Home | History | Annotate | Download | only in ADT
      1 //===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
     12 /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
     13 /// algorithm.
     14 ///
     15 /// The SCC iterator has the important property that if a node in SCC S1 has an
     16 /// edge to a node in SCC S2, then it visits S1 *after* S2.
     17 ///
     18 /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
     19 /// This requires some simple wrappers and is not supported yet.)
     20 ///
     21 //===----------------------------------------------------------------------===//
     22 
     23 #ifndef LLVM_ADT_SCCITERATOR_H
     24 #define LLVM_ADT_SCCITERATOR_H
     25 
     26 #include "llvm/ADT/DenseMap.h"
     27 #include "llvm/ADT/GraphTraits.h"
     28 #include "llvm/ADT/iterator.h"
     29 #include <cassert>
     30 #include <cstddef>
     31 #include <iterator>
     32 #include <vector>
     33 
     34 namespace llvm {
     35 
     36 /// \brief Enumerate the SCCs of a directed graph in reverse topological order
     37 /// of the SCC DAG.
     38 ///
     39 /// This is implemented using Tarjan's DFS algorithm using an internal stack to
     40 /// build up a vector of nodes in a particular SCC. Note that it is a forward
     41 /// iterator and thus you cannot backtrack or re-visit nodes.
     42 template <class GraphT, class GT = GraphTraits<GraphT>>
     43 class scc_iterator : public iterator_facade_base<
     44                          scc_iterator<GraphT, GT>, std::forward_iterator_tag,
     45                          const std::vector<typename GT::NodeRef>, ptrdiff_t> {
     46   using NodeRef = typename GT::NodeRef;
     47   using ChildItTy = typename GT::ChildIteratorType;
     48   using SccTy = std::vector<NodeRef>;
     49   using reference = typename scc_iterator::reference;
     50 
     51   /// Element of VisitStack during DFS.
     52   struct StackElement {
     53     NodeRef Node;         ///< The current node pointer.
     54     ChildItTy NextChild;  ///< The next child, modified inplace during DFS.
     55     unsigned MinVisited;  ///< Minimum uplink value of all children of Node.
     56 
     57     StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min)
     58         : Node(Node), NextChild(Child), MinVisited(Min) {}
     59 
     60     bool operator==(const StackElement &Other) const {
     61       return Node == Other.Node &&
     62              NextChild == Other.NextChild &&
     63              MinVisited == Other.MinVisited;
     64     }
     65   };
     66 
     67   /// The visit counters used to detect when a complete SCC is on the stack.
     68   /// visitNum is the global counter.
     69   ///
     70   /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
     71   unsigned visitNum;
     72   DenseMap<NodeRef, unsigned> nodeVisitNumbers;
     73 
     74   /// Stack holding nodes of the SCC.
     75   std::vector<NodeRef> SCCNodeStack;
     76 
     77   /// The current SCC, retrieved using operator*().
     78   SccTy CurrentSCC;
     79 
     80   /// DFS stack, Used to maintain the ordering.  The top contains the current
     81   /// node, the next child to visit, and the minimum uplink value of all child
     82   std::vector<StackElement> VisitStack;
     83 
     84   /// A single "visit" within the non-recursive DFS traversal.
     85   void DFSVisitOne(NodeRef N);
     86 
     87   /// The stack-based DFS traversal; defined below.
     88   void DFSVisitChildren();
     89 
     90   /// Compute the next SCC using the DFS traversal.
     91   void GetNextSCC();
     92 
     93   scc_iterator(NodeRef entryN) : visitNum(0) {
     94     DFSVisitOne(entryN);
     95     GetNextSCC();
     96   }
     97 
     98   /// End is when the DFS stack is empty.
     99   scc_iterator() = default;
    100 
    101 public:
    102   static scc_iterator begin(const GraphT &G) {
    103     return scc_iterator(GT::getEntryNode(G));
    104   }
    105   static scc_iterator end(const GraphT &) { return scc_iterator(); }
    106 
    107   /// \brief Direct loop termination test which is more efficient than
    108   /// comparison with \c end().
    109   bool isAtEnd() const {
    110     assert(!CurrentSCC.empty() || VisitStack.empty());
    111     return CurrentSCC.empty();
    112   }
    113 
    114   bool operator==(const scc_iterator &x) const {
    115     return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
    116   }
    117 
    118   scc_iterator &operator++() {
    119     GetNextSCC();
    120     return *this;
    121   }
    122 
    123   reference operator*() const {
    124     assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
    125     return CurrentSCC;
    126   }
    127 
    128   /// \brief Test if the current SCC has a loop.
    129   ///
    130   /// If the SCC has more than one node, this is trivially true.  If not, it may
    131   /// still contain a loop if the node has an edge back to itself.
    132   bool hasLoop() const;
    133 
    134   /// This informs the \c scc_iterator that the specified \c Old node
    135   /// has been deleted, and \c New is to be used in its place.
    136   void ReplaceNode(NodeRef Old, NodeRef New) {
    137     assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
    138     nodeVisitNumbers[New] = nodeVisitNumbers[Old];
    139     nodeVisitNumbers.erase(Old);
    140   }
    141 };
    142 
    143 template <class GraphT, class GT>
    144 void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) {
    145   ++visitNum;
    146   nodeVisitNumbers[N] = visitNum;
    147   SCCNodeStack.push_back(N);
    148   VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
    149 #if 0 // Enable if needed when debugging.
    150   dbgs() << "TarjanSCC: Node " << N <<
    151         " : visitNum = " << visitNum << "\n";
    152 #endif
    153 }
    154 
    155 template <class GraphT, class GT>
    156 void scc_iterator<GraphT, GT>::DFSVisitChildren() {
    157   assert(!VisitStack.empty());
    158   while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
    159     // TOS has at least one more child so continue DFS
    160     NodeRef childN = *VisitStack.back().NextChild++;
    161     typename DenseMap<NodeRef, unsigned>::iterator Visited =
    162         nodeVisitNumbers.find(childN);
    163     if (Visited == nodeVisitNumbers.end()) {
    164       // this node has never been seen.
    165       DFSVisitOne(childN);
    166       continue;
    167     }
    168 
    169     unsigned childNum = Visited->second;
    170     if (VisitStack.back().MinVisited > childNum)
    171       VisitStack.back().MinVisited = childNum;
    172   }
    173 }
    174 
    175 template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
    176   CurrentSCC.clear(); // Prepare to compute the next SCC
    177   while (!VisitStack.empty()) {
    178     DFSVisitChildren();
    179 
    180     // Pop the leaf on top of the VisitStack.
    181     NodeRef visitingN = VisitStack.back().Node;
    182     unsigned minVisitNum = VisitStack.back().MinVisited;
    183     assert(VisitStack.back().NextChild == GT::child_end(visitingN));
    184     VisitStack.pop_back();
    185 
    186     // Propagate MinVisitNum to parent so we can detect the SCC starting node.
    187     if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
    188       VisitStack.back().MinVisited = minVisitNum;
    189 
    190 #if 0 // Enable if needed when debugging.
    191     dbgs() << "TarjanSCC: Popped node " << visitingN <<
    192           " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
    193           nodeVisitNumbers[visitingN] << "\n";
    194 #endif
    195 
    196     if (minVisitNum != nodeVisitNumbers[visitingN])
    197       continue;
    198 
    199     // A full SCC is on the SCCNodeStack!  It includes all nodes below
    200     // visitingN on the stack.  Copy those nodes to CurrentSCC,
    201     // reset their minVisit values, and return (this suspends
    202     // the DFS traversal till the next ++).
    203     do {
    204       CurrentSCC.push_back(SCCNodeStack.back());
    205       SCCNodeStack.pop_back();
    206       nodeVisitNumbers[CurrentSCC.back()] = ~0U;
    207     } while (CurrentSCC.back() != visitingN);
    208     return;
    209   }
    210 }
    211 
    212 template <class GraphT, class GT>
    213 bool scc_iterator<GraphT, GT>::hasLoop() const {
    214     assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
    215     if (CurrentSCC.size() > 1)
    216       return true;
    217     NodeRef N = CurrentSCC.front();
    218     for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
    219          ++CI)
    220       if (*CI == N)
    221         return true;
    222     return false;
    223   }
    224 
    225 /// \brief Construct the begin iterator for a deduced graph type T.
    226 template <class T> scc_iterator<T> scc_begin(const T &G) {
    227   return scc_iterator<T>::begin(G);
    228 }
    229 
    230 /// \brief Construct the end iterator for a deduced graph type T.
    231 template <class T> scc_iterator<T> scc_end(const T &G) {
    232   return scc_iterator<T>::end(G);
    233 }
    234 
    235 } // end namespace llvm
    236 
    237 #endif // LLVM_ADT_SCCITERATOR_H
    238