Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the newly proposed standard C++ interfaces for hashing
     11 // arbitrary data and building hash functions for user-defined types. This
     12 // interface was originally proposed in N3333[1] and is currently under review
     13 // for inclusion in a future TR and/or standard.
     14 //
     15 // The primary interfaces provide are comprised of one type and three functions:
     16 //
     17 //  -- 'hash_code' class is an opaque type representing the hash code for some
     18 //     data. It is the intended product of hashing, and can be used to implement
     19 //     hash tables, checksumming, and other common uses of hashes. It is not an
     20 //     integer type (although it can be converted to one) because it is risky
     21 //     to assume much about the internals of a hash_code. In particular, each
     22 //     execution of the program has a high probability of producing a different
     23 //     hash_code for a given input. Thus their values are not stable to save or
     24 //     persist, and should only be used during the execution for the
     25 //     construction of hashing datastructures.
     26 //
     27 //  -- 'hash_value' is a function designed to be overloaded for each
     28 //     user-defined type which wishes to be used within a hashing context. It
     29 //     should be overloaded within the user-defined type's namespace and found
     30 //     via ADL. Overloads for primitive types are provided by this library.
     31 //
     32 //  -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
     33 //      programmers in easily and intuitively combining a set of data into
     34 //      a single hash_code for their object. They should only logically be used
     35 //      within the implementation of a 'hash_value' routine or similar context.
     36 //
     37 // Note that 'hash_combine_range' contains very special logic for hashing
     38 // a contiguous array of integers or pointers. This logic is *extremely* fast,
     39 // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
     40 // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
     41 // under 32-bytes.
     42 //
     43 //===----------------------------------------------------------------------===//
     44 
     45 #ifndef LLVM_ADT_HASHING_H
     46 #define LLVM_ADT_HASHING_H
     47 
     48 #include "llvm/Support/DataTypes.h"
     49 #include "llvm/Support/Host.h"
     50 #include "llvm/Support/SwapByteOrder.h"
     51 #include "llvm/Support/type_traits.h"
     52 #include <algorithm>
     53 #include <cassert>
     54 #include <cstring>
     55 #include <string>
     56 #include <utility>
     57 
     58 namespace llvm {
     59 
     60 /// \brief An opaque object representing a hash code.
     61 ///
     62 /// This object represents the result of hashing some entity. It is intended to
     63 /// be used to implement hashtables or other hashing-based data structures.
     64 /// While it wraps and exposes a numeric value, this value should not be
     65 /// trusted to be stable or predictable across processes or executions.
     66 ///
     67 /// In order to obtain the hash_code for an object 'x':
     68 /// \code
     69 ///   using llvm::hash_value;
     70 ///   llvm::hash_code code = hash_value(x);
     71 /// \endcode
     72 class hash_code {
     73   size_t value;
     74 
     75 public:
     76   /// \brief Default construct a hash_code.
     77   /// Note that this leaves the value uninitialized.
     78   hash_code() = default;
     79 
     80   /// \brief Form a hash code directly from a numerical value.
     81   hash_code(size_t value) : value(value) {}
     82 
     83   /// \brief Convert the hash code to its numerical value for use.
     84   /*explicit*/ operator size_t() const { return value; }
     85 
     86   friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
     87     return lhs.value == rhs.value;
     88   }
     89   friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
     90     return lhs.value != rhs.value;
     91   }
     92 
     93   /// \brief Allow a hash_code to be directly run through hash_value.
     94   friend size_t hash_value(const hash_code &code) { return code.value; }
     95 };
     96 
     97 /// \brief Compute a hash_code for any integer value.
     98 ///
     99 /// Note that this function is intended to compute the same hash_code for
    100 /// a particular value without regard to the pre-promotion type. This is in
    101 /// contrast to hash_combine which may produce different hash_codes for
    102 /// differing argument types even if they would implicit promote to a common
    103 /// type without changing the value.
    104 template <typename T>
    105 typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
    106 hash_value(T value);
    107 
    108 /// \brief Compute a hash_code for a pointer's address.
    109 ///
    110 /// N.B.: This hashes the *address*. Not the value and not the type.
    111 template <typename T> hash_code hash_value(const T *ptr);
    112 
    113 /// \brief Compute a hash_code for a pair of objects.
    114 template <typename T, typename U>
    115 hash_code hash_value(const std::pair<T, U> &arg);
    116 
    117 /// \brief Compute a hash_code for a standard string.
    118 template <typename T>
    119 hash_code hash_value(const std::basic_string<T> &arg);
    120 
    121 
    122 /// \brief Override the execution seed with a fixed value.
    123 ///
    124 /// This hashing library uses a per-execution seed designed to change on each
    125 /// run with high probability in order to ensure that the hash codes are not
    126 /// attackable and to ensure that output which is intended to be stable does
    127 /// not rely on the particulars of the hash codes produced.
    128 ///
    129 /// That said, there are use cases where it is important to be able to
    130 /// reproduce *exactly* a specific behavior. To that end, we provide a function
    131 /// which will forcibly set the seed to a fixed value. This must be done at the
    132 /// start of the program, before any hashes are computed. Also, it cannot be
    133 /// undone. This makes it thread-hostile and very hard to use outside of
    134 /// immediately on start of a simple program designed for reproducible
    135 /// behavior.
    136 void set_fixed_execution_hash_seed(size_t fixed_value);
    137 
    138 
    139 // All of the implementation details of actually computing the various hash
    140 // code values are held within this namespace. These routines are included in
    141 // the header file mainly to allow inlining and constant propagation.
    142 namespace hashing {
    143 namespace detail {
    144 
    145 inline uint64_t fetch64(const char *p) {
    146   uint64_t result;
    147   memcpy(&result, p, sizeof(result));
    148   if (sys::IsBigEndianHost)
    149     sys::swapByteOrder(result);
    150   return result;
    151 }
    152 
    153 inline uint32_t fetch32(const char *p) {
    154   uint32_t result;
    155   memcpy(&result, p, sizeof(result));
    156   if (sys::IsBigEndianHost)
    157     sys::swapByteOrder(result);
    158   return result;
    159 }
    160 
    161 /// Some primes between 2^63 and 2^64 for various uses.
    162 static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
    163 static const uint64_t k1 = 0xb492b66fbe98f273ULL;
    164 static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
    165 static const uint64_t k3 = 0xc949d7c7509e6557ULL;
    166 
    167 /// \brief Bitwise right rotate.
    168 /// Normally this will compile to a single instruction, especially if the
    169 /// shift is a manifest constant.
    170 inline uint64_t rotate(uint64_t val, size_t shift) {
    171   // Avoid shifting by 64: doing so yields an undefined result.
    172   return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
    173 }
    174 
    175 inline uint64_t shift_mix(uint64_t val) {
    176   return val ^ (val >> 47);
    177 }
    178 
    179 inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
    180   // Murmur-inspired hashing.
    181   const uint64_t kMul = 0x9ddfea08eb382d69ULL;
    182   uint64_t a = (low ^ high) * kMul;
    183   a ^= (a >> 47);
    184   uint64_t b = (high ^ a) * kMul;
    185   b ^= (b >> 47);
    186   b *= kMul;
    187   return b;
    188 }
    189 
    190 inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
    191   uint8_t a = s[0];
    192   uint8_t b = s[len >> 1];
    193   uint8_t c = s[len - 1];
    194   uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
    195   uint32_t z = len + (static_cast<uint32_t>(c) << 2);
    196   return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
    197 }
    198 
    199 inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
    200   uint64_t a = fetch32(s);
    201   return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
    202 }
    203 
    204 inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
    205   uint64_t a = fetch64(s);
    206   uint64_t b = fetch64(s + len - 8);
    207   return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
    208 }
    209 
    210 inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
    211   uint64_t a = fetch64(s) * k1;
    212   uint64_t b = fetch64(s + 8);
    213   uint64_t c = fetch64(s + len - 8) * k2;
    214   uint64_t d = fetch64(s + len - 16) * k0;
    215   return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
    216                        a + rotate(b ^ k3, 20) - c + len + seed);
    217 }
    218 
    219 inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
    220   uint64_t z = fetch64(s + 24);
    221   uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
    222   uint64_t b = rotate(a + z, 52);
    223   uint64_t c = rotate(a, 37);
    224   a += fetch64(s + 8);
    225   c += rotate(a, 7);
    226   a += fetch64(s + 16);
    227   uint64_t vf = a + z;
    228   uint64_t vs = b + rotate(a, 31) + c;
    229   a = fetch64(s + 16) + fetch64(s + len - 32);
    230   z = fetch64(s + len - 8);
    231   b = rotate(a + z, 52);
    232   c = rotate(a, 37);
    233   a += fetch64(s + len - 24);
    234   c += rotate(a, 7);
    235   a += fetch64(s + len - 16);
    236   uint64_t wf = a + z;
    237   uint64_t ws = b + rotate(a, 31) + c;
    238   uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
    239   return shift_mix((seed ^ (r * k0)) + vs) * k2;
    240 }
    241 
    242 inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
    243   if (length >= 4 && length <= 8)
    244     return hash_4to8_bytes(s, length, seed);
    245   if (length > 8 && length <= 16)
    246     return hash_9to16_bytes(s, length, seed);
    247   if (length > 16 && length <= 32)
    248     return hash_17to32_bytes(s, length, seed);
    249   if (length > 32)
    250     return hash_33to64_bytes(s, length, seed);
    251   if (length != 0)
    252     return hash_1to3_bytes(s, length, seed);
    253 
    254   return k2 ^ seed;
    255 }
    256 
    257 /// \brief The intermediate state used during hashing.
    258 /// Currently, the algorithm for computing hash codes is based on CityHash and
    259 /// keeps 56 bytes of arbitrary state.
    260 struct hash_state {
    261   uint64_t h0, h1, h2, h3, h4, h5, h6;
    262 
    263   /// \brief Create a new hash_state structure and initialize it based on the
    264   /// seed and the first 64-byte chunk.
    265   /// This effectively performs the initial mix.
    266   static hash_state create(const char *s, uint64_t seed) {
    267     hash_state state = {
    268       0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
    269       seed * k1, shift_mix(seed), 0 };
    270     state.h6 = hash_16_bytes(state.h4, state.h5);
    271     state.mix(s);
    272     return state;
    273   }
    274 
    275   /// \brief Mix 32-bytes from the input sequence into the 16-bytes of 'a'
    276   /// and 'b', including whatever is already in 'a' and 'b'.
    277   static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
    278     a += fetch64(s);
    279     uint64_t c = fetch64(s + 24);
    280     b = rotate(b + a + c, 21);
    281     uint64_t d = a;
    282     a += fetch64(s + 8) + fetch64(s + 16);
    283     b += rotate(a, 44) + d;
    284     a += c;
    285   }
    286 
    287   /// \brief Mix in a 64-byte buffer of data.
    288   /// We mix all 64 bytes even when the chunk length is smaller, but we
    289   /// record the actual length.
    290   void mix(const char *s) {
    291     h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
    292     h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
    293     h0 ^= h6;
    294     h1 += h3 + fetch64(s + 40);
    295     h2 = rotate(h2 + h5, 33) * k1;
    296     h3 = h4 * k1;
    297     h4 = h0 + h5;
    298     mix_32_bytes(s, h3, h4);
    299     h5 = h2 + h6;
    300     h6 = h1 + fetch64(s + 16);
    301     mix_32_bytes(s + 32, h5, h6);
    302     std::swap(h2, h0);
    303   }
    304 
    305   /// \brief Compute the final 64-bit hash code value based on the current
    306   /// state and the length of bytes hashed.
    307   uint64_t finalize(size_t length) {
    308     return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
    309                          hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
    310   }
    311 };
    312 
    313 
    314 /// \brief A global, fixed seed-override variable.
    315 ///
    316 /// This variable can be set using the \see llvm::set_fixed_execution_seed
    317 /// function. See that function for details. Do not, under any circumstances,
    318 /// set or read this variable.
    319 extern size_t fixed_seed_override;
    320 
    321 inline size_t get_execution_seed() {
    322   // FIXME: This needs to be a per-execution seed. This is just a placeholder
    323   // implementation. Switching to a per-execution seed is likely to flush out
    324   // instability bugs and so will happen as its own commit.
    325   //
    326   // However, if there is a fixed seed override set the first time this is
    327   // called, return that instead of the per-execution seed.
    328   const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
    329   static size_t seed = fixed_seed_override ? fixed_seed_override
    330                                            : (size_t)seed_prime;
    331   return seed;
    332 }
    333 
    334 
    335 /// \brief Trait to indicate whether a type's bits can be hashed directly.
    336 ///
    337 /// A type trait which is true if we want to combine values for hashing by
    338 /// reading the underlying data. It is false if values of this type must
    339 /// first be passed to hash_value, and the resulting hash_codes combined.
    340 //
    341 // FIXME: We want to replace is_integral_or_enum and is_pointer here with
    342 // a predicate which asserts that comparing the underlying storage of two
    343 // values of the type for equality is equivalent to comparing the two values
    344 // for equality. For all the platforms we care about, this holds for integers
    345 // and pointers, but there are platforms where it doesn't and we would like to
    346 // support user-defined types which happen to satisfy this property.
    347 template <typename T> struct is_hashable_data
    348   : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
    349                                    std::is_pointer<T>::value) &&
    350                                   64 % sizeof(T) == 0)> {};
    351 
    352 // Special case std::pair to detect when both types are viable and when there
    353 // is no alignment-derived padding in the pair. This is a bit of a lie because
    354 // std::pair isn't truly POD, but it's close enough in all reasonable
    355 // implementations for our use case of hashing the underlying data.
    356 template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
    357   : std::integral_constant<bool, (is_hashable_data<T>::value &&
    358                                   is_hashable_data<U>::value &&
    359                                   (sizeof(T) + sizeof(U)) ==
    360                                    sizeof(std::pair<T, U>))> {};
    361 
    362 /// \brief Helper to get the hashable data representation for a type.
    363 /// This variant is enabled when the type itself can be used.
    364 template <typename T>
    365 typename std::enable_if<is_hashable_data<T>::value, T>::type
    366 get_hashable_data(const T &value) {
    367   return value;
    368 }
    369 /// \brief Helper to get the hashable data representation for a type.
    370 /// This variant is enabled when we must first call hash_value and use the
    371 /// result as our data.
    372 template <typename T>
    373 typename std::enable_if<!is_hashable_data<T>::value, size_t>::type
    374 get_hashable_data(const T &value) {
    375   using ::llvm::hash_value;
    376   return hash_value(value);
    377 }
    378 
    379 /// \brief Helper to store data from a value into a buffer and advance the
    380 /// pointer into that buffer.
    381 ///
    382 /// This routine first checks whether there is enough space in the provided
    383 /// buffer, and if not immediately returns false. If there is space, it
    384 /// copies the underlying bytes of value into the buffer, advances the
    385 /// buffer_ptr past the copied bytes, and returns true.
    386 template <typename T>
    387 bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
    388                        size_t offset = 0) {
    389   size_t store_size = sizeof(value) - offset;
    390   if (buffer_ptr + store_size > buffer_end)
    391     return false;
    392   const char *value_data = reinterpret_cast<const char *>(&value);
    393   memcpy(buffer_ptr, value_data + offset, store_size);
    394   buffer_ptr += store_size;
    395   return true;
    396 }
    397 
    398 /// \brief Implement the combining of integral values into a hash_code.
    399 ///
    400 /// This overload is selected when the value type of the iterator is
    401 /// integral. Rather than computing a hash_code for each object and then
    402 /// combining them, this (as an optimization) directly combines the integers.
    403 template <typename InputIteratorT>
    404 hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
    405   const size_t seed = get_execution_seed();
    406   char buffer[64], *buffer_ptr = buffer;
    407   char *const buffer_end = std::end(buffer);
    408   while (first != last && store_and_advance(buffer_ptr, buffer_end,
    409                                             get_hashable_data(*first)))
    410     ++first;
    411   if (first == last)
    412     return hash_short(buffer, buffer_ptr - buffer, seed);
    413   assert(buffer_ptr == buffer_end);
    414 
    415   hash_state state = state.create(buffer, seed);
    416   size_t length = 64;
    417   while (first != last) {
    418     // Fill up the buffer. We don't clear it, which re-mixes the last round
    419     // when only a partial 64-byte chunk is left.
    420     buffer_ptr = buffer;
    421     while (first != last && store_and_advance(buffer_ptr, buffer_end,
    422                                               get_hashable_data(*first)))
    423       ++first;
    424 
    425     // Rotate the buffer if we did a partial fill in order to simulate doing
    426     // a mix of the last 64-bytes. That is how the algorithm works when we
    427     // have a contiguous byte sequence, and we want to emulate that here.
    428     std::rotate(buffer, buffer_ptr, buffer_end);
    429 
    430     // Mix this chunk into the current state.
    431     state.mix(buffer);
    432     length += buffer_ptr - buffer;
    433   };
    434 
    435   return state.finalize(length);
    436 }
    437 
    438 /// \brief Implement the combining of integral values into a hash_code.
    439 ///
    440 /// This overload is selected when the value type of the iterator is integral
    441 /// and when the input iterator is actually a pointer. Rather than computing
    442 /// a hash_code for each object and then combining them, this (as an
    443 /// optimization) directly combines the integers. Also, because the integers
    444 /// are stored in contiguous memory, this routine avoids copying each value
    445 /// and directly reads from the underlying memory.
    446 template <typename ValueT>
    447 typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type
    448 hash_combine_range_impl(ValueT *first, ValueT *last) {
    449   const size_t seed = get_execution_seed();
    450   const char *s_begin = reinterpret_cast<const char *>(first);
    451   const char *s_end = reinterpret_cast<const char *>(last);
    452   const size_t length = std::distance(s_begin, s_end);
    453   if (length <= 64)
    454     return hash_short(s_begin, length, seed);
    455 
    456   const char *s_aligned_end = s_begin + (length & ~63);
    457   hash_state state = state.create(s_begin, seed);
    458   s_begin += 64;
    459   while (s_begin != s_aligned_end) {
    460     state.mix(s_begin);
    461     s_begin += 64;
    462   }
    463   if (length & 63)
    464     state.mix(s_end - 64);
    465 
    466   return state.finalize(length);
    467 }
    468 
    469 } // namespace detail
    470 } // namespace hashing
    471 
    472 
    473 /// \brief Compute a hash_code for a sequence of values.
    474 ///
    475 /// This hashes a sequence of values. It produces the same hash_code as
    476 /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
    477 /// and is significantly faster given pointers and types which can be hashed as
    478 /// a sequence of bytes.
    479 template <typename InputIteratorT>
    480 hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
    481   return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
    482 }
    483 
    484 
    485 // Implementation details for hash_combine.
    486 namespace hashing {
    487 namespace detail {
    488 
    489 /// \brief Helper class to manage the recursive combining of hash_combine
    490 /// arguments.
    491 ///
    492 /// This class exists to manage the state and various calls involved in the
    493 /// recursive combining of arguments used in hash_combine. It is particularly
    494 /// useful at minimizing the code in the recursive calls to ease the pain
    495 /// caused by a lack of variadic functions.
    496 struct hash_combine_recursive_helper {
    497   char buffer[64];
    498   hash_state state;
    499   const size_t seed;
    500 
    501 public:
    502   /// \brief Construct a recursive hash combining helper.
    503   ///
    504   /// This sets up the state for a recursive hash combine, including getting
    505   /// the seed and buffer setup.
    506   hash_combine_recursive_helper()
    507     : seed(get_execution_seed()) {}
    508 
    509   /// \brief Combine one chunk of data into the current in-flight hash.
    510   ///
    511   /// This merges one chunk of data into the hash. First it tries to buffer
    512   /// the data. If the buffer is full, it hashes the buffer into its
    513   /// hash_state, empties it, and then merges the new chunk in. This also
    514   /// handles cases where the data straddles the end of the buffer.
    515   template <typename T>
    516   char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
    517     if (!store_and_advance(buffer_ptr, buffer_end, data)) {
    518       // Check for skew which prevents the buffer from being packed, and do
    519       // a partial store into the buffer to fill it. This is only a concern
    520       // with the variadic combine because that formation can have varying
    521       // argument types.
    522       size_t partial_store_size = buffer_end - buffer_ptr;
    523       memcpy(buffer_ptr, &data, partial_store_size);
    524 
    525       // If the store fails, our buffer is full and ready to hash. We have to
    526       // either initialize the hash state (on the first full buffer) or mix
    527       // this buffer into the existing hash state. Length tracks the *hashed*
    528       // length, not the buffered length.
    529       if (length == 0) {
    530         state = state.create(buffer, seed);
    531         length = 64;
    532       } else {
    533         // Mix this chunk into the current state and bump length up by 64.
    534         state.mix(buffer);
    535         length += 64;
    536       }
    537       // Reset the buffer_ptr to the head of the buffer for the next chunk of
    538       // data.
    539       buffer_ptr = buffer;
    540 
    541       // Try again to store into the buffer -- this cannot fail as we only
    542       // store types smaller than the buffer.
    543       if (!store_and_advance(buffer_ptr, buffer_end, data,
    544                              partial_store_size))
    545         abort();
    546     }
    547     return buffer_ptr;
    548   }
    549 
    550   /// \brief Recursive, variadic combining method.
    551   ///
    552   /// This function recurses through each argument, combining that argument
    553   /// into a single hash.
    554   template <typename T, typename ...Ts>
    555   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    556                     const T &arg, const Ts &...args) {
    557     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
    558 
    559     // Recurse to the next argument.
    560     return combine(length, buffer_ptr, buffer_end, args...);
    561   }
    562 
    563   /// \brief Base case for recursive, variadic combining.
    564   ///
    565   /// The base case when combining arguments recursively is reached when all
    566   /// arguments have been handled. It flushes the remaining buffer and
    567   /// constructs a hash_code.
    568   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
    569     // Check whether the entire set of values fit in the buffer. If so, we'll
    570     // use the optimized short hashing routine and skip state entirely.
    571     if (length == 0)
    572       return hash_short(buffer, buffer_ptr - buffer, seed);
    573 
    574     // Mix the final buffer, rotating it if we did a partial fill in order to
    575     // simulate doing a mix of the last 64-bytes. That is how the algorithm
    576     // works when we have a contiguous byte sequence, and we want to emulate
    577     // that here.
    578     std::rotate(buffer, buffer_ptr, buffer_end);
    579 
    580     // Mix this chunk into the current state.
    581     state.mix(buffer);
    582     length += buffer_ptr - buffer;
    583 
    584     return state.finalize(length);
    585   }
    586 };
    587 
    588 } // namespace detail
    589 } // namespace hashing
    590 
    591 /// \brief Combine values into a single hash_code.
    592 ///
    593 /// This routine accepts a varying number of arguments of any type. It will
    594 /// attempt to combine them into a single hash_code. For user-defined types it
    595 /// attempts to call a \see hash_value overload (via ADL) for the type. For
    596 /// integer and pointer types it directly combines their data into the
    597 /// resulting hash_code.
    598 ///
    599 /// The result is suitable for returning from a user's hash_value
    600 /// *implementation* for their user-defined type. Consumers of a type should
    601 /// *not* call this routine, they should instead call 'hash_value'.
    602 template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
    603   // Recursively hash each argument using a helper class.
    604   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    605   return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
    606 }
    607 
    608 // Implementation details for implementations of hash_value overloads provided
    609 // here.
    610 namespace hashing {
    611 namespace detail {
    612 
    613 /// \brief Helper to hash the value of a single integer.
    614 ///
    615 /// Overloads for smaller integer types are not provided to ensure consistent
    616 /// behavior in the presence of integral promotions. Essentially,
    617 /// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
    618 inline hash_code hash_integer_value(uint64_t value) {
    619   // Similar to hash_4to8_bytes but using a seed instead of length.
    620   const uint64_t seed = get_execution_seed();
    621   const char *s = reinterpret_cast<const char *>(&value);
    622   const uint64_t a = fetch32(s);
    623   return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
    624 }
    625 
    626 } // namespace detail
    627 } // namespace hashing
    628 
    629 // Declared and documented above, but defined here so that any of the hashing
    630 // infrastructure is available.
    631 template <typename T>
    632 typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
    633 hash_value(T value) {
    634   return ::llvm::hashing::detail::hash_integer_value(
    635       static_cast<uint64_t>(value));
    636 }
    637 
    638 // Declared and documented above, but defined here so that any of the hashing
    639 // infrastructure is available.
    640 template <typename T> hash_code hash_value(const T *ptr) {
    641   return ::llvm::hashing::detail::hash_integer_value(
    642     reinterpret_cast<uintptr_t>(ptr));
    643 }
    644 
    645 // Declared and documented above, but defined here so that any of the hashing
    646 // infrastructure is available.
    647 template <typename T, typename U>
    648 hash_code hash_value(const std::pair<T, U> &arg) {
    649   return hash_combine(arg.first, arg.second);
    650 }
    651 
    652 // Declared and documented above, but defined here so that any of the hashing
    653 // infrastructure is available.
    654 template <typename T>
    655 hash_code hash_value(const std::basic_string<T> &arg) {
    656   return hash_combine_range(arg.begin(), arg.end());
    657 }
    658 
    659 } // namespace llvm
    660 
    661 #endif
    662