Home | History | Annotate | Download | only in IR
      1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// This header defines various interfaces for pass management in LLVM. There
     12 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
     13 /// which supports a method to 'run' it over a unit of IR can be used as
     14 /// a pass. A pass manager is generally a tool to collect a sequence of passes
     15 /// which run over a particular IR construct, and run each of them in sequence
     16 /// over each such construct in the containing IR construct. As there is no
     17 /// containing IR construct for a Module, a manager for passes over modules
     18 /// forms the base case which runs its managed passes in sequence over the
     19 /// single module provided.
     20 ///
     21 /// The core IR library provides managers for running passes over
     22 /// modules and functions.
     23 ///
     24 /// * FunctionPassManager can run over a Module, runs each pass over
     25 ///   a Function.
     26 /// * ModulePassManager must be directly run, runs each pass over the Module.
     27 ///
     28 /// Note that the implementations of the pass managers use concept-based
     29 /// polymorphism as outlined in the "Value Semantics and Concept-based
     30 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
     31 /// Class of Evil") by Sean Parent:
     32 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
     33 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
     34 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
     35 ///
     36 //===----------------------------------------------------------------------===//
     37 
     38 #ifndef LLVM_IR_PASSMANAGER_H
     39 #define LLVM_IR_PASSMANAGER_H
     40 
     41 #include "llvm/ADT/DenseMap.h"
     42 #include "llvm/ADT/SmallPtrSet.h"
     43 #include "llvm/ADT/StringRef.h"
     44 #include "llvm/ADT/TinyPtrVector.h"
     45 #include "llvm/IR/Function.h"
     46 #include "llvm/IR/Module.h"
     47 #include "llvm/IR/PassManagerInternal.h"
     48 #include "llvm/Support/Debug.h"
     49 #include "llvm/Support/TypeName.h"
     50 #include "llvm/Support/raw_ostream.h"
     51 #include <algorithm>
     52 #include <cassert>
     53 #include <cstring>
     54 #include <iterator>
     55 #include <list>
     56 #include <memory>
     57 #include <tuple>
     58 #include <type_traits>
     59 #include <utility>
     60 #include <vector>
     61 
     62 namespace llvm {
     63 
     64 /// A special type used by analysis passes to provide an address that
     65 /// identifies that particular analysis pass type.
     66 ///
     67 /// Analysis passes should have a static data member of this type and derive
     68 /// from the \c AnalysisInfoMixin to get a static ID method used to identify
     69 /// the analysis in the pass management infrastructure.
     70 struct alignas(8) AnalysisKey {};
     71 
     72 /// A special type used to provide an address that identifies a set of related
     73 /// analyses.  These sets are primarily used below to mark sets of analyses as
     74 /// preserved.
     75 ///
     76 /// For example, a transformation can indicate that it preserves the CFG of a
     77 /// function by preserving the appropriate AnalysisSetKey.  An analysis that
     78 /// depends only on the CFG can then check if that AnalysisSetKey is preserved;
     79 /// if it is, the analysis knows that it itself is preserved.
     80 struct alignas(8) AnalysisSetKey {};
     81 
     82 /// This templated class represents "all analyses that operate over \<a
     83 /// particular IR unit\>" (e.g. a Function or a Module) in instances of
     84 /// PreservedAnalysis.
     85 ///
     86 /// This lets a transformation say e.g. "I preserved all function analyses".
     87 ///
     88 /// Note that you must provide an explicit instantiation declaration and
     89 /// definition for this template in order to get the correct behavior on
     90 /// Windows. Otherwise, the address of SetKey will not be stable.
     91 template <typename IRUnitT> class AllAnalysesOn {
     92 public:
     93   static AnalysisSetKey *ID() { return &SetKey; }
     94 
     95 private:
     96   static AnalysisSetKey SetKey;
     97 };
     98 
     99 template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey;
    100 
    101 extern template class AllAnalysesOn<Module>;
    102 extern template class AllAnalysesOn<Function>;
    103 
    104 /// Represents analyses that only rely on functions' control flow.
    105 ///
    106 /// This can be used with \c PreservedAnalyses to mark the CFG as preserved and
    107 /// to query whether it has been preserved.
    108 ///
    109 /// The CFG of a function is defined as the set of basic blocks and the edges
    110 /// between them. Changing the set of basic blocks in a function is enough to
    111 /// mutate the CFG. Mutating the condition of a branch or argument of an
    112 /// invoked function does not mutate the CFG, but changing the successor labels
    113 /// of those instructions does.
    114 class CFGAnalyses {
    115 public:
    116   static AnalysisSetKey *ID() { return &SetKey; }
    117 
    118 private:
    119   static AnalysisSetKey SetKey;
    120 };
    121 
    122 /// A set of analyses that are preserved following a run of a transformation
    123 /// pass.
    124 ///
    125 /// Transformation passes build and return these objects to communicate which
    126 /// analyses are still valid after the transformation. For most passes this is
    127 /// fairly simple: if they don't change anything all analyses are preserved,
    128 /// otherwise only a short list of analyses that have been explicitly updated
    129 /// are preserved.
    130 ///
    131 /// This class also lets transformation passes mark abstract *sets* of analyses
    132 /// as preserved. A transformation that (say) does not alter the CFG can
    133 /// indicate such by marking a particular AnalysisSetKey as preserved, and
    134 /// then analyses can query whether that AnalysisSetKey is preserved.
    135 ///
    136 /// Finally, this class can represent an "abandoned" analysis, which is
    137 /// not preserved even if it would be covered by some abstract set of analyses.
    138 ///
    139 /// Given a `PreservedAnalyses` object, an analysis will typically want to
    140 /// figure out whether it is preserved. In the example below, MyAnalysisType is
    141 /// preserved if it's not abandoned, and (a) it's explicitly marked as
    142 /// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both
    143 /// AnalysisSetA and AnalysisSetB are preserved.
    144 ///
    145 /// ```
    146 ///   auto PAC = PA.getChecker<MyAnalysisType>();
    147 ///   if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() ||
    148 ///       (PAC.preservedSet<AnalysisSetA>() &&
    149 ///        PAC.preservedSet<AnalysisSetB>())) {
    150 ///     // The analysis has been successfully preserved ...
    151 ///   }
    152 /// ```
    153 class PreservedAnalyses {
    154 public:
    155   /// \brief Convenience factory function for the empty preserved set.
    156   static PreservedAnalyses none() { return PreservedAnalyses(); }
    157 
    158   /// \brief Construct a special preserved set that preserves all passes.
    159   static PreservedAnalyses all() {
    160     PreservedAnalyses PA;
    161     PA.PreservedIDs.insert(&AllAnalysesKey);
    162     return PA;
    163   }
    164 
    165   /// Mark an analysis as preserved.
    166   template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); }
    167 
    168   /// \brief Given an analysis's ID, mark the analysis as preserved, adding it
    169   /// to the set.
    170   void preserve(AnalysisKey *ID) {
    171     // Clear this ID from the explicit not-preserved set if present.
    172     NotPreservedAnalysisIDs.erase(ID);
    173 
    174     // If we're not already preserving all analyses (other than those in
    175     // NotPreservedAnalysisIDs).
    176     if (!areAllPreserved())
    177       PreservedIDs.insert(ID);
    178   }
    179 
    180   /// Mark an analysis set as preserved.
    181   template <typename AnalysisSetT> void preserveSet() {
    182     preserveSet(AnalysisSetT::ID());
    183   }
    184 
    185   /// Mark an analysis set as preserved using its ID.
    186   void preserveSet(AnalysisSetKey *ID) {
    187     // If we're not already in the saturated 'all' state, add this set.
    188     if (!areAllPreserved())
    189       PreservedIDs.insert(ID);
    190   }
    191 
    192   /// Mark an analysis as abandoned.
    193   ///
    194   /// An abandoned analysis is not preserved, even if it is nominally covered
    195   /// by some other set or was previously explicitly marked as preserved.
    196   ///
    197   /// Note that you can only abandon a specific analysis, not a *set* of
    198   /// analyses.
    199   template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); }
    200 
    201   /// Mark an analysis as abandoned using its ID.
    202   ///
    203   /// An abandoned analysis is not preserved, even if it is nominally covered
    204   /// by some other set or was previously explicitly marked as preserved.
    205   ///
    206   /// Note that you can only abandon a specific analysis, not a *set* of
    207   /// analyses.
    208   void abandon(AnalysisKey *ID) {
    209     PreservedIDs.erase(ID);
    210     NotPreservedAnalysisIDs.insert(ID);
    211   }
    212 
    213   /// \brief Intersect this set with another in place.
    214   ///
    215   /// This is a mutating operation on this preserved set, removing all
    216   /// preserved passes which are not also preserved in the argument.
    217   void intersect(const PreservedAnalyses &Arg) {
    218     if (Arg.areAllPreserved())
    219       return;
    220     if (areAllPreserved()) {
    221       *this = Arg;
    222       return;
    223     }
    224     // The intersection requires the *union* of the explicitly not-preserved
    225     // IDs and the *intersection* of the preserved IDs.
    226     for (auto ID : Arg.NotPreservedAnalysisIDs) {
    227       PreservedIDs.erase(ID);
    228       NotPreservedAnalysisIDs.insert(ID);
    229     }
    230     for (auto ID : PreservedIDs)
    231       if (!Arg.PreservedIDs.count(ID))
    232         PreservedIDs.erase(ID);
    233   }
    234 
    235   /// \brief Intersect this set with a temporary other set in place.
    236   ///
    237   /// This is a mutating operation on this preserved set, removing all
    238   /// preserved passes which are not also preserved in the argument.
    239   void intersect(PreservedAnalyses &&Arg) {
    240     if (Arg.areAllPreserved())
    241       return;
    242     if (areAllPreserved()) {
    243       *this = std::move(Arg);
    244       return;
    245     }
    246     // The intersection requires the *union* of the explicitly not-preserved
    247     // IDs and the *intersection* of the preserved IDs.
    248     for (auto ID : Arg.NotPreservedAnalysisIDs) {
    249       PreservedIDs.erase(ID);
    250       NotPreservedAnalysisIDs.insert(ID);
    251     }
    252     for (auto ID : PreservedIDs)
    253       if (!Arg.PreservedIDs.count(ID))
    254         PreservedIDs.erase(ID);
    255   }
    256 
    257   /// A checker object that makes it easy to query for whether an analysis or
    258   /// some set covering it is preserved.
    259   class PreservedAnalysisChecker {
    260     friend class PreservedAnalyses;
    261 
    262     const PreservedAnalyses &PA;
    263     AnalysisKey *const ID;
    264     const bool IsAbandoned;
    265 
    266     /// A PreservedAnalysisChecker is tied to a particular Analysis because
    267     /// `preserved()` and `preservedSet()` both return false if the Analysis
    268     /// was abandoned.
    269     PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID)
    270         : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {}
    271 
    272   public:
    273     /// Returns true if the checker's analysis was not abandoned and either
    274     ///  - the analysis is explicitly preserved or
    275     ///  - all analyses are preserved.
    276     bool preserved() {
    277       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
    278                               PA.PreservedIDs.count(ID));
    279     }
    280 
    281     /// Returns true if the checker's analysis was not abandoned and either
    282     ///  - \p AnalysisSetT is explicitly preserved or
    283     ///  - all analyses are preserved.
    284     template <typename AnalysisSetT> bool preservedSet() {
    285       AnalysisSetKey *SetID = AnalysisSetT::ID();
    286       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
    287                               PA.PreservedIDs.count(SetID));
    288     }
    289   };
    290 
    291   /// Build a checker for this `PreservedAnalyses` and the specified analysis
    292   /// type.
    293   ///
    294   /// You can use the returned object to query whether an analysis was
    295   /// preserved. See the example in the comment on `PreservedAnalysis`.
    296   template <typename AnalysisT> PreservedAnalysisChecker getChecker() const {
    297     return PreservedAnalysisChecker(*this, AnalysisT::ID());
    298   }
    299 
    300   /// Build a checker for this `PreservedAnalyses` and the specified analysis
    301   /// ID.
    302   ///
    303   /// You can use the returned object to query whether an analysis was
    304   /// preserved. See the example in the comment on `PreservedAnalysis`.
    305   PreservedAnalysisChecker getChecker(AnalysisKey *ID) const {
    306     return PreservedAnalysisChecker(*this, ID);
    307   }
    308 
    309   /// Test whether all analyses are preserved (and none are abandoned).
    310   ///
    311   /// This is used primarily to optimize for the common case of a transformation
    312   /// which makes no changes to the IR.
    313   bool areAllPreserved() const {
    314     return NotPreservedAnalysisIDs.empty() &&
    315            PreservedIDs.count(&AllAnalysesKey);
    316   }
    317 
    318   /// Directly test whether a set of analyses is preserved.
    319   ///
    320   /// This is only true when no analyses have been explicitly abandoned.
    321   template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const {
    322     return allAnalysesInSetPreserved(AnalysisSetT::ID());
    323   }
    324 
    325   /// Directly test whether a set of analyses is preserved.
    326   ///
    327   /// This is only true when no analyses have been explicitly abandoned.
    328   bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const {
    329     return NotPreservedAnalysisIDs.empty() &&
    330            (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID));
    331   }
    332 
    333 private:
    334   /// A special key used to indicate all analyses.
    335   static AnalysisSetKey AllAnalysesKey;
    336 
    337   /// The IDs of analyses and analysis sets that are preserved.
    338   SmallPtrSet<void *, 2> PreservedIDs;
    339 
    340   /// The IDs of explicitly not-preserved analyses.
    341   ///
    342   /// If an analysis in this set is covered by a set in `PreservedIDs`, we
    343   /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always
    344   /// "wins" over analysis sets in `PreservedIDs`.
    345   ///
    346   /// Also, a given ID should never occur both here and in `PreservedIDs`.
    347   SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs;
    348 };
    349 
    350 // Forward declare the analysis manager template.
    351 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
    352 
    353 /// A CRTP mix-in to automatically provide informational APIs needed for
    354 /// passes.
    355 ///
    356 /// This provides some boilerplate for types that are passes.
    357 template <typename DerivedT> struct PassInfoMixin {
    358   /// Gets the name of the pass we are mixed into.
    359   static StringRef name() {
    360     static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
    361                   "Must pass the derived type as the template argument!");
    362     StringRef Name = getTypeName<DerivedT>();
    363     if (Name.startswith("llvm::"))
    364       Name = Name.drop_front(strlen("llvm::"));
    365     return Name;
    366   }
    367 };
    368 
    369 /// A CRTP mix-in that provides informational APIs needed for analysis passes.
    370 ///
    371 /// This provides some boilerplate for types that are analysis passes. It
    372 /// automatically mixes in \c PassInfoMixin.
    373 template <typename DerivedT>
    374 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
    375   /// Returns an opaque, unique ID for this analysis type.
    376   ///
    377   /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
    378   /// suitable for use in sets, maps, and other data structures that use the low
    379   /// bits of pointers.
    380   ///
    381   /// Note that this requires the derived type provide a static \c AnalysisKey
    382   /// member called \c Key.
    383   ///
    384   /// FIXME: The only reason the mixin type itself can't declare the Key value
    385   /// is that some compilers cannot correctly unique a templated static variable
    386   /// so it has the same addresses in each instantiation. The only currently
    387   /// known platform with this limitation is Windows DLL builds, specifically
    388   /// building each part of LLVM as a DLL. If we ever remove that build
    389   /// configuration, this mixin can provide the static key as well.
    390   static AnalysisKey *ID() {
    391     static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
    392                   "Must pass the derived type as the template argument!");
    393     return &DerivedT::Key;
    394   }
    395 };
    396 
    397 /// \brief Manages a sequence of passes over a particular unit of IR.
    398 ///
    399 /// A pass manager contains a sequence of passes to run over a particular unit
    400 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
    401 /// IR, and when run over some given IR will run each of its contained passes in
    402 /// sequence. Pass managers are the primary and most basic building block of a
    403 /// pass pipeline.
    404 ///
    405 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
    406 /// argument. The pass manager will propagate that analysis manager to each
    407 /// pass it runs, and will call the analysis manager's invalidation routine with
    408 /// the PreservedAnalyses of each pass it runs.
    409 template <typename IRUnitT,
    410           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
    411           typename... ExtraArgTs>
    412 class PassManager : public PassInfoMixin<
    413                         PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
    414 public:
    415   /// \brief Construct a pass manager.
    416   ///
    417   /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
    418   explicit PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
    419 
    420   // FIXME: These are equivalent to the default move constructor/move
    421   // assignment. However, using = default triggers linker errors due to the
    422   // explicit instantiations below. Find away to use the default and remove the
    423   // duplicated code here.
    424   PassManager(PassManager &&Arg)
    425       : Passes(std::move(Arg.Passes)),
    426         DebugLogging(std::move(Arg.DebugLogging)) {}
    427 
    428   PassManager &operator=(PassManager &&RHS) {
    429     Passes = std::move(RHS.Passes);
    430     DebugLogging = std::move(RHS.DebugLogging);
    431     return *this;
    432   }
    433 
    434   /// \brief Run all of the passes in this manager over the given unit of IR.
    435   /// ExtraArgs are passed to each pass.
    436   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
    437                         ExtraArgTs... ExtraArgs) {
    438     PreservedAnalyses PA = PreservedAnalyses::all();
    439 
    440     if (DebugLogging)
    441       dbgs() << "Starting " << getTypeName<IRUnitT>() << " pass manager run.\n";
    442 
    443     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
    444       if (DebugLogging)
    445         dbgs() << "Running pass: " << Passes[Idx]->name() << " on "
    446                << IR.getName() << "\n";
    447 
    448       PreservedAnalyses PassPA = Passes[Idx]->run(IR, AM, ExtraArgs...);
    449 
    450       // Update the analysis manager as each pass runs and potentially
    451       // invalidates analyses.
    452       AM.invalidate(IR, PassPA);
    453 
    454       // Finally, intersect the preserved analyses to compute the aggregate
    455       // preserved set for this pass manager.
    456       PA.intersect(std::move(PassPA));
    457 
    458       // FIXME: Historically, the pass managers all called the LLVM context's
    459       // yield function here. We don't have a generic way to acquire the
    460       // context and it isn't yet clear what the right pattern is for yielding
    461       // in the new pass manager so it is currently omitted.
    462       //IR.getContext().yield();
    463     }
    464 
    465     // Invaliadtion was handled after each pass in the above loop for the
    466     // current unit of IR. Therefore, the remaining analysis results in the
    467     // AnalysisManager are preserved. We mark this with a set so that we don't
    468     // need to inspect each one individually.
    469     PA.preserveSet<AllAnalysesOn<IRUnitT>>();
    470 
    471     if (DebugLogging)
    472       dbgs() << "Finished " << getTypeName<IRUnitT>() << " pass manager run.\n";
    473 
    474     return PA;
    475   }
    476 
    477   template <typename PassT> void addPass(PassT Pass) {
    478     using PassModelT =
    479         detail::PassModel<IRUnitT, PassT, PreservedAnalyses, AnalysisManagerT,
    480                           ExtraArgTs...>;
    481 
    482     Passes.emplace_back(new PassModelT(std::move(Pass)));
    483   }
    484 
    485 private:
    486   using PassConceptT =
    487       detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
    488 
    489   std::vector<std::unique_ptr<PassConceptT>> Passes;
    490 
    491   /// \brief Flag indicating whether we should do debug logging.
    492   bool DebugLogging;
    493 };
    494 
    495 extern template class PassManager<Module>;
    496 
    497 /// \brief Convenience typedef for a pass manager over modules.
    498 using ModulePassManager = PassManager<Module>;
    499 
    500 extern template class PassManager<Function>;
    501 
    502 /// \brief Convenience typedef for a pass manager over functions.
    503 using FunctionPassManager = PassManager<Function>;
    504 
    505 /// \brief A container for analyses that lazily runs them and caches their
    506 /// results.
    507 ///
    508 /// This class can manage analyses for any IR unit where the address of the IR
    509 /// unit sufficies as its identity.
    510 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
    511 public:
    512   class Invalidator;
    513 
    514 private:
    515   // Now that we've defined our invalidator, we can define the concept types.
    516   using ResultConceptT =
    517       detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>;
    518   using PassConceptT =
    519       detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator,
    520                                   ExtraArgTs...>;
    521 
    522   /// \brief List of analysis pass IDs and associated concept pointers.
    523   ///
    524   /// Requires iterators to be valid across appending new entries and arbitrary
    525   /// erases. Provides the analysis ID to enable finding iterators to a given
    526   /// entry in maps below, and provides the storage for the actual result
    527   /// concept.
    528   using AnalysisResultListT =
    529       std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
    530 
    531   /// \brief Map type from IRUnitT pointer to our custom list type.
    532   using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
    533 
    534   /// \brief Map type from a pair of analysis ID and IRUnitT pointer to an
    535   /// iterator into a particular result list (which is where the actual analysis
    536   /// result is stored).
    537   using AnalysisResultMapT =
    538       DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
    539                typename AnalysisResultListT::iterator>;
    540 
    541 public:
    542   /// API to communicate dependencies between analyses during invalidation.
    543   ///
    544   /// When an analysis result embeds handles to other analysis results, it
    545   /// needs to be invalidated both when its own information isn't preserved and
    546   /// when any of its embedded analysis results end up invalidated. We pass an
    547   /// \c Invalidator object as an argument to \c invalidate() in order to let
    548   /// the analysis results themselves define the dependency graph on the fly.
    549   /// This lets us avoid building building an explicit representation of the
    550   /// dependencies between analysis results.
    551   class Invalidator {
    552   public:
    553     /// Trigger the invalidation of some other analysis pass if not already
    554     /// handled and return whether it was in fact invalidated.
    555     ///
    556     /// This is expected to be called from within a given analysis result's \c
    557     /// invalidate method to trigger a depth-first walk of all inter-analysis
    558     /// dependencies. The same \p IR unit and \p PA passed to that result's \c
    559     /// invalidate method should in turn be provided to this routine.
    560     ///
    561     /// The first time this is called for a given analysis pass, it will call
    562     /// the corresponding result's \c invalidate method.  Subsequent calls will
    563     /// use a cache of the results of that initial call.  It is an error to form
    564     /// cyclic dependencies between analysis results.
    565     ///
    566     /// This returns true if the given analysis's result is invalid. Any
    567     /// dependecies on it will become invalid as a result.
    568     template <typename PassT>
    569     bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
    570       using ResultModelT =
    571           detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
    572                                       PreservedAnalyses, Invalidator>;
    573 
    574       return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
    575     }
    576 
    577     /// A type-erased variant of the above invalidate method with the same core
    578     /// API other than passing an analysis ID rather than an analysis type
    579     /// parameter.
    580     ///
    581     /// This is sadly less efficient than the above routine, which leverages
    582     /// the type parameter to avoid the type erasure overhead.
    583     bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
    584       return invalidateImpl<>(ID, IR, PA);
    585     }
    586 
    587   private:
    588     friend class AnalysisManager;
    589 
    590     template <typename ResultT = ResultConceptT>
    591     bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
    592                         const PreservedAnalyses &PA) {
    593       // If we've already visited this pass, return true if it was invalidated
    594       // and false otherwise.
    595       auto IMapI = IsResultInvalidated.find(ID);
    596       if (IMapI != IsResultInvalidated.end())
    597         return IMapI->second;
    598 
    599       // Otherwise look up the result object.
    600       auto RI = Results.find({ID, &IR});
    601       assert(RI != Results.end() &&
    602              "Trying to invalidate a dependent result that isn't in the "
    603              "manager's cache is always an error, likely due to a stale result "
    604              "handle!");
    605 
    606       auto &Result = static_cast<ResultT &>(*RI->second->second);
    607 
    608       // Insert into the map whether the result should be invalidated and return
    609       // that. Note that we cannot reuse IMapI and must do a fresh insert here,
    610       // as calling invalidate could (recursively) insert things into the map,
    611       // making any iterator or reference invalid.
    612       bool Inserted;
    613       std::tie(IMapI, Inserted) =
    614           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
    615       (void)Inserted;
    616       assert(Inserted && "Should not have already inserted this ID, likely "
    617                          "indicates a dependency cycle!");
    618       return IMapI->second;
    619     }
    620 
    621     Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
    622                 const AnalysisResultMapT &Results)
    623         : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
    624 
    625     SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
    626     const AnalysisResultMapT &Results;
    627   };
    628 
    629   /// \brief Construct an empty analysis manager.
    630   ///
    631   /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
    632   AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
    633   AnalysisManager(AnalysisManager &&) = default;
    634   AnalysisManager &operator=(AnalysisManager &&) = default;
    635 
    636   /// \brief Returns true if the analysis manager has an empty results cache.
    637   bool empty() const {
    638     assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
    639            "The storage and index of analysis results disagree on how many "
    640            "there are!");
    641     return AnalysisResults.empty();
    642   }
    643 
    644   /// \brief Clear any cached analysis results for a single unit of IR.
    645   ///
    646   /// This doesn't invalidate, but instead simply deletes, the relevant results.
    647   /// It is useful when the IR is being removed and we want to clear out all the
    648   /// memory pinned for it.
    649   void clear(IRUnitT &IR) {
    650     if (DebugLogging)
    651       dbgs() << "Clearing all analysis results for: " << IR.getName() << "\n";
    652 
    653     auto ResultsListI = AnalysisResultLists.find(&IR);
    654     if (ResultsListI == AnalysisResultLists.end())
    655       return;
    656     // Delete the map entries that point into the results list.
    657     for (auto &IDAndResult : ResultsListI->second)
    658       AnalysisResults.erase({IDAndResult.first, &IR});
    659 
    660     // And actually destroy and erase the results associated with this IR.
    661     AnalysisResultLists.erase(ResultsListI);
    662   }
    663 
    664   /// \brief Clear all analysis results cached by this AnalysisManager.
    665   ///
    666   /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
    667   /// deletes them.  This lets you clean up the AnalysisManager when the set of
    668   /// IR units itself has potentially changed, and thus we can't even look up a
    669   /// a result and invalidate/clear it directly.
    670   void clear() {
    671     AnalysisResults.clear();
    672     AnalysisResultLists.clear();
    673   }
    674 
    675   /// \brief Get the result of an analysis pass for a given IR unit.
    676   ///
    677   /// Runs the analysis if a cached result is not available.
    678   template <typename PassT>
    679   typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
    680     assert(AnalysisPasses.count(PassT::ID()) &&
    681            "This analysis pass was not registered prior to being queried");
    682     ResultConceptT &ResultConcept =
    683         getResultImpl(PassT::ID(), IR, ExtraArgs...);
    684 
    685     using ResultModelT =
    686         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
    687                                     PreservedAnalyses, Invalidator>;
    688 
    689     return static_cast<ResultModelT &>(ResultConcept).Result;
    690   }
    691 
    692   /// \brief Get the cached result of an analysis pass for a given IR unit.
    693   ///
    694   /// This method never runs the analysis.
    695   ///
    696   /// \returns null if there is no cached result.
    697   template <typename PassT>
    698   typename PassT::Result *getCachedResult(IRUnitT &IR) const {
    699     assert(AnalysisPasses.count(PassT::ID()) &&
    700            "This analysis pass was not registered prior to being queried");
    701 
    702     ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
    703     if (!ResultConcept)
    704       return nullptr;
    705 
    706     using ResultModelT =
    707         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
    708                                     PreservedAnalyses, Invalidator>;
    709 
    710     return &static_cast<ResultModelT *>(ResultConcept)->Result;
    711   }
    712 
    713   /// \brief Register an analysis pass with the manager.
    714   ///
    715   /// The parameter is a callable whose result is an analysis pass. This allows
    716   /// passing in a lambda to construct the analysis.
    717   ///
    718   /// The analysis type to register is the type returned by calling the \c
    719   /// PassBuilder argument. If that type has already been registered, then the
    720   /// argument will not be called and this function will return false.
    721   /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
    722   /// and this function returns true.
    723   ///
    724   /// (Note: Although the return value of this function indicates whether or not
    725   /// an analysis was previously registered, there intentionally isn't a way to
    726   /// query this directly.  Instead, you should just register all the analyses
    727   /// you might want and let this class run them lazily.  This idiom lets us
    728   /// minimize the number of times we have to look up analyses in our
    729   /// hashtable.)
    730   template <typename PassBuilderT>
    731   bool registerPass(PassBuilderT &&PassBuilder) {
    732     using PassT = decltype(PassBuilder());
    733     using PassModelT =
    734         detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses,
    735                                   Invalidator, ExtraArgTs...>;
    736 
    737     auto &PassPtr = AnalysisPasses[PassT::ID()];
    738     if (PassPtr)
    739       // Already registered this pass type!
    740       return false;
    741 
    742     // Construct a new model around the instance returned by the builder.
    743     PassPtr.reset(new PassModelT(PassBuilder()));
    744     return true;
    745   }
    746 
    747   /// \brief Invalidate a specific analysis pass for an IR module.
    748   ///
    749   /// Note that the analysis result can disregard invalidation, if it determines
    750   /// it is in fact still valid.
    751   template <typename PassT> void invalidate(IRUnitT &IR) {
    752     assert(AnalysisPasses.count(PassT::ID()) &&
    753            "This analysis pass was not registered prior to being invalidated");
    754     invalidateImpl(PassT::ID(), IR);
    755   }
    756 
    757   /// \brief Invalidate cached analyses for an IR unit.
    758   ///
    759   /// Walk through all of the analyses pertaining to this unit of IR and
    760   /// invalidate them, unless they are preserved by the PreservedAnalyses set.
    761   void invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
    762     // We're done if all analyses on this IR unit are preserved.
    763     if (PA.allAnalysesInSetPreserved<AllAnalysesOn<IRUnitT>>())
    764       return;
    765 
    766     if (DebugLogging)
    767       dbgs() << "Invalidating all non-preserved analyses for: " << IR.getName()
    768              << "\n";
    769 
    770     // Track whether each analysis's result is invalidated in
    771     // IsResultInvalidated.
    772     SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
    773     Invalidator Inv(IsResultInvalidated, AnalysisResults);
    774     AnalysisResultListT &ResultsList = AnalysisResultLists[&IR];
    775     for (auto &AnalysisResultPair : ResultsList) {
    776       // This is basically the same thing as Invalidator::invalidate, but we
    777       // can't call it here because we're operating on the type-erased result.
    778       // Moreover if we instead called invalidate() directly, it would do an
    779       // unnecessary look up in ResultsList.
    780       AnalysisKey *ID = AnalysisResultPair.first;
    781       auto &Result = *AnalysisResultPair.second;
    782 
    783       auto IMapI = IsResultInvalidated.find(ID);
    784       if (IMapI != IsResultInvalidated.end())
    785         // This result was already handled via the Invalidator.
    786         continue;
    787 
    788       // Try to invalidate the result, giving it the Invalidator so it can
    789       // recursively query for any dependencies it has and record the result.
    790       // Note that we cannot reuse 'IMapI' here or pre-insert the ID, as
    791       // Result.invalidate may insert things into the map, invalidating our
    792       // iterator.
    793       bool Inserted =
    794           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, Inv)})
    795               .second;
    796       (void)Inserted;
    797       assert(Inserted && "Should never have already inserted this ID, likely "
    798                          "indicates a cycle!");
    799     }
    800 
    801     // Now erase the results that were marked above as invalidated.
    802     if (!IsResultInvalidated.empty()) {
    803       for (auto I = ResultsList.begin(), E = ResultsList.end(); I != E;) {
    804         AnalysisKey *ID = I->first;
    805         if (!IsResultInvalidated.lookup(ID)) {
    806           ++I;
    807           continue;
    808         }
    809 
    810         if (DebugLogging)
    811           dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
    812                  << " on " << IR.getName() << "\n";
    813 
    814         I = ResultsList.erase(I);
    815         AnalysisResults.erase({ID, &IR});
    816       }
    817     }
    818 
    819     if (ResultsList.empty())
    820       AnalysisResultLists.erase(&IR);
    821   }
    822 
    823 private:
    824   /// \brief Look up a registered analysis pass.
    825   PassConceptT &lookUpPass(AnalysisKey *ID) {
    826     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
    827     assert(PI != AnalysisPasses.end() &&
    828            "Analysis passes must be registered prior to being queried!");
    829     return *PI->second;
    830   }
    831 
    832   /// \brief Look up a registered analysis pass.
    833   const PassConceptT &lookUpPass(AnalysisKey *ID) const {
    834     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
    835     assert(PI != AnalysisPasses.end() &&
    836            "Analysis passes must be registered prior to being queried!");
    837     return *PI->second;
    838   }
    839 
    840   /// \brief Get an analysis result, running the pass if necessary.
    841   ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
    842                                 ExtraArgTs... ExtraArgs) {
    843     typename AnalysisResultMapT::iterator RI;
    844     bool Inserted;
    845     std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair(
    846         std::make_pair(ID, &IR), typename AnalysisResultListT::iterator()));
    847 
    848     // If we don't have a cached result for this function, look up the pass and
    849     // run it to produce a result, which we then add to the cache.
    850     if (Inserted) {
    851       auto &P = this->lookUpPass(ID);
    852       if (DebugLogging)
    853         dbgs() << "Running analysis: " << P.name() << " on " << IR.getName()
    854                << "\n";
    855       AnalysisResultListT &ResultList = AnalysisResultLists[&IR];
    856       ResultList.emplace_back(ID, P.run(IR, *this, ExtraArgs...));
    857 
    858       // P.run may have inserted elements into AnalysisResults and invalidated
    859       // RI.
    860       RI = AnalysisResults.find({ID, &IR});
    861       assert(RI != AnalysisResults.end() && "we just inserted it!");
    862 
    863       RI->second = std::prev(ResultList.end());
    864     }
    865 
    866     return *RI->second->second;
    867   }
    868 
    869   /// \brief Get a cached analysis result or return null.
    870   ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
    871     typename AnalysisResultMapT::const_iterator RI =
    872         AnalysisResults.find({ID, &IR});
    873     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
    874   }
    875 
    876   /// \brief Invalidate a function pass result.
    877   void invalidateImpl(AnalysisKey *ID, IRUnitT &IR) {
    878     typename AnalysisResultMapT::iterator RI =
    879         AnalysisResults.find({ID, &IR});
    880     if (RI == AnalysisResults.end())
    881       return;
    882 
    883     if (DebugLogging)
    884       dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
    885              << " on " << IR.getName() << "\n";
    886     AnalysisResultLists[&IR].erase(RI->second);
    887     AnalysisResults.erase(RI);
    888   }
    889 
    890   /// \brief Map type from module analysis pass ID to pass concept pointer.
    891   using AnalysisPassMapT =
    892       DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
    893 
    894   /// \brief Collection of module analysis passes, indexed by ID.
    895   AnalysisPassMapT AnalysisPasses;
    896 
    897   /// \brief Map from function to a list of function analysis results.
    898   ///
    899   /// Provides linear time removal of all analysis results for a function and
    900   /// the ultimate storage for a particular cached analysis result.
    901   AnalysisResultListMapT AnalysisResultLists;
    902 
    903   /// \brief Map from an analysis ID and function to a particular cached
    904   /// analysis result.
    905   AnalysisResultMapT AnalysisResults;
    906 
    907   /// \brief Indicates whether we log to \c llvm::dbgs().
    908   bool DebugLogging;
    909 };
    910 
    911 extern template class AnalysisManager<Module>;
    912 
    913 /// \brief Convenience typedef for the Module analysis manager.
    914 using ModuleAnalysisManager = AnalysisManager<Module>;
    915 
    916 extern template class AnalysisManager<Function>;
    917 
    918 /// \brief Convenience typedef for the Function analysis manager.
    919 using FunctionAnalysisManager = AnalysisManager<Function>;
    920 
    921 /// \brief An analysis over an "outer" IR unit that provides access to an
    922 /// analysis manager over an "inner" IR unit.  The inner unit must be contained
    923 /// in the outer unit.
    924 ///
    925 /// Fore example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
    926 /// an analysis over Modules (the "outer" unit) that provides access to a
    927 /// Function analysis manager.  The FunctionAnalysisManager is the "inner"
    928 /// manager being proxied, and Functions are the "inner" unit.  The inner/outer
    929 /// relationship is valid because each Function is contained in one Module.
    930 ///
    931 /// If you're (transitively) within a pass manager for an IR unit U that
    932 /// contains IR unit V, you should never use an analysis manager over V, except
    933 /// via one of these proxies.
    934 ///
    935 /// Note that the proxy's result is a move-only RAII object.  The validity of
    936 /// the analyses in the inner analysis manager is tied to its lifetime.
    937 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
    938 class InnerAnalysisManagerProxy
    939     : public AnalysisInfoMixin<
    940           InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
    941 public:
    942   class Result {
    943   public:
    944     explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
    945 
    946     Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
    947       // We have to null out the analysis manager in the moved-from state
    948       // because we are taking ownership of the responsibilty to clear the
    949       // analysis state.
    950       Arg.InnerAM = nullptr;
    951     }
    952 
    953     ~Result() {
    954       // InnerAM is cleared in a moved from state where there is nothing to do.
    955       if (!InnerAM)
    956         return;
    957 
    958       // Clear out the analysis manager if we're being destroyed -- it means we
    959       // didn't even see an invalidate call when we got invalidated.
    960       InnerAM->clear();
    961     }
    962 
    963     Result &operator=(Result &&RHS) {
    964       InnerAM = RHS.InnerAM;
    965       // We have to null out the analysis manager in the moved-from state
    966       // because we are taking ownership of the responsibilty to clear the
    967       // analysis state.
    968       RHS.InnerAM = nullptr;
    969       return *this;
    970     }
    971 
    972     /// \brief Accessor for the analysis manager.
    973     AnalysisManagerT &getManager() { return *InnerAM; }
    974 
    975     /// \brief Handler for invalidation of the outer IR unit, \c IRUnitT.
    976     ///
    977     /// If the proxy analysis itself is not preserved, we assume that the set of
    978     /// inner IR objects contained in IRUnit may have changed.  In this case,
    979     /// we have to call \c clear() on the inner analysis manager, as it may now
    980     /// have stale pointers to its inner IR objects.
    981     ///
    982     /// Regardless of whether the proxy analysis is marked as preserved, all of
    983     /// the analyses in the inner analysis manager are potentially invalidated
    984     /// based on the set of preserved analyses.
    985     bool invalidate(
    986         IRUnitT &IR, const PreservedAnalyses &PA,
    987         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
    988 
    989   private:
    990     AnalysisManagerT *InnerAM;
    991   };
    992 
    993   explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
    994       : InnerAM(&InnerAM) {}
    995 
    996   /// \brief Run the analysis pass and create our proxy result object.
    997   ///
    998   /// This doesn't do any interesting work; it is primarily used to insert our
    999   /// proxy result object into the outer analysis cache so that we can proxy
   1000   /// invalidation to the inner analysis manager.
   1001   Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
   1002              ExtraArgTs...) {
   1003     return Result(*InnerAM);
   1004   }
   1005 
   1006 private:
   1007   friend AnalysisInfoMixin<
   1008       InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
   1009 
   1010   static AnalysisKey Key;
   1011 
   1012   AnalysisManagerT *InnerAM;
   1013 };
   1014 
   1015 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
   1016 AnalysisKey
   1017     InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
   1018 
   1019 /// Provide the \c FunctionAnalysisManager to \c Module proxy.
   1020 using FunctionAnalysisManagerModuleProxy =
   1021     InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
   1022 
   1023 /// Specialization of the invalidate method for the \c
   1024 /// FunctionAnalysisManagerModuleProxy's result.
   1025 template <>
   1026 bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
   1027     Module &M, const PreservedAnalyses &PA,
   1028     ModuleAnalysisManager::Invalidator &Inv);
   1029 
   1030 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
   1031 // template.
   1032 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
   1033                                                 Module>;
   1034 
   1035 /// \brief An analysis over an "inner" IR unit that provides access to an
   1036 /// analysis manager over a "outer" IR unit.  The inner unit must be contained
   1037 /// in the outer unit.
   1038 ///
   1039 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
   1040 /// analysis over Functions (the "inner" unit) which provides access to a Module
   1041 /// analysis manager.  The ModuleAnalysisManager is the "outer" manager being
   1042 /// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship
   1043 /// is valid because each Function is contained in one Module.
   1044 ///
   1045 /// This proxy only exposes the const interface of the outer analysis manager,
   1046 /// to indicate that you cannot cause an outer analysis to run from within an
   1047 /// inner pass.  Instead, you must rely on the \c getCachedResult API.
   1048 ///
   1049 /// This proxy doesn't manage invalidation in any way -- that is handled by the
   1050 /// recursive return path of each layer of the pass manager.  A consequence of
   1051 /// this is the outer analyses may be stale.  We invalidate the outer analyses
   1052 /// only when we're done running passes over the inner IR units.
   1053 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
   1054 class OuterAnalysisManagerProxy
   1055     : public AnalysisInfoMixin<
   1056           OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
   1057 public:
   1058   /// \brief Result proxy object for \c OuterAnalysisManagerProxy.
   1059   class Result {
   1060   public:
   1061     explicit Result(const AnalysisManagerT &AM) : AM(&AM) {}
   1062 
   1063     const AnalysisManagerT &getManager() const { return *AM; }
   1064 
   1065     /// \brief Handle invalidation by ignoring it; this pass is immutable.
   1066     bool invalidate(
   1067         IRUnitT &, const PreservedAnalyses &,
   1068         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &) {
   1069       return false;
   1070     }
   1071 
   1072     /// Register a deferred invalidation event for when the outer analysis
   1073     /// manager processes its invalidations.
   1074     template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
   1075     void registerOuterAnalysisInvalidation() {
   1076       AnalysisKey *OuterID = OuterAnalysisT::ID();
   1077       AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
   1078 
   1079       auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
   1080       // Note, this is a linear scan. If we end up with large numbers of
   1081       // analyses that all trigger invalidation on the same outer analysis,
   1082       // this entire system should be changed to some other deterministic
   1083       // data structure such as a `SetVector` of a pair of pointers.
   1084       auto InvalidatedIt = std::find(InvalidatedIDList.begin(),
   1085                                      InvalidatedIDList.end(), InvalidatedID);
   1086       if (InvalidatedIt == InvalidatedIDList.end())
   1087         InvalidatedIDList.push_back(InvalidatedID);
   1088     }
   1089 
   1090     /// Access the map from outer analyses to deferred invalidation requiring
   1091     /// analyses.
   1092     const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
   1093     getOuterInvalidations() const {
   1094       return OuterAnalysisInvalidationMap;
   1095     }
   1096 
   1097   private:
   1098     const AnalysisManagerT *AM;
   1099 
   1100     /// A map from an outer analysis ID to the set of this IR-unit's analyses
   1101     /// which need to be invalidated.
   1102     SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
   1103         OuterAnalysisInvalidationMap;
   1104   };
   1105 
   1106   OuterAnalysisManagerProxy(const AnalysisManagerT &AM) : AM(&AM) {}
   1107 
   1108   /// \brief Run the analysis pass and create our proxy result object.
   1109   /// Nothing to see here, it just forwards the \c AM reference into the
   1110   /// result.
   1111   Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
   1112              ExtraArgTs...) {
   1113     return Result(*AM);
   1114   }
   1115 
   1116 private:
   1117   friend AnalysisInfoMixin<
   1118       OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
   1119 
   1120   static AnalysisKey Key;
   1121 
   1122   const AnalysisManagerT *AM;
   1123 };
   1124 
   1125 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
   1126 AnalysisKey
   1127     OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
   1128 
   1129 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
   1130                                                 Function>;
   1131 /// Provide the \c ModuleAnalysisManager to \c Function proxy.
   1132 using ModuleAnalysisManagerFunctionProxy =
   1133     OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
   1134 
   1135 /// \brief Trivial adaptor that maps from a module to its functions.
   1136 ///
   1137 /// Designed to allow composition of a FunctionPass(Manager) and
   1138 /// a ModulePassManager, by running the FunctionPass(Manager) over every
   1139 /// function in the module.
   1140 ///
   1141 /// Function passes run within this adaptor can rely on having exclusive access
   1142 /// to the function they are run over. They should not read or modify any other
   1143 /// functions! Other threads or systems may be manipulating other functions in
   1144 /// the module, and so their state should never be relied on.
   1145 /// FIXME: Make the above true for all of LLVM's actual passes, some still
   1146 /// violate this principle.
   1147 ///
   1148 /// Function passes can also read the module containing the function, but they
   1149 /// should not modify that module outside of the use lists of various globals.
   1150 /// For example, a function pass is not permitted to add functions to the
   1151 /// module.
   1152 /// FIXME: Make the above true for all of LLVM's actual passes, some still
   1153 /// violate this principle.
   1154 ///
   1155 /// Note that although function passes can access module analyses, module
   1156 /// analyses are not invalidated while the function passes are running, so they
   1157 /// may be stale.  Function analyses will not be stale.
   1158 template <typename FunctionPassT>
   1159 class ModuleToFunctionPassAdaptor
   1160     : public PassInfoMixin<ModuleToFunctionPassAdaptor<FunctionPassT>> {
   1161 public:
   1162   explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
   1163       : Pass(std::move(Pass)) {}
   1164 
   1165   /// \brief Runs the function pass across every function in the module.
   1166   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM) {
   1167     FunctionAnalysisManager &FAM =
   1168         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
   1169 
   1170     PreservedAnalyses PA = PreservedAnalyses::all();
   1171     for (Function &F : M) {
   1172       if (F.isDeclaration())
   1173         continue;
   1174 
   1175       PreservedAnalyses PassPA = Pass.run(F, FAM);
   1176 
   1177       // We know that the function pass couldn't have invalidated any other
   1178       // function's analyses (that's the contract of a function pass), so
   1179       // directly handle the function analysis manager's invalidation here.
   1180       FAM.invalidate(F, PassPA);
   1181 
   1182       // Then intersect the preserved set so that invalidation of module
   1183       // analyses will eventually occur when the module pass completes.
   1184       PA.intersect(std::move(PassPA));
   1185     }
   1186 
   1187     // The FunctionAnalysisManagerModuleProxy is preserved because (we assume)
   1188     // the function passes we ran didn't add or remove any functions.
   1189     //
   1190     // We also preserve all analyses on Functions, because we did all the
   1191     // invalidation we needed to do above.
   1192     PA.preserveSet<AllAnalysesOn<Function>>();
   1193     PA.preserve<FunctionAnalysisManagerModuleProxy>();
   1194     return PA;
   1195   }
   1196 
   1197 private:
   1198   FunctionPassT Pass;
   1199 };
   1200 
   1201 /// \brief A function to deduce a function pass type and wrap it in the
   1202 /// templated adaptor.
   1203 template <typename FunctionPassT>
   1204 ModuleToFunctionPassAdaptor<FunctionPassT>
   1205 createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
   1206   return ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
   1207 }
   1208 
   1209 /// \brief A utility pass template to force an analysis result to be available.
   1210 ///
   1211 /// If there are extra arguments at the pass's run level there may also be
   1212 /// extra arguments to the analysis manager's \c getResult routine. We can't
   1213 /// guess how to effectively map the arguments from one to the other, and so
   1214 /// this specialization just ignores them.
   1215 ///
   1216 /// Specific patterns of run-method extra arguments and analysis manager extra
   1217 /// arguments will have to be defined as appropriate specializations.
   1218 template <typename AnalysisT, typename IRUnitT,
   1219           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
   1220           typename... ExtraArgTs>
   1221 struct RequireAnalysisPass
   1222     : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
   1223                                         ExtraArgTs...>> {
   1224   /// \brief Run this pass over some unit of IR.
   1225   ///
   1226   /// This pass can be run over any unit of IR and use any analysis manager
   1227   /// provided they satisfy the basic API requirements. When this pass is
   1228   /// created, these methods can be instantiated to satisfy whatever the
   1229   /// context requires.
   1230   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
   1231                         ExtraArgTs &&... Args) {
   1232     (void)AM.template getResult<AnalysisT>(Arg,
   1233                                            std::forward<ExtraArgTs>(Args)...);
   1234 
   1235     return PreservedAnalyses::all();
   1236   }
   1237 };
   1238 
   1239 /// \brief A no-op pass template which simply forces a specific analysis result
   1240 /// to be invalidated.
   1241 template <typename AnalysisT>
   1242 struct InvalidateAnalysisPass
   1243     : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
   1244   /// \brief Run this pass over some unit of IR.
   1245   ///
   1246   /// This pass can be run over any unit of IR and use any analysis manager,
   1247   /// provided they satisfy the basic API requirements. When this pass is
   1248   /// created, these methods can be instantiated to satisfy whatever the
   1249   /// context requires.
   1250   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
   1251   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
   1252     auto PA = PreservedAnalyses::all();
   1253     PA.abandon<AnalysisT>();
   1254     return PA;
   1255   }
   1256 };
   1257 
   1258 /// \brief A utility pass that does nothing, but preserves no analyses.
   1259 ///
   1260 /// Because this preserves no analyses, any analysis passes queried after this
   1261 /// pass runs will recompute fresh results.
   1262 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
   1263   /// \brief Run this pass over some unit of IR.
   1264   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
   1265   PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
   1266     return PreservedAnalyses::none();
   1267   }
   1268 };
   1269 
   1270 /// A utility pass template that simply runs another pass multiple times.
   1271 ///
   1272 /// This can be useful when debugging or testing passes. It also serves as an
   1273 /// example of how to extend the pass manager in ways beyond composition.
   1274 template <typename PassT>
   1275 class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
   1276 public:
   1277   RepeatedPass(int Count, PassT P) : Count(Count), P(std::move(P)) {}
   1278 
   1279   template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
   1280   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, Ts &&... Args) {
   1281     auto PA = PreservedAnalyses::all();
   1282     for (int i = 0; i < Count; ++i)
   1283       PA.intersect(P.run(Arg, AM, std::forward<Ts>(Args)...));
   1284     return PA;
   1285   }
   1286 
   1287 private:
   1288   int Count;
   1289   PassT P;
   1290 };
   1291 
   1292 template <typename PassT>
   1293 RepeatedPass<PassT> createRepeatedPass(int Count, PassT P) {
   1294   return RepeatedPass<PassT>(Count, std::move(P));
   1295 }
   1296 
   1297 } // end namespace llvm
   1298 
   1299 #endif // LLVM_IR_PASSMANAGER_H
   1300