Home | History | Annotate | Download | only in Support
      1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains some functions that are useful for math stuff.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_SUPPORT_MATHEXTRAS_H
     15 #define LLVM_SUPPORT_MATHEXTRAS_H
     16 
     17 #include "llvm/Support/Compiler.h"
     18 #include "llvm/Support/SwapByteOrder.h"
     19 #include <algorithm>
     20 #include <cassert>
     21 #include <climits>
     22 #include <cstring>
     23 #include <limits>
     24 #include <type_traits>
     25 
     26 #ifdef _MSC_VER
     27 #include <intrin.h>
     28 #endif
     29 
     30 #ifdef __ANDROID_NDK__
     31 #include <android/api-level.h>
     32 #endif
     33 
     34 namespace llvm {
     35 /// \brief The behavior an operation has on an input of 0.
     36 enum ZeroBehavior {
     37   /// \brief The returned value is undefined.
     38   ZB_Undefined,
     39   /// \brief The returned value is numeric_limits<T>::max()
     40   ZB_Max,
     41   /// \brief The returned value is numeric_limits<T>::digits
     42   ZB_Width
     43 };
     44 
     45 namespace detail {
     46 template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
     47   static std::size_t count(T Val, ZeroBehavior) {
     48     if (!Val)
     49       return std::numeric_limits<T>::digits;
     50     if (Val & 0x1)
     51       return 0;
     52 
     53     // Bisection method.
     54     std::size_t ZeroBits = 0;
     55     T Shift = std::numeric_limits<T>::digits >> 1;
     56     T Mask = std::numeric_limits<T>::max() >> Shift;
     57     while (Shift) {
     58       if ((Val & Mask) == 0) {
     59         Val >>= Shift;
     60         ZeroBits |= Shift;
     61       }
     62       Shift >>= 1;
     63       Mask >>= Shift;
     64     }
     65     return ZeroBits;
     66   }
     67 };
     68 
     69 #if __GNUC__ >= 4 || defined(_MSC_VER)
     70 template <typename T> struct TrailingZerosCounter<T, 4> {
     71   static std::size_t count(T Val, ZeroBehavior ZB) {
     72     if (ZB != ZB_Undefined && Val == 0)
     73       return 32;
     74 
     75 #if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0)
     76     return __builtin_ctz(Val);
     77 #elif defined(_MSC_VER)
     78     unsigned long Index;
     79     _BitScanForward(&Index, Val);
     80     return Index;
     81 #endif
     82   }
     83 };
     84 
     85 #if !defined(_MSC_VER) || defined(_M_X64)
     86 template <typename T> struct TrailingZerosCounter<T, 8> {
     87   static std::size_t count(T Val, ZeroBehavior ZB) {
     88     if (ZB != ZB_Undefined && Val == 0)
     89       return 64;
     90 
     91 #if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0)
     92     return __builtin_ctzll(Val);
     93 #elif defined(_MSC_VER)
     94     unsigned long Index;
     95     _BitScanForward64(&Index, Val);
     96     return Index;
     97 #endif
     98   }
     99 };
    100 #endif
    101 #endif
    102 } // namespace detail
    103 
    104 /// \brief Count number of 0's from the least significant bit to the most
    105 ///   stopping at the first 1.
    106 ///
    107 /// Only unsigned integral types are allowed.
    108 ///
    109 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
    110 ///   valid arguments.
    111 template <typename T>
    112 std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
    113   static_assert(std::numeric_limits<T>::is_integer &&
    114                     !std::numeric_limits<T>::is_signed,
    115                 "Only unsigned integral types are allowed.");
    116   return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
    117 }
    118 
    119 namespace detail {
    120 template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
    121   static std::size_t count(T Val, ZeroBehavior) {
    122     if (!Val)
    123       return std::numeric_limits<T>::digits;
    124 
    125     // Bisection method.
    126     std::size_t ZeroBits = 0;
    127     for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
    128       T Tmp = Val >> Shift;
    129       if (Tmp)
    130         Val = Tmp;
    131       else
    132         ZeroBits |= Shift;
    133     }
    134     return ZeroBits;
    135   }
    136 };
    137 
    138 #if __GNUC__ >= 4 || defined(_MSC_VER)
    139 template <typename T> struct LeadingZerosCounter<T, 4> {
    140   static std::size_t count(T Val, ZeroBehavior ZB) {
    141     if (ZB != ZB_Undefined && Val == 0)
    142       return 32;
    143 
    144 #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0)
    145     return __builtin_clz(Val);
    146 #elif defined(_MSC_VER)
    147     unsigned long Index;
    148     _BitScanReverse(&Index, Val);
    149     return Index ^ 31;
    150 #endif
    151   }
    152 };
    153 
    154 #if !defined(_MSC_VER) || defined(_M_X64)
    155 template <typename T> struct LeadingZerosCounter<T, 8> {
    156   static std::size_t count(T Val, ZeroBehavior ZB) {
    157     if (ZB != ZB_Undefined && Val == 0)
    158       return 64;
    159 
    160 #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0)
    161     return __builtin_clzll(Val);
    162 #elif defined(_MSC_VER)
    163     unsigned long Index;
    164     _BitScanReverse64(&Index, Val);
    165     return Index ^ 63;
    166 #endif
    167   }
    168 };
    169 #endif
    170 #endif
    171 } // namespace detail
    172 
    173 /// \brief Count number of 0's from the most significant bit to the least
    174 ///   stopping at the first 1.
    175 ///
    176 /// Only unsigned integral types are allowed.
    177 ///
    178 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
    179 ///   valid arguments.
    180 template <typename T>
    181 std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
    182   static_assert(std::numeric_limits<T>::is_integer &&
    183                     !std::numeric_limits<T>::is_signed,
    184                 "Only unsigned integral types are allowed.");
    185   return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
    186 }
    187 
    188 /// \brief Get the index of the first set bit starting from the least
    189 ///   significant bit.
    190 ///
    191 /// Only unsigned integral types are allowed.
    192 ///
    193 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
    194 ///   valid arguments.
    195 template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
    196   if (ZB == ZB_Max && Val == 0)
    197     return std::numeric_limits<T>::max();
    198 
    199   return countTrailingZeros(Val, ZB_Undefined);
    200 }
    201 
    202 /// \brief Create a bitmask with the N right-most bits set to 1, and all other
    203 /// bits set to 0.  Only unsigned types are allowed.
    204 template <typename T> T maskTrailingOnes(unsigned N) {
    205   static_assert(std::is_unsigned<T>::value, "Invalid type!");
    206   const unsigned Bits = CHAR_BIT * sizeof(T);
    207   assert(N <= Bits && "Invalid bit index");
    208   return N == 0 ? 0 : (T(-1) >> (Bits - N));
    209 }
    210 
    211 /// \brief Create a bitmask with the N left-most bits set to 1, and all other
    212 /// bits set to 0.  Only unsigned types are allowed.
    213 template <typename T> T maskLeadingOnes(unsigned N) {
    214   return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
    215 }
    216 
    217 /// \brief Create a bitmask with the N right-most bits set to 0, and all other
    218 /// bits set to 1.  Only unsigned types are allowed.
    219 template <typename T> T maskTrailingZeros(unsigned N) {
    220   return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
    221 }
    222 
    223 /// \brief Create a bitmask with the N left-most bits set to 0, and all other
    224 /// bits set to 1.  Only unsigned types are allowed.
    225 template <typename T> T maskLeadingZeros(unsigned N) {
    226   return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
    227 }
    228 
    229 /// \brief Get the index of the last set bit starting from the least
    230 ///   significant bit.
    231 ///
    232 /// Only unsigned integral types are allowed.
    233 ///
    234 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
    235 ///   valid arguments.
    236 template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
    237   if (ZB == ZB_Max && Val == 0)
    238     return std::numeric_limits<T>::max();
    239 
    240   // Use ^ instead of - because both gcc and llvm can remove the associated ^
    241   // in the __builtin_clz intrinsic on x86.
    242   return countLeadingZeros(Val, ZB_Undefined) ^
    243          (std::numeric_limits<T>::digits - 1);
    244 }
    245 
    246 /// \brief Macro compressed bit reversal table for 256 bits.
    247 ///
    248 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
    249 static const unsigned char BitReverseTable256[256] = {
    250 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
    251 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
    252 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
    253   R6(0), R6(2), R6(1), R6(3)
    254 #undef R2
    255 #undef R4
    256 #undef R6
    257 };
    258 
    259 /// \brief Reverse the bits in \p Val.
    260 template <typename T>
    261 T reverseBits(T Val) {
    262   unsigned char in[sizeof(Val)];
    263   unsigned char out[sizeof(Val)];
    264   std::memcpy(in, &Val, sizeof(Val));
    265   for (unsigned i = 0; i < sizeof(Val); ++i)
    266     out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
    267   std::memcpy(&Val, out, sizeof(Val));
    268   return Val;
    269 }
    270 
    271 // NOTE: The following support functions use the _32/_64 extensions instead of
    272 // type overloading so that signed and unsigned integers can be used without
    273 // ambiguity.
    274 
    275 /// Return the high 32 bits of a 64 bit value.
    276 constexpr inline uint32_t Hi_32(uint64_t Value) {
    277   return static_cast<uint32_t>(Value >> 32);
    278 }
    279 
    280 /// Return the low 32 bits of a 64 bit value.
    281 constexpr inline uint32_t Lo_32(uint64_t Value) {
    282   return static_cast<uint32_t>(Value);
    283 }
    284 
    285 /// Make a 64-bit integer from a high / low pair of 32-bit integers.
    286 constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
    287   return ((uint64_t)High << 32) | (uint64_t)Low;
    288 }
    289 
    290 /// Checks if an integer fits into the given bit width.
    291 template <unsigned N> constexpr inline bool isInt(int64_t x) {
    292   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
    293 }
    294 // Template specializations to get better code for common cases.
    295 template <> constexpr inline bool isInt<8>(int64_t x) {
    296   return static_cast<int8_t>(x) == x;
    297 }
    298 template <> constexpr inline bool isInt<16>(int64_t x) {
    299   return static_cast<int16_t>(x) == x;
    300 }
    301 template <> constexpr inline bool isInt<32>(int64_t x) {
    302   return static_cast<int32_t>(x) == x;
    303 }
    304 
    305 /// Checks if a signed integer is an N bit number shifted left by S.
    306 template <unsigned N, unsigned S>
    307 constexpr inline bool isShiftedInt(int64_t x) {
    308   static_assert(
    309       N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
    310   static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
    311   return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
    312 }
    313 
    314 /// Checks if an unsigned integer fits into the given bit width.
    315 ///
    316 /// This is written as two functions rather than as simply
    317 ///
    318 ///   return N >= 64 || X < (UINT64_C(1) << N);
    319 ///
    320 /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
    321 /// left too many places.
    322 template <unsigned N>
    323 constexpr inline typename std::enable_if<(N < 64), bool>::type
    324 isUInt(uint64_t X) {
    325   static_assert(N > 0, "isUInt<0> doesn't make sense");
    326   return X < (UINT64_C(1) << (N));
    327 }
    328 template <unsigned N>
    329 constexpr inline typename std::enable_if<N >= 64, bool>::type
    330 isUInt(uint64_t X) {
    331   return true;
    332 }
    333 
    334 // Template specializations to get better code for common cases.
    335 template <> constexpr inline bool isUInt<8>(uint64_t x) {
    336   return static_cast<uint8_t>(x) == x;
    337 }
    338 template <> constexpr inline bool isUInt<16>(uint64_t x) {
    339   return static_cast<uint16_t>(x) == x;
    340 }
    341 template <> constexpr inline bool isUInt<32>(uint64_t x) {
    342   return static_cast<uint32_t>(x) == x;
    343 }
    344 
    345 /// Checks if a unsigned integer is an N bit number shifted left by S.
    346 template <unsigned N, unsigned S>
    347 constexpr inline bool isShiftedUInt(uint64_t x) {
    348   static_assert(
    349       N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
    350   static_assert(N + S <= 64,
    351                 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
    352   // Per the two static_asserts above, S must be strictly less than 64.  So
    353   // 1 << S is not undefined behavior.
    354   return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
    355 }
    356 
    357 /// Gets the maximum value for a N-bit unsigned integer.
    358 inline uint64_t maxUIntN(uint64_t N) {
    359   assert(N > 0 && N <= 64 && "integer width out of range");
    360 
    361   // uint64_t(1) << 64 is undefined behavior, so we can't do
    362   //   (uint64_t(1) << N) - 1
    363   // without checking first that N != 64.  But this works and doesn't have a
    364   // branch.
    365   return UINT64_MAX >> (64 - N);
    366 }
    367 
    368 /// Gets the minimum value for a N-bit signed integer.
    369 inline int64_t minIntN(int64_t N) {
    370   assert(N > 0 && N <= 64 && "integer width out of range");
    371 
    372   return -(UINT64_C(1)<<(N-1));
    373 }
    374 
    375 /// Gets the maximum value for a N-bit signed integer.
    376 inline int64_t maxIntN(int64_t N) {
    377   assert(N > 0 && N <= 64 && "integer width out of range");
    378 
    379   // This relies on two's complement wraparound when N == 64, so we convert to
    380   // int64_t only at the very end to avoid UB.
    381   return (UINT64_C(1) << (N - 1)) - 1;
    382 }
    383 
    384 /// Checks if an unsigned integer fits into the given (dynamic) bit width.
    385 inline bool isUIntN(unsigned N, uint64_t x) {
    386   return N >= 64 || x <= maxUIntN(N);
    387 }
    388 
    389 /// Checks if an signed integer fits into the given (dynamic) bit width.
    390 inline bool isIntN(unsigned N, int64_t x) {
    391   return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
    392 }
    393 
    394 /// Return true if the argument is a non-empty sequence of ones starting at the
    395 /// least significant bit with the remainder zero (32 bit version).
    396 /// Ex. isMask_32(0x0000FFFFU) == true.
    397 constexpr inline bool isMask_32(uint32_t Value) {
    398   return Value && ((Value + 1) & Value) == 0;
    399 }
    400 
    401 /// Return true if the argument is a non-empty sequence of ones starting at the
    402 /// least significant bit with the remainder zero (64 bit version).
    403 constexpr inline bool isMask_64(uint64_t Value) {
    404   return Value && ((Value + 1) & Value) == 0;
    405 }
    406 
    407 /// Return true if the argument contains a non-empty sequence of ones with the
    408 /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
    409 constexpr inline bool isShiftedMask_32(uint32_t Value) {
    410   return Value && isMask_32((Value - 1) | Value);
    411 }
    412 
    413 /// Return true if the argument contains a non-empty sequence of ones with the
    414 /// remainder zero (64 bit version.)
    415 constexpr inline bool isShiftedMask_64(uint64_t Value) {
    416   return Value && isMask_64((Value - 1) | Value);
    417 }
    418 
    419 /// Return true if the argument is a power of two > 0.
    420 /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
    421 constexpr inline bool isPowerOf2_32(uint32_t Value) {
    422   return Value && !(Value & (Value - 1));
    423 }
    424 
    425 /// Return true if the argument is a power of two > 0 (64 bit edition.)
    426 constexpr inline bool isPowerOf2_64(uint64_t Value) {
    427   return Value && !(Value & (Value - int64_t(1L)));
    428 }
    429 
    430 /// Return a byte-swapped representation of the 16-bit argument.
    431 inline uint16_t ByteSwap_16(uint16_t Value) {
    432   return sys::SwapByteOrder_16(Value);
    433 }
    434 
    435 /// Return a byte-swapped representation of the 32-bit argument.
    436 inline uint32_t ByteSwap_32(uint32_t Value) {
    437   return sys::SwapByteOrder_32(Value);
    438 }
    439 
    440 /// Return a byte-swapped representation of the 64-bit argument.
    441 inline uint64_t ByteSwap_64(uint64_t Value) {
    442   return sys::SwapByteOrder_64(Value);
    443 }
    444 
    445 /// \brief Count the number of ones from the most significant bit to the first
    446 /// zero bit.
    447 ///
    448 /// Ex. countLeadingOnes(0xFF0FFF00) == 8.
    449 /// Only unsigned integral types are allowed.
    450 ///
    451 /// \param ZB the behavior on an input of all ones. Only ZB_Width and
    452 /// ZB_Undefined are valid arguments.
    453 template <typename T>
    454 std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
    455   static_assert(std::numeric_limits<T>::is_integer &&
    456                     !std::numeric_limits<T>::is_signed,
    457                 "Only unsigned integral types are allowed.");
    458   return countLeadingZeros(~Value, ZB);
    459 }
    460 
    461 /// \brief Count the number of ones from the least significant bit to the first
    462 /// zero bit.
    463 ///
    464 /// Ex. countTrailingOnes(0x00FF00FF) == 8.
    465 /// Only unsigned integral types are allowed.
    466 ///
    467 /// \param ZB the behavior on an input of all ones. Only ZB_Width and
    468 /// ZB_Undefined are valid arguments.
    469 template <typename T>
    470 std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
    471   static_assert(std::numeric_limits<T>::is_integer &&
    472                     !std::numeric_limits<T>::is_signed,
    473                 "Only unsigned integral types are allowed.");
    474   return countTrailingZeros(~Value, ZB);
    475 }
    476 
    477 namespace detail {
    478 template <typename T, std::size_t SizeOfT> struct PopulationCounter {
    479   static unsigned count(T Value) {
    480     // Generic version, forward to 32 bits.
    481     static_assert(SizeOfT <= 4, "Not implemented!");
    482 #if __GNUC__ >= 4
    483     return __builtin_popcount(Value);
    484 #else
    485     uint32_t v = Value;
    486     v = v - ((v >> 1) & 0x55555555);
    487     v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
    488     return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
    489 #endif
    490   }
    491 };
    492 
    493 template <typename T> struct PopulationCounter<T, 8> {
    494   static unsigned count(T Value) {
    495 #if __GNUC__ >= 4
    496     return __builtin_popcountll(Value);
    497 #else
    498     uint64_t v = Value;
    499     v = v - ((v >> 1) & 0x5555555555555555ULL);
    500     v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
    501     v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
    502     return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
    503 #endif
    504   }
    505 };
    506 } // namespace detail
    507 
    508 /// \brief Count the number of set bits in a value.
    509 /// Ex. countPopulation(0xF000F000) = 8
    510 /// Returns 0 if the word is zero.
    511 template <typename T>
    512 inline unsigned countPopulation(T Value) {
    513   static_assert(std::numeric_limits<T>::is_integer &&
    514                     !std::numeric_limits<T>::is_signed,
    515                 "Only unsigned integral types are allowed.");
    516   return detail::PopulationCounter<T, sizeof(T)>::count(Value);
    517 }
    518 
    519 /// Return the log base 2 of the specified value.
    520 inline double Log2(double Value) {
    521 #if defined(__ANDROID_API__) && __ANDROID_API__ < 18
    522   return __builtin_log(Value) / __builtin_log(2.0);
    523 #else
    524   return log2(Value);
    525 #endif
    526 }
    527 
    528 /// Return the floor log base 2 of the specified value, -1 if the value is zero.
    529 /// (32 bit edition.)
    530 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
    531 inline unsigned Log2_32(uint32_t Value) {
    532   return 31 - countLeadingZeros(Value);
    533 }
    534 
    535 /// Return the floor log base 2 of the specified value, -1 if the value is zero.
    536 /// (64 bit edition.)
    537 inline unsigned Log2_64(uint64_t Value) {
    538   return 63 - countLeadingZeros(Value);
    539 }
    540 
    541 /// Return the ceil log base 2 of the specified value, 32 if the value is zero.
    542 /// (32 bit edition).
    543 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
    544 inline unsigned Log2_32_Ceil(uint32_t Value) {
    545   return 32 - countLeadingZeros(Value - 1);
    546 }
    547 
    548 /// Return the ceil log base 2 of the specified value, 64 if the value is zero.
    549 /// (64 bit edition.)
    550 inline unsigned Log2_64_Ceil(uint64_t Value) {
    551   return 64 - countLeadingZeros(Value - 1);
    552 }
    553 
    554 /// Return the greatest common divisor of the values using Euclid's algorithm.
    555 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
    556   while (B) {
    557     uint64_t T = B;
    558     B = A % B;
    559     A = T;
    560   }
    561   return A;
    562 }
    563 
    564 /// This function takes a 64-bit integer and returns the bit equivalent double.
    565 inline double BitsToDouble(uint64_t Bits) {
    566   double D;
    567   static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
    568   memcpy(&D, &Bits, sizeof(Bits));
    569   return D;
    570 }
    571 
    572 /// This function takes a 32-bit integer and returns the bit equivalent float.
    573 inline float BitsToFloat(uint32_t Bits) {
    574   float F;
    575   static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
    576   memcpy(&F, &Bits, sizeof(Bits));
    577   return F;
    578 }
    579 
    580 /// This function takes a double and returns the bit equivalent 64-bit integer.
    581 /// Note that copying doubles around changes the bits of NaNs on some hosts,
    582 /// notably x86, so this routine cannot be used if these bits are needed.
    583 inline uint64_t DoubleToBits(double Double) {
    584   uint64_t Bits;
    585   static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
    586   memcpy(&Bits, &Double, sizeof(Double));
    587   return Bits;
    588 }
    589 
    590 /// This function takes a float and returns the bit equivalent 32-bit integer.
    591 /// Note that copying floats around changes the bits of NaNs on some hosts,
    592 /// notably x86, so this routine cannot be used if these bits are needed.
    593 inline uint32_t FloatToBits(float Float) {
    594   uint32_t Bits;
    595   static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
    596   memcpy(&Bits, &Float, sizeof(Float));
    597   return Bits;
    598 }
    599 
    600 /// A and B are either alignments or offsets. Return the minimum alignment that
    601 /// may be assumed after adding the two together.
    602 constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
    603   // The largest power of 2 that divides both A and B.
    604   //
    605   // Replace "-Value" by "1+~Value" in the following commented code to avoid
    606   // MSVC warning C4146
    607   //    return (A | B) & -(A | B);
    608   return (A | B) & (1 + ~(A | B));
    609 }
    610 
    611 /// \brief Aligns \c Addr to \c Alignment bytes, rounding up.
    612 ///
    613 /// Alignment should be a power of two.  This method rounds up, so
    614 /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
    615 inline uintptr_t alignAddr(const void *Addr, size_t Alignment) {
    616   assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&
    617          "Alignment is not a power of two!");
    618 
    619   assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr);
    620 
    621   return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
    622 }
    623 
    624 /// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment
    625 /// bytes, rounding up.
    626 inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) {
    627   return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
    628 }
    629 
    630 /// Returns the next power of two (in 64-bits) that is strictly greater than A.
    631 /// Returns zero on overflow.
    632 inline uint64_t NextPowerOf2(uint64_t A) {
    633   A |= (A >> 1);
    634   A |= (A >> 2);
    635   A |= (A >> 4);
    636   A |= (A >> 8);
    637   A |= (A >> 16);
    638   A |= (A >> 32);
    639   return A + 1;
    640 }
    641 
    642 /// Returns the power of two which is less than or equal to the given value.
    643 /// Essentially, it is a floor operation across the domain of powers of two.
    644 inline uint64_t PowerOf2Floor(uint64_t A) {
    645   if (!A) return 0;
    646   return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
    647 }
    648 
    649 /// Returns the power of two which is greater than or equal to the given value.
    650 /// Essentially, it is a ceil operation across the domain of powers of two.
    651 inline uint64_t PowerOf2Ceil(uint64_t A) {
    652   if (!A)
    653     return 0;
    654   return NextPowerOf2(A - 1);
    655 }
    656 
    657 /// Returns the next integer (mod 2**64) that is greater than or equal to
    658 /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
    659 ///
    660 /// If non-zero \p Skew is specified, the return value will be a minimal
    661 /// integer that is greater than or equal to \p Value and equal to
    662 /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
    663 /// \p Align, its value is adjusted to '\p Skew mod \p Align'.
    664 ///
    665 /// Examples:
    666 /// \code
    667 ///   alignTo(5, 8) = 8
    668 ///   alignTo(17, 8) = 24
    669 ///   alignTo(~0LL, 8) = 0
    670 ///   alignTo(321, 255) = 510
    671 ///
    672 ///   alignTo(5, 8, 7) = 7
    673 ///   alignTo(17, 8, 1) = 17
    674 ///   alignTo(~0LL, 8, 3) = 3
    675 ///   alignTo(321, 255, 42) = 552
    676 /// \endcode
    677 inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
    678   assert(Align != 0u && "Align can't be 0.");
    679   Skew %= Align;
    680   return (Value + Align - 1 - Skew) / Align * Align + Skew;
    681 }
    682 
    683 /// Returns the next integer (mod 2**64) that is greater than or equal to
    684 /// \p Value and is a multiple of \c Align. \c Align must be non-zero.
    685 template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
    686   static_assert(Align != 0u, "Align must be non-zero");
    687   return (Value + Align - 1) / Align * Align;
    688 }
    689 
    690 /// \c alignTo for contexts where a constant expression is required.
    691 /// \sa alignTo
    692 ///
    693 /// \todo FIXME: remove when \c constexpr becomes really \c constexpr
    694 template <uint64_t Align>
    695 struct AlignTo {
    696   static_assert(Align != 0u, "Align must be non-zero");
    697   template <uint64_t Value>
    698   struct from_value {
    699     static const uint64_t value = (Value + Align - 1) / Align * Align;
    700   };
    701 };
    702 
    703 /// Returns the largest uint64_t less than or equal to \p Value and is
    704 /// \p Skew mod \p Align. \p Align must be non-zero
    705 inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
    706   assert(Align != 0u && "Align can't be 0.");
    707   Skew %= Align;
    708   return (Value - Skew) / Align * Align + Skew;
    709 }
    710 
    711 /// Returns the offset to the next integer (mod 2**64) that is greater than
    712 /// or equal to \p Value and is a multiple of \p Align. \p Align must be
    713 /// non-zero.
    714 inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
    715   return alignTo(Value, Align) - Value;
    716 }
    717 
    718 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
    719 /// Requires 0 < B <= 32.
    720 template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
    721   static_assert(B > 0, "Bit width can't be 0.");
    722   static_assert(B <= 32, "Bit width out of range.");
    723   return int32_t(X << (32 - B)) >> (32 - B);
    724 }
    725 
    726 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
    727 /// Requires 0 < B < 32.
    728 inline int32_t SignExtend32(uint32_t X, unsigned B) {
    729   assert(B > 0 && "Bit width can't be 0.");
    730   assert(B <= 32 && "Bit width out of range.");
    731   return int32_t(X << (32 - B)) >> (32 - B);
    732 }
    733 
    734 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
    735 /// Requires 0 < B < 64.
    736 template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
    737   static_assert(B > 0, "Bit width can't be 0.");
    738   static_assert(B <= 64, "Bit width out of range.");
    739   return int64_t(x << (64 - B)) >> (64 - B);
    740 }
    741 
    742 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
    743 /// Requires 0 < B < 64.
    744 inline int64_t SignExtend64(uint64_t X, unsigned B) {
    745   assert(B > 0 && "Bit width can't be 0.");
    746   assert(B <= 64 && "Bit width out of range.");
    747   return int64_t(X << (64 - B)) >> (64 - B);
    748 }
    749 
    750 /// Subtract two unsigned integers, X and Y, of type T and return the absolute
    751 /// value of the result.
    752 template <typename T>
    753 typename std::enable_if<std::is_unsigned<T>::value, T>::type
    754 AbsoluteDifference(T X, T Y) {
    755   return std::max(X, Y) - std::min(X, Y);
    756 }
    757 
    758 /// Add two unsigned integers, X and Y, of type T.  Clamp the result to the
    759 /// maximum representable value of T on overflow.  ResultOverflowed indicates if
    760 /// the result is larger than the maximum representable value of type T.
    761 template <typename T>
    762 typename std::enable_if<std::is_unsigned<T>::value, T>::type
    763 SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
    764   bool Dummy;
    765   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
    766   // Hacker's Delight, p. 29
    767   T Z = X + Y;
    768   Overflowed = (Z < X || Z < Y);
    769   if (Overflowed)
    770     return std::numeric_limits<T>::max();
    771   else
    772     return Z;
    773 }
    774 
    775 /// Multiply two unsigned integers, X and Y, of type T.  Clamp the result to the
    776 /// maximum representable value of T on overflow.  ResultOverflowed indicates if
    777 /// the result is larger than the maximum representable value of type T.
    778 template <typename T>
    779 typename std::enable_if<std::is_unsigned<T>::value, T>::type
    780 SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
    781   bool Dummy;
    782   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
    783 
    784   // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
    785   // because it fails for uint16_t (where multiplication can have undefined
    786   // behavior due to promotion to int), and requires a division in addition
    787   // to the multiplication.
    788 
    789   Overflowed = false;
    790 
    791   // Log2(Z) would be either Log2Z or Log2Z + 1.
    792   // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
    793   // will necessarily be less than Log2Max as desired.
    794   int Log2Z = Log2_64(X) + Log2_64(Y);
    795   const T Max = std::numeric_limits<T>::max();
    796   int Log2Max = Log2_64(Max);
    797   if (Log2Z < Log2Max) {
    798     return X * Y;
    799   }
    800   if (Log2Z > Log2Max) {
    801     Overflowed = true;
    802     return Max;
    803   }
    804 
    805   // We're going to use the top bit, and maybe overflow one
    806   // bit past it. Multiply all but the bottom bit then add
    807   // that on at the end.
    808   T Z = (X >> 1) * Y;
    809   if (Z & ~(Max >> 1)) {
    810     Overflowed = true;
    811     return Max;
    812   }
    813   Z <<= 1;
    814   if (X & 1)
    815     return SaturatingAdd(Z, Y, ResultOverflowed);
    816 
    817   return Z;
    818 }
    819 
    820 /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
    821 /// the product. Clamp the result to the maximum representable value of T on
    822 /// overflow. ResultOverflowed indicates if the result is larger than the
    823 /// maximum representable value of type T.
    824 template <typename T>
    825 typename std::enable_if<std::is_unsigned<T>::value, T>::type
    826 SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
    827   bool Dummy;
    828   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
    829 
    830   T Product = SaturatingMultiply(X, Y, &Overflowed);
    831   if (Overflowed)
    832     return Product;
    833 
    834   return SaturatingAdd(A, Product, &Overflowed);
    835 }
    836 
    837 /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
    838 extern const float huge_valf;
    839 } // End llvm namespace
    840 
    841 #endif
    842