Home | History | Annotate | Download | only in IR
      1 //===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Represent a range of possible values that may occur when the program is run
     11 // for an integral value.  This keeps track of a lower and upper bound for the
     12 // constant, which MAY wrap around the end of the numeric range.  To do this, it
     13 // keeps track of a [lower, upper) bound, which specifies an interval just like
     14 // STL iterators.  When used with boolean values, the following are important
     15 // ranges: :
     16 //
     17 //  [F, F) = {}     = Empty set
     18 //  [T, F) = {T}
     19 //  [F, T) = {F}
     20 //  [T, T) = {F, T} = Full set
     21 //
     22 // The other integral ranges use min/max values for special range values. For
     23 // example, for 8-bit types, it uses:
     24 // [0, 0)     = {}       = Empty set
     25 // [255, 255) = {0..255} = Full Set
     26 //
     27 // Note that ConstantRange can be used to represent either signed or
     28 // unsigned ranges.
     29 //
     30 //===----------------------------------------------------------------------===//
     31 
     32 #ifndef LLVM_IR_CONSTANTRANGE_H
     33 #define LLVM_IR_CONSTANTRANGE_H
     34 
     35 #include "llvm/ADT/APInt.h"
     36 #include "llvm/IR/InstrTypes.h"
     37 #include "llvm/Support/DataTypes.h"
     38 
     39 namespace llvm {
     40 
     41 class MDNode;
     42 
     43 /// This class represents a range of values.
     44 class LLVM_NODISCARD ConstantRange {
     45   APInt Lower, Upper;
     46 
     47 public:
     48   /// Initialize a full (the default) or empty set for the specified bit width.
     49   explicit ConstantRange(uint32_t BitWidth, bool isFullSet = true);
     50 
     51   /// Initialize a range to hold the single specified value.
     52   ConstantRange(APInt Value);
     53 
     54   /// @brief Initialize a range of values explicitly. This will assert out if
     55   /// Lower==Upper and Lower != Min or Max value for its type. It will also
     56   /// assert out if the two APInt's are not the same bit width.
     57   ConstantRange(APInt Lower, APInt Upper);
     58 
     59   /// Produce the smallest range such that all values that may satisfy the given
     60   /// predicate with any value contained within Other is contained in the
     61   /// returned range.  Formally, this returns a superset of
     62   /// 'union over all y in Other . { x : icmp op x y is true }'.  If the exact
     63   /// answer is not representable as a ConstantRange, the return value will be a
     64   /// proper superset of the above.
     65   ///
     66   /// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
     67   static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
     68                                              const ConstantRange &Other);
     69 
     70   /// Produce the largest range such that all values in the returned range
     71   /// satisfy the given predicate with all values contained within Other.
     72   /// Formally, this returns a subset of
     73   /// 'intersection over all y in Other . { x : icmp op x y is true }'.  If the
     74   /// exact answer is not representable as a ConstantRange, the return value
     75   /// will be a proper subset of the above.
     76   ///
     77   /// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
     78   static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
     79                                                 const ConstantRange &Other);
     80 
     81   /// Produce the exact range such that all values in the returned range satisfy
     82   /// the given predicate with any value contained within Other. Formally, this
     83   /// returns the exact answer when the superset of 'union over all y in Other
     84   /// is exactly same as the subset of intersection over all y in Other.
     85   /// { x : icmp op x y is true}'.
     86   ///
     87   /// Example: Pred = ult and Other = i8 3 returns [0, 3)
     88   static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
     89                                            const APInt &Other);
     90 
     91   /// Return the largest range containing all X such that "X BinOpC Y" is
     92   /// guaranteed not to wrap (overflow) for all Y in Other.
     93   ///
     94   /// NB! The returned set does *not* contain **all** possible values of X for
     95   /// which "X BinOpC Y" does not wrap -- some viable values of X may be
     96   /// missing, so you cannot use this to constrain X's range.  E.g. in the last
     97   /// example, "(-2) + 1" is both nsw and nuw (so the "X" could be -2), but (-2)
     98   /// is not in the set returned.
     99   ///
    100   /// Examples:
    101   ///  typedef OverflowingBinaryOperator OBO;
    102   ///  #define MGNR makeGuaranteedNoWrapRegion
    103   ///  MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
    104   ///  MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
    105   ///  MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
    106   ///  MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap | OBO::NoSignedWrap)
    107   ///    == [0,INT_MAX)
    108   ///  MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
    109   static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
    110                                                   const ConstantRange &Other,
    111                                                   unsigned NoWrapKind);
    112 
    113   /// Set up \p Pred and \p RHS such that
    114   /// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.  Return true if
    115   /// successful.
    116   bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;
    117 
    118   /// Return the lower value for this range.
    119   const APInt &getLower() const { return Lower; }
    120 
    121   /// Return the upper value for this range.
    122   const APInt &getUpper() const { return Upper; }
    123 
    124   /// Get the bit width of this ConstantRange.
    125   uint32_t getBitWidth() const { return Lower.getBitWidth(); }
    126 
    127   /// Return true if this set contains all of the elements possible
    128   /// for this data-type.
    129   bool isFullSet() const;
    130 
    131   /// Return true if this set contains no members.
    132   bool isEmptySet() const;
    133 
    134   /// Return true if this set wraps around the top of the range.
    135   /// For example: [100, 8).
    136   bool isWrappedSet() const;
    137 
    138   /// Return true if this set wraps around the INT_MIN of
    139   /// its bitwidth. For example: i8 [120, 140).
    140   bool isSignWrappedSet() const;
    141 
    142   /// Return true if the specified value is in the set.
    143   bool contains(const APInt &Val) const;
    144 
    145   /// Return true if the other range is a subset of this one.
    146   bool contains(const ConstantRange &CR) const;
    147 
    148   /// If this set contains a single element, return it, otherwise return null.
    149   const APInt *getSingleElement() const {
    150     if (Upper == Lower + 1)
    151       return &Lower;
    152     return nullptr;
    153   }
    154 
    155   /// If this set contains all but a single element, return it, otherwise return
    156   /// null.
    157   const APInt *getSingleMissingElement() const {
    158     if (Lower == Upper + 1)
    159       return &Upper;
    160     return nullptr;
    161   }
    162 
    163   /// Return true if this set contains exactly one member.
    164   bool isSingleElement() const { return getSingleElement() != nullptr; }
    165 
    166   /// Return the number of elements in this set.
    167   APInt getSetSize() const;
    168 
    169   /// Compare set size of this range with the range CR.
    170   bool isSizeStrictlySmallerThan(const ConstantRange &CR) const;
    171 
    172   // Compare set size of this range with Value.
    173   bool isSizeLargerThan(uint64_t MaxSize) const;
    174 
    175   /// Return the largest unsigned value contained in the ConstantRange.
    176   APInt getUnsignedMax() const;
    177 
    178   /// Return the smallest unsigned value contained in the ConstantRange.
    179   APInt getUnsignedMin() const;
    180 
    181   /// Return the largest signed value contained in the ConstantRange.
    182   APInt getSignedMax() const;
    183 
    184   /// Return the smallest signed value contained in the ConstantRange.
    185   APInt getSignedMin() const;
    186 
    187   /// Return true if this range is equal to another range.
    188   bool operator==(const ConstantRange &CR) const {
    189     return Lower == CR.Lower && Upper == CR.Upper;
    190   }
    191   bool operator!=(const ConstantRange &CR) const {
    192     return !operator==(CR);
    193   }
    194 
    195   /// Subtract the specified constant from the endpoints of this constant range.
    196   ConstantRange subtract(const APInt &CI) const;
    197 
    198   /// Subtract the specified range from this range (aka relative complement of
    199   /// the sets).
    200   ConstantRange difference(const ConstantRange &CR) const;
    201 
    202   /// Return the range that results from the intersection of
    203   /// this range with another range.  The resultant range is guaranteed to
    204   /// include all elements contained in both input ranges, and to have the
    205   /// smallest possible set size that does so.  Because there may be two
    206   /// intersections with the same set size, A.intersectWith(B) might not
    207   /// be equal to B.intersectWith(A).
    208   ConstantRange intersectWith(const ConstantRange &CR) const;
    209 
    210   /// Return the range that results from the union of this range
    211   /// with another range.  The resultant range is guaranteed to include the
    212   /// elements of both sets, but may contain more.  For example, [3, 9) union
    213   /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
    214   /// in either set before.
    215   ConstantRange unionWith(const ConstantRange &CR) const;
    216 
    217   /// Return a new range representing the possible values resulting
    218   /// from an application of the specified cast operator to this range. \p
    219   /// BitWidth is the target bitwidth of the cast.  For casts which don't
    220   /// change bitwidth, it must be the same as the source bitwidth.  For casts
    221   /// which do change bitwidth, the bitwidth must be consistent with the
    222   /// requested cast and source bitwidth.
    223   ConstantRange castOp(Instruction::CastOps CastOp,
    224                        uint32_t BitWidth) const;
    225 
    226   /// Return a new range in the specified integer type, which must
    227   /// be strictly larger than the current type.  The returned range will
    228   /// correspond to the possible range of values if the source range had been
    229   /// zero extended to BitWidth.
    230   ConstantRange zeroExtend(uint32_t BitWidth) const;
    231 
    232   /// Return a new range in the specified integer type, which must
    233   /// be strictly larger than the current type.  The returned range will
    234   /// correspond to the possible range of values if the source range had been
    235   /// sign extended to BitWidth.
    236   ConstantRange signExtend(uint32_t BitWidth) const;
    237 
    238   /// Return a new range in the specified integer type, which must be
    239   /// strictly smaller than the current type.  The returned range will
    240   /// correspond to the possible range of values if the source range had been
    241   /// truncated to the specified type.
    242   ConstantRange truncate(uint32_t BitWidth) const;
    243 
    244   /// Make this range have the bit width given by \p BitWidth. The
    245   /// value is zero extended, truncated, or left alone to make it that width.
    246   ConstantRange zextOrTrunc(uint32_t BitWidth) const;
    247 
    248   /// Make this range have the bit width given by \p BitWidth. The
    249   /// value is sign extended, truncated, or left alone to make it that width.
    250   ConstantRange sextOrTrunc(uint32_t BitWidth) const;
    251 
    252   /// Return a new range representing the possible values resulting
    253   /// from an application of the specified binary operator to an left hand side
    254   /// of this range and a right hand side of \p Other.
    255   ConstantRange binaryOp(Instruction::BinaryOps BinOp,
    256                          const ConstantRange &Other) const;
    257 
    258   /// Return a new range representing the possible values resulting
    259   /// from an addition of a value in this range and a value in \p Other.
    260   ConstantRange add(const ConstantRange &Other) const;
    261 
    262   /// Return a new range representing the possible values resulting from a
    263   /// known NSW addition of a value in this range and \p Other constant.
    264   ConstantRange addWithNoSignedWrap(const APInt &Other) const;
    265 
    266   /// Return a new range representing the possible values resulting
    267   /// from a subtraction of a value in this range and a value in \p Other.
    268   ConstantRange sub(const ConstantRange &Other) const;
    269 
    270   /// Return a new range representing the possible values resulting
    271   /// from a multiplication of a value in this range and a value in \p Other,
    272   /// treating both this and \p Other as unsigned ranges.
    273   ConstantRange multiply(const ConstantRange &Other) const;
    274 
    275   /// Return a new range representing the possible values resulting
    276   /// from a signed maximum of a value in this range and a value in \p Other.
    277   ConstantRange smax(const ConstantRange &Other) const;
    278 
    279   /// Return a new range representing the possible values resulting
    280   /// from an unsigned maximum of a value in this range and a value in \p Other.
    281   ConstantRange umax(const ConstantRange &Other) const;
    282 
    283   /// Return a new range representing the possible values resulting
    284   /// from a signed minimum of a value in this range and a value in \p Other.
    285   ConstantRange smin(const ConstantRange &Other) const;
    286 
    287   /// Return a new range representing the possible values resulting
    288   /// from an unsigned minimum of a value in this range and a value in \p Other.
    289   ConstantRange umin(const ConstantRange &Other) const;
    290 
    291   /// Return a new range representing the possible values resulting
    292   /// from an unsigned division of a value in this range and a value in
    293   /// \p Other.
    294   ConstantRange udiv(const ConstantRange &Other) const;
    295 
    296   /// Return a new range representing the possible values resulting
    297   /// from a binary-and of a value in this range by a value in \p Other.
    298   ConstantRange binaryAnd(const ConstantRange &Other) const;
    299 
    300   /// Return a new range representing the possible values resulting
    301   /// from a binary-or of a value in this range by a value in \p Other.
    302   ConstantRange binaryOr(const ConstantRange &Other) const;
    303 
    304   /// Return a new range representing the possible values resulting
    305   /// from a left shift of a value in this range by a value in \p Other.
    306   /// TODO: This isn't fully implemented yet.
    307   ConstantRange shl(const ConstantRange &Other) const;
    308 
    309   /// Return a new range representing the possible values resulting from a
    310   /// logical right shift of a value in this range and a value in \p Other.
    311   ConstantRange lshr(const ConstantRange &Other) const;
    312 
    313   /// Return a new range that is the logical not of the current set.
    314   ConstantRange inverse() const;
    315 
    316   /// Print out the bounds to a stream.
    317   void print(raw_ostream &OS) const;
    318 
    319   /// Allow printing from a debugger easily.
    320   void dump() const;
    321 };
    322 
    323 inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
    324   CR.print(OS);
    325   return OS;
    326 }
    327 
    328 /// Parse out a conservative ConstantRange from !range metadata.
    329 ///
    330 /// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20).
    331 ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD);
    332 
    333 } // End llvm namespace
    334 
    335 #endif
    336