES_H
     12 
     13 #include "llvm/ADT/ArrayRef.h"
     14 #include "llvm/Object/Error.h"
     15 #include "llvm/Support/ELF.h"
     16 #include "llvm/Support/Endian.h"
     17 #include "llvm/Support/ErrorOr.h"
     18 
     19 namespace llvm {
     20 namespace object {
     21 
     22 using support::endianness;
     23 
     24 template <class ELFT> struct Elf_Ehdr_Impl;
     25 template <class ELFT> struct Elf_Shdr_Impl;
     26 template <class ELFT> struct Elf_Sym_Impl;
     27 template <class ELFT> struct Elf_Dyn_Impl;
     28 template <class ELFT> struct Elf_Phdr_Impl;
     29 template <class ELFT, bool isRela> struct Elf_Rel_Impl;
     30 template <class ELFT> struct Elf_Verdef_Impl;
     31 template <class ELFT> struct Elf_Verdaux_Impl;
     32 template <class ELFT> struct Elf_Verneed_Impl;
     33 template <class ELFT> struct Elf_Vernaux_Impl;
     34 template <class ELFT> struct Elf_Versym_Impl;
     35 template <class ELFT> struct Elf_Hash_Impl;
     36 template <class ELFT> struct Elf_GnuHash_Impl;
     37 template <class ELFT> struct Elf_Chdr_Impl;
     38 
     39 template <endianness E, bool Is64> struct ELFType {
     40 private:
     41   template <typename Ty>
     42   using packed = support::detail::packed_endian_specific_integral<Ty, E, 2>;
     43 
     44 public:
     45   static const endianness TargetEndianness = E;
     46   static const bool Is64Bits = Is64;
     47 
     48   typedef typename std::conditional<Is64, uint64_t, uint32_t>::type uint;
     49   typedef Elf_Ehdr_Impl<ELFType<E, Is64>> Ehdr;
     50   typedef Elf_Shdr_Impl<ELFType<E, Is64>> Shdr;
     51   typedef Elf_Sym_Impl<ELFType<E, Is64>> Sym;
     52   typedef Elf_Dyn_Impl<ELFType<E, Is64>> Dyn;
     53   typedef Elf_Phdr_Impl<ELFType<E, Is64>> Phdr;
     54   typedef Elf_Rel_Impl<ELFType<E, Is64>, false> Rel;
     55   typedef Elf_Rel_Impl<ELFType<E, Is64>, true> Rela;
     56   typedef Elf_Verdef_Impl<ELFType<E, Is64>> Verdef;
     57   typedef Elf_Verdaux_Impl<ELFType<E, Is64>> Verdaux;
     58   typedef Elf_Verneed_Impl<ELFType<E, Is64>> Verneed;
     59   typedef Elf_Vernaux_Impl<ELFType<E, Is64>> Vernaux;
     60   typedef Elf_Versym_Impl<ELFType<E, Is64>> Versym;
     61   typedef Elf_Hash_Impl<ELFType<E, Is64>> Hash;
     62   typedef Elf_GnuHash_Impl<ELFType<E, Is64>> GnuHash;
     63   typedef Elf_Chdr_Impl<ELFType<E, Is64>> Chdr;
     64   typedef ArrayRef<Dyn> DynRange;
     65   typedef ArrayRef<Shdr> ShdrRange;
     66   typedef ArrayRef<Sym> SymRange;
     67   typedef ArrayRef<Rel> RelRange;
     68   typedef ArrayRef<Rela> RelaRange;
     69   typedef ArrayRef<Phdr> PhdrRange;
     70 
     71   typedef packed<uint16_t> Half;
     72   typedef packed<uint32_t> Word;
     73   typedef packed<int32_t> Sword;
     74   typedef packed<uint64_t> Xword;
     75   typedef packed<int64_t> Sxword;
     76   typedef packed<uint> Addr;
     77   typedef packed<uint> Off;
     78 };
     79 
     80 typedef ELFType<support::little, false> ELF32LE;
     81 typedef ELFType<support::big, false> ELF32BE;
     82 typedef ELFType<support::little, true> ELF64LE;
     83 typedef ELFType<support::big, true> ELF64BE;
     84 
     85 // Use an alignment of 2 for the typedefs since that is the worst case for
     86 // ELF files in archives.
     87 
     88 // Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
     89 template <endianness target_endianness> struct ELFDataTypeTypedefHelperCommon {
     90   typedef support::detail::packed_endian_specific_integral<
     91       uint16_t, target_endianness, 2> Elf_Half;
     92   typedef support::detail::packed_endian_specific_integral<
     93       uint32_t, target_endianness, 2> Elf_Word;
     94   typedef support::detail::packed_endian_specific_integral<
     95       int32_t, target_endianness, 2> Elf_Sword;
     96   typedef support::detail::packed_endian_specific_integral<
     97       uint64_t, target_endianness, 2> Elf_Xword;
     98   typedef support::detail::packed_endian_specific_integral<
     99       int64_t, target_endianness, 2> Elf_Sxword;
    100 };
    101 
    102 template <class ELFT> struct ELFDataTypeTypedefHelper;
    103 
    104 /// ELF 32bit types.
    105 template <endianness TargetEndianness>
    106 struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, false>>
    107     : ELFDataTypeTypedefHelperCommon<TargetEndianness> {
    108   typedef uint32_t value_type;
    109   typedef support::detail::packed_endian_specific_integral<
    110       value_type, TargetEndianness, 2> Elf_Addr;
    111   typedef support::detail::packed_endian_specific_integral<
    112       value_type, TargetEndianness, 2> Elf_Off;
    113 };
    114 
    115 /// ELF 64bit types.
    116 template <endianness TargetEndianness>
    117 struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, true>>
    118     : ELFDataTypeTypedefHelperCommon<TargetEndianness> {
    119   typedef uint64_t value_type;
    120   typedef support::detail::packed_endian_specific_integral<
    121       value_type, TargetEndianness, 2> Elf_Addr;
    122   typedef support::detail::packed_endian_specific_integral<
    123       value_type, TargetEndianness, 2> Elf_Off;
    124 };
    125 
    126 // I really don't like doing this, but the alternative is copypasta.
    127 
    128 #define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)                                       \
    129   typedef typename ELFT::Addr Elf_Addr;                                        \
    130   typedef typename ELFT::Off Elf_Off;                                          \
    131   typedef typename ELFT::Half Elf_Half;                                        \
    132   typedef typename ELFT::Word Elf_Word;                                        \
    133   typedef typename ELFT::Sword Elf_Sword;                                      \
    134   typedef typename ELFT::Xword Elf_Xword;                                      \
    135   typedef typename ELFT::Sxword Elf_Sxword;
    136 
    137 #define LLD_ELF_COMMA ,
    138 #define LLVM_ELF_IMPORT_TYPES(E, W)                                            \
    139   LLVM_ELF_IMPORT_TYPES_ELFT(ELFType<E LLD_ELF_COMMA W>)
    140 
    141 // Section header.
    142 template <class ELFT> struct Elf_Shdr_Base;
    143 
    144 template <endianness TargetEndianness>
    145 struct Elf_Shdr_Base<ELFType<TargetEndianness, false>> {
    146   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    147   Elf_Word sh_name;      // Section name (index into string table)
    148   Elf_Word sh_type;      // Section type (SHT_*)
    149   Elf_Word sh_flags;     // Section flags (SHF_*)
    150   Elf_Addr sh_addr;      // Address where section is to be loaded
    151   Elf_Off sh_offset;     // File offset of section data, in bytes
    152   Elf_Word sh_size;      // Size of section, in bytes
    153   Elf_Word sh_link;      // Section type-specific header table index link
    154   Elf_Word sh_info;      // Section type-specific extra information
    155   Elf_Word sh_addralign; // Section address alignment
    156   Elf_Word sh_entsize;   // Size of records contained within the section
    157 };
    158 
    159 template <endianness TargetEndianness>
    160 struct Elf_Shdr_Base<ELFType<TargetEndianness, true>> {
    161   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    162   Elf_Word sh_name;       // Section name (index into string table)
    163   Elf_Word sh_type;       // Section type (SHT_*)
    164   Elf_Xword sh_flags;     // Section flags (SHF_*)
    165   Elf_Addr sh_addr;       // Address where section is to be loaded
    166   Elf_Off sh_offset;      // File offset of section data, in bytes
    167   Elf_Xword sh_size;      // Size of section, in bytes
    168   Elf_Word sh_link;       // Section type-specific header table index link
    169   Elf_Word sh_info;       // Section type-specific extra information
    170   Elf_Xword sh_addralign; // Section address alignment
    171   Elf_Xword sh_entsize;   // Size of records contained within the section
    172 };
    173 
    174 template <class ELFT>
    175 struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
    176   using Elf_Shdr_Base<ELFT>::sh_entsize;
    177   using Elf_Shdr_Base<ELFT>::sh_size;
    178 
    179   /// @brief Get the number of entities this section contains if it has any.
    180   unsigned getEntityCount() const {
    181     if (sh_entsize == 0)
    182       return 0;
    183     return sh_size / sh_entsize;
    184   }
    185 };
    186 
    187 template <class ELFT> struct Elf_Sym_Base;
    188 
    189 template <endianness TargetEndianness>
    190 struct Elf_Sym_Base<ELFType<TargetEndianness, false>> {
    191   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    192   Elf_Word st_name;       // Symbol name (index into string table)
    193   Elf_Addr st_value;      // Value or address associated with the symbol
    194   Elf_Word st_size;       // Size of the symbol
    195   unsigned char st_info;  // Symbol's type and binding attributes
    196   unsigned char st_other; // Must be zero; reserved
    197   Elf_Half st_shndx;      // Which section (header table index) it's defined in
    198 };
    199 
    200 template <endianness TargetEndianness>
    201 struct Elf_Sym_Base<ELFType<TargetEndianness, true>> {
    202   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    203   Elf_Word st_name;       // Symbol name (index into string table)
    204   unsigned char st_info;  // Symbol's type and binding attributes
    205   unsigned char st_other; // Must be zero; reserved
    206   Elf_Half st_shndx;      // Which section (header table index) it's defined in
    207   Elf_Addr st_value;      // Value or address associated with the symbol
    208   Elf_Xword st_size;      // Size of the symbol
    209 };
    210 
    211 template <class ELFT>
    212 struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
    213   using Elf_Sym_Base<ELFT>::st_info;
    214   using Elf_Sym_Base<ELFT>::st_shndx;
    215   using Elf_Sym_Base<ELFT>::st_other;
    216   using Elf_Sym_Base<ELFT>::st_value;
    217 
    218   // These accessors and mutators correspond to the ELF32_ST_BIND,
    219   // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
    220   unsigned char getBinding() const { return st_info >> 4; }
    221   unsigned char getType() const { return st_info & 0x0f; }
    222   uint64_t getValue() const { return st_value; }
    223   void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
    224   void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
    225   void setBindingAndType(unsigned char b, unsigned char t) {
    226     st_info = (b << 4) + (t & 0x0f);
    227   }
    228 
    229   /// Access to the STV_xxx flag stored in the first two bits of st_other.
    230   /// STV_DEFAULT: 0
    231   /// STV_INTERNAL: 1
    232   /// STV_HIDDEN: 2
    233   /// STV_PROTECTED: 3
    234   unsigned char getVisibility() const { return st_other & 0x3; }
    235   void setVisibility(unsigned char v) {
    236     assert(v < 4 && "Invalid value for visibility");
    237     st_other = (st_other & ~0x3) | v;
    238   }
    239 
    240   bool isAbsolute() const { return st_shndx == ELF::SHN_ABS; }
    241   bool isCommon() const {
    242     return getType() == ELF::STT_COMMON || st_shndx == ELF::SHN_COMMON;
    243   }
    244   bool isDefined() const { return !isUndefined(); }
    245   bool isProcessorSpecific() const {
    246     return st_shndx >= ELF::SHN_LOPROC && st_shndx <= ELF::SHN_HIPROC;
    247   }
    248   bool isOSSpecific() const {
    249     return st_shndx >= ELF::SHN_LOOS && st_shndx <= ELF::SHN_HIOS;
    250   }
    251   bool isReserved() const {
    252     // ELF::SHN_HIRESERVE is 0xffff so st_shndx <= ELF::SHN_HIRESERVE is always
    253     // true and some compilers warn about it.
    254     return st_shndx >= ELF::SHN_LORESERVE;
    255   }
    256   bool isUndefined() const { return st_shndx == ELF::SHN_UNDEF; }
    257   bool isExternal() const {
    258     return getBinding() != ELF::STB_LOCAL;
    259   }
    260 
    261   Expected<StringRef> getName(StringRef StrTab) const;
    262 };
    263 
    264 template <class ELFT>
    265 Expected<StringRef> Elf_Sym_Impl<ELFT>::getName(StringRef StrTab) const {
    266   uint32_t Offset = this->st_name;
    267   if (Offset >= StrTab.size())
    268     return errorCodeToError(object_error::parse_failed);
    269   return StringRef(StrTab.data() + Offset);
    270 }
    271 
    272 /// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
    273 /// (.gnu.version). This structure is identical for ELF32 and ELF64.
    274 template <class ELFT>
    275 struct Elf_Versym_Impl {
    276   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    277   Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
    278 };
    279 
    280 template <class ELFT> struct Elf_Verdaux_Impl;
    281 
    282 /// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
    283 /// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
    284 template <class ELFT>
    285 struct Elf_Verdef_Impl {
    286   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    287   typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
    288   Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
    289   Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
    290   Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
    291   Elf_Half vd_cnt;     // Number of Verdaux entries
    292   Elf_Word vd_hash;    // Hash of name
    293   Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
    294   Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
    295 
    296   /// Get the first Verdaux entry for this Verdef.
    297   const Elf_Verdaux *getAux() const {
    298     return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux);
    299   }
    300 };
    301 
    302 /// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
    303 /// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
    304 template <class ELFT>
    305 struct Elf_Verdaux_Impl {
    306   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    307   Elf_Word vda_name; // Version name (offset in string table)
    308   Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
    309 };
    310 
    311 /// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
    312 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
    313 template <class ELFT>
    314 struct Elf_Verneed_Impl {
    315   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    316   Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
    317   Elf_Half vn_cnt;     // Number of associated Vernaux entries
    318   Elf_Word vn_file;    // Library name (string table offset)
    319   Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
    320   Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
    321 };
    322 
    323 /// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
    324 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
    325 template <class ELFT>
    326 struct Elf_Vernaux_Impl {
    327   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    328   Elf_Word vna_hash;  // Hash of dependency name
    329   Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
    330   Elf_Half vna_other; // Version index, used in .gnu.version entries
    331   Elf_Word vna_name;  // Dependency name
    332   Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
    333 };
    334 
    335 /// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
    336 ///               table section (.dynamic) look like.
    337 template <class ELFT> struct Elf_Dyn_Base;
    338 
    339 template <endianness TargetEndianness>
    340 struct Elf_Dyn_Base<ELFType<TargetEndianness, false>> {
    341   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    342   Elf_Sword d_tag;
    343   union {
    344     Elf_Word d_val;
    345     Elf_Addr d_ptr;
    346   } d_un;
    347 };
    348 
    349 template <endianness TargetEndianness>
    350 struct Elf_Dyn_Base<ELFType<TargetEndianness, true>> {
    351   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    352   Elf_Sxword d_tag;
    353   union {
    354     Elf_Xword d_val;
    355     Elf_Addr d_ptr;
    356   } d_un;
    357 };
    358 
    359 /// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters.
    360 template <class ELFT>
    361 struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
    362   using Elf_Dyn_Base<ELFT>::d_tag;
    363   using Elf_Dyn_Base<ELFT>::d_un;
    364   typedef typename std::conditional<ELFT::Is64Bits,
    365                                     int64_t, int32_t>::type intX_t;
    366   typedef typename std::conditional<ELFT::Is64Bits,
    367                                     uint64_t, uint32_t>::type uintX_t;
    368   intX_t getTag() const { return d_tag; }
    369   uintX_t getVal() const { return d_un.d_val; }
    370   uintX_t getPtr() const { return d_un.d_ptr; }
    371 };
    372 
    373 template <endianness TargetEndianness>
    374 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
    375   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    376   static const bool IsRela = false;
    377   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
    378   Elf_Word r_info;   // Symbol table index and type of relocation to apply
    379 
    380   uint32_t getRInfo(bool isMips64EL) const {
    381     assert(!isMips64EL);
    382     return r_info;
    383   }
    384   void setRInfo(uint32_t R, bool IsMips64EL) {
    385     assert(!IsMips64EL);
    386     r_info = R;
    387   }
    388 
    389   // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
    390   // and ELF32_R_INFO macros defined in the ELF specification:
    391   uint32_t getSymbol(bool isMips64EL) const {
    392     return this->getRInfo(isMips64EL) >> 8;
    393   }
    394   unsigned char getType(bool isMips64EL) const {
    395     return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff);
    396   }
    397   void setSymbol(uint32_t s, bool IsMips64EL) {
    398     setSymbolAndType(s, getType(), IsMips64EL);
    399   }
    400   void setType(unsigned char t, bool IsMips64EL) {
    401     setSymbolAndType(getSymbol(), t, IsMips64EL);
    402   }
    403   void setSymbolAndType(uint32_t s, unsigned char t, bool IsMips64EL) {
    404     this->setRInfo((s << 8) + t, IsMips64EL);
    405   }
    406 };
    407 
    408 template <endianness TargetEndianness>
    409 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, true>
    410     : public Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
    411   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    412   static const bool IsRela = true;
    413   Elf_Sword r_addend; // Compute value for relocatable field by adding this
    414 };
    415 
    416 template <endianness TargetEndianness>
    417 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
    418   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    419   static const bool IsRela = false;
    420   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
    421   Elf_Xword r_info;  // Symbol table index and type of relocation to apply
    422 
    423   uint64_t getRInfo(bool isMips64EL) const {
    424     uint64_t t = r_info;
    425     if (!isMips64EL)
    426       return t;
    427     // Mips64 little endian has a "special" encoding of r_info. Instead of one
    428     // 64 bit little endian number, it is a little endian 32 bit number followed
    429     // by a 32 bit big endian number.
    430     return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
    431            ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
    432   }
    433   void setRInfo(uint64_t R, bool IsMips64EL) {
    434     if (IsMips64EL)
    435       r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) |
    436                ((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56);
    437     else
    438       r_info = R;
    439   }
    440 
    441   // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
    442   // and ELF64_R_INFO macros defined in the ELF specification:
    443   uint32_t getSymbol(bool isMips64EL) const {
    444     return (uint32_t)(this->getRInfo(isMips64EL) >> 32);
    445   }
    446   uint32_t getType(bool isMips64EL) const {
    447     return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL);
    448   }
    449   void setSymbol(uint32_t s, bool IsMips64EL) {
    450     setSymbolAndType(s, getType(), IsMips64EL);
    451   }
    452   void setType(uint32_t t, bool IsMips64EL) {
    453     setSymbolAndType(getSymbol(), t, IsMips64EL);
    454   }
    455   void setSymbolAndType(uint32_t s, uint32_t t, bool IsMips64EL) {
    456     this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL), IsMips64EL);
    457   }
    458 };
    459 
    460 template <endianness TargetEndianness>
    461 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, true>
    462     : public Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
    463   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    464   static const bool IsRela = true;
    465   Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
    466 };
    467 
    468 template <class ELFT>
    469 struct Elf_Ehdr_Impl {
    470   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    471   unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
    472   Elf_Half e_type;                       // Type of file (see ET_*)
    473   Elf_Half e_machine;   // Required architecture for this file (see EM_*)
    474   Elf_Word e_version;   // Must be equal to 1
    475   Elf_Addr e_entry;     // Address to jump to in order to start program
    476   Elf_Off e_phoff;      // Program header table's file offset, in bytes
    477   Elf_Off e_shoff;      // Section header table's file offset, in bytes
    478   Elf_Word e_flags;     // Processor-specific flags
    479   Elf_Half e_ehsize;    // Size of ELF header, in bytes
    480   Elf_Half e_phentsize; // Size of an entry in the program header table
    481   Elf_Half e_phnum;     // Number of entries in the program header table
    482   Elf_Half e_shentsize; // Size of an entry in the section header table
    483   Elf_Half e_shnum;     // Number of entries in the section header table
    484   Elf_Half e_shstrndx;  // Section header table index of section name
    485                         // string table
    486   bool checkMagic() const {
    487     return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
    488   }
    489   unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
    490   unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
    491 };
    492 
    493 template <class ELFT> struct Elf_Phdr_Impl;
    494 
    495 template <endianness TargetEndianness>
    496 struct Elf_Phdr_Impl<ELFType<TargetEndianness, false>> {
    497   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    498   Elf_Word p_type;   // Type of segment
    499   Elf_Off p_offset;  // FileOffset where segment is located, in bytes
    500   Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
    501   Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
    502   Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
    503   Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
    504   Elf_Word p_flags;  // Segment flags
    505   Elf_Word p_align;  // Segment alignment constraint
    506 };
    507 
    508 template <endianness TargetEndianness>
    509 struct Elf_Phdr_Impl<ELFType<TargetEndianness, true>> {
    510   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    511   Elf_Word p_type;    // Type of segment
    512   Elf_Word p_flags;   // Segment flags
    513   Elf_Off p_offset;   // FileOffset where segment is located, in bytes
    514   Elf_Addr p_vaddr;   // Virtual Address of beginning of segment
    515   Elf_Addr p_paddr;   // Physical address of beginning of segment (OS-specific)
    516   Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
    517   Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
    518   Elf_Xword p_align;  // Segment alignment constraint
    519 };
    520 
    521 // ELFT needed for endianness.
    522 template <class ELFT>
    523 struct Elf_Hash_Impl {
    524   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    525   Elf_Word nbucket;
    526   Elf_Word nchain;
    527 
    528   ArrayRef<Elf_Word> buckets() const {
    529     return ArrayRef<Elf_Word>(&nbucket + 2, &nbucket + 2 + nbucket);
    530   }
    531 
    532   ArrayRef<Elf_Word> chains() const {
    533     return ArrayRef<Elf_Word>(&nbucket + 2 + nbucket,
    534                               &nbucket + 2 + nbucket + nchain);
    535   }
    536 };
    537 
    538 // .gnu.hash section
    539 template <class ELFT>
    540 struct Elf_GnuHash_Impl {
    541   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    542   Elf_Word nbuckets;
    543   Elf_Word symndx;
    544   Elf_Word maskwords;
    545   Elf_Word shift2;
    546 
    547   ArrayRef<Elf_Off> filter() const {
    548     return ArrayRef<Elf_Off>(reinterpret_cast<const Elf_Off *>(&shift2 + 1),
    549                              maskwords);
    550   }
    551 
    552   ArrayRef<Elf_Word> buckets() const {
    553     return ArrayRef<Elf_Word>(
    554         reinterpret_cast<const Elf_Word *>(filter().end()), nbuckets);
    555   }
    556 
    557   ArrayRef<Elf_Word> values(unsigned DynamicSymCount) const {
    558     return ArrayRef<Elf_Word>(buckets().end(), DynamicSymCount - symndx);
    559   }
    560 };
    561 
    562 // Compressed section headers.
    563 // http://www.sco.com/developers/gabi/latest/ch4.sheader.html#compression_header
    564 template <endianness TargetEndianness>
    565 struct Elf_Chdr_Impl<ELFType<TargetEndianness, false>> {
    566   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    567   Elf_Word ch_type;
    568   Elf_Word ch_size;
    569   Elf_Word ch_addralign;
    570 };
    571 
    572 template <endianness TargetEndianness>
    573 struct Elf_Chdr_Impl<ELFType<TargetEndianness, true>> {
    574   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    575   Elf_Word ch_type;
    576   Elf_Word ch_reserved;
    577   Elf_Xword ch_size;
    578   Elf_Xword ch_addralign;
    579 };
    580 
    581 // MIPS .reginfo section
    582 template <class ELFT>
    583 struct Elf_Mips_RegInfo;
    584 
    585 template <llvm::support::endianness TargetEndianness>
    586 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, false>> {
    587   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    588   Elf_Word ri_gprmask;     // bit-mask of used general registers
    589   Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
    590   Elf_Addr ri_gp_value;    // gp register value
    591 };
    592 
    593 template <llvm::support::endianness TargetEndianness>
    594 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, true>> {
    595   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    596   Elf_Word ri_gprmask;     // bit-mask of used general registers
    597   Elf_Word ri_pad;         // unused padding field
    598   Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
    599   Elf_Addr ri_gp_value;    // gp register value
    600 };
    601 
    602 // .MIPS.options section
    603 template <class ELFT> struct Elf_Mips_Options {
    604   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    605   uint8_t kind;     // Determines interpretation of variable part of descriptor
    606   uint8_t size;     // Byte size of descriptor, including this header
    607   Elf_Half section; // Section header index of section affected,
    608                     // or 0 for global options
    609   Elf_Word info;    // Kind-specific information
    610 
    611   Elf_Mips_RegInfo<ELFT> &getRegInfo() {
    612     assert(kind == llvm::ELF::ODK_REGINFO);
    613     return *reinterpret_cast<Elf_Mips_RegInfo<ELFT> *>(
    614         (uint8_t *)this + sizeof(Elf_Mips_Options));
    615   }
    616   const Elf_Mips_RegInfo<ELFT> &getRegInfo() const {
    617     return const_cast<Elf_Mips_Options *>(this)->getRegInfo();
    618   }
    619 };
    620 
    621 // .MIPS.abiflags section content
    622 template <class ELFT> struct Elf_Mips_ABIFlags {
    623   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    624   Elf_Half version;  // Version of the structure
    625   uint8_t isa_level; // ISA level: 1-5, 32, and 64
    626   uint8_t isa_rev;   // ISA revision (0 for MIPS I - MIPS V)
    627   uint8_t gpr_size;  // General purpose registers size
    628   uint8_t cpr1_size; // Co-processor 1 registers size
    629   uint8_t cpr2_size; // Co-processor 2 registers size
    630   uint8_t fp_abi;    // Floating-point ABI flag
    631   Elf_Word isa_ext;  // Processor-specific extension
    632   Elf_Word ases;     // ASEs flags
    633   Elf_Word flags1;   // General flags
    634   Elf_Word flags2;   // General flags
    635 };
    636 
    637 } // end namespace object.
    638 } // end namespace llvm.
    639 
    640 #endif
    641