Home | History | Annotate | Download | only in Lex
      1 //===--- Preprocessor.h - C Language Family Preprocessor --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Defines the clang::Preprocessor interface.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CLANG_LEX_PREPROCESSOR_H
     16 #define LLVM_CLANG_LEX_PREPROCESSOR_H
     17 
     18 #include "clang/Basic/Builtins.h"
     19 #include "clang/Basic/Diagnostic.h"
     20 #include "clang/Basic/IdentifierTable.h"
     21 #include "clang/Basic/SourceLocation.h"
     22 #include "clang/Lex/Lexer.h"
     23 #include "clang/Lex/MacroInfo.h"
     24 #include "clang/Lex/ModuleMap.h"
     25 #include "clang/Lex/PPCallbacks.h"
     26 #include "clang/Lex/PTHLexer.h"
     27 #include "clang/Lex/TokenLexer.h"
     28 #include "llvm/ADT/ArrayRef.h"
     29 #include "llvm/ADT/DenseMap.h"
     30 #include "llvm/ADT/IntrusiveRefCntPtr.h"
     31 #include "llvm/ADT/SmallPtrSet.h"
     32 #include "llvm/ADT/SmallVector.h"
     33 #include "llvm/ADT/TinyPtrVector.h"
     34 #include "llvm/Support/Allocator.h"
     35 #include "llvm/Support/Registry.h"
     36 #include <memory>
     37 #include <vector>
     38 
     39 namespace llvm {
     40   template<unsigned InternalLen> class SmallString;
     41 }
     42 
     43 namespace clang {
     44 
     45 class SourceManager;
     46 class ExternalPreprocessorSource;
     47 class FileManager;
     48 class FileEntry;
     49 class HeaderSearch;
     50 class MemoryBufferCache;
     51 class PragmaNamespace;
     52 class PragmaHandler;
     53 class CommentHandler;
     54 class ScratchBuffer;
     55 class TargetInfo;
     56 class PPCallbacks;
     57 class CodeCompletionHandler;
     58 class DirectoryLookup;
     59 class PreprocessingRecord;
     60 class ModuleLoader;
     61 class PTHManager;
     62 class PreprocessorOptions;
     63 
     64 /// \brief Stores token information for comparing actual tokens with
     65 /// predefined values.  Only handles simple tokens and identifiers.
     66 class TokenValue {
     67   tok::TokenKind Kind;
     68   IdentifierInfo *II;
     69 
     70 public:
     71   TokenValue(tok::TokenKind Kind) : Kind(Kind), II(nullptr) {
     72     assert(Kind != tok::raw_identifier && "Raw identifiers are not supported.");
     73     assert(Kind != tok::identifier &&
     74            "Identifiers should be created by TokenValue(IdentifierInfo *)");
     75     assert(!tok::isLiteral(Kind) && "Literals are not supported.");
     76     assert(!tok::isAnnotation(Kind) && "Annotations are not supported.");
     77   }
     78   TokenValue(IdentifierInfo *II) : Kind(tok::identifier), II(II) {}
     79   bool operator==(const Token &Tok) const {
     80     return Tok.getKind() == Kind &&
     81         (!II || II == Tok.getIdentifierInfo());
     82   }
     83 };
     84 
     85 /// \brief Context in which macro name is used.
     86 enum MacroUse {
     87   MU_Other  = 0,  // other than #define or #undef
     88   MU_Define = 1,  // macro name specified in #define
     89   MU_Undef  = 2   // macro name specified in #undef
     90 };
     91 
     92 /// \brief Engages in a tight little dance with the lexer to efficiently
     93 /// preprocess tokens.
     94 ///
     95 /// Lexers know only about tokens within a single source file, and don't
     96 /// know anything about preprocessor-level issues like the \#include stack,
     97 /// token expansion, etc.
     98 class Preprocessor {
     99   friend class VariadicMacroScopeGuard;
    100   friend class VAOptDefinitionContext;
    101   std::shared_ptr<PreprocessorOptions> PPOpts;
    102   DiagnosticsEngine        *Diags;
    103   LangOptions       &LangOpts;
    104   const TargetInfo  *Target;
    105   const TargetInfo  *AuxTarget;
    106   FileManager       &FileMgr;
    107   SourceManager     &SourceMgr;
    108   MemoryBufferCache &PCMCache;
    109   std::unique_ptr<ScratchBuffer> ScratchBuf;
    110   HeaderSearch      &HeaderInfo;
    111   ModuleLoader      &TheModuleLoader;
    112 
    113   /// \brief External source of macros.
    114   ExternalPreprocessorSource *ExternalSource;
    115 
    116 
    117   /// An optional PTHManager object used for getting tokens from
    118   /// a token cache rather than lexing the original source file.
    119   std::unique_ptr<PTHManager> PTH;
    120 
    121   /// A BumpPtrAllocator object used to quickly allocate and release
    122   /// objects internal to the Preprocessor.
    123   llvm::BumpPtrAllocator BP;
    124 
    125   /// Identifiers for builtin macros and other builtins.
    126   IdentifierInfo *Ident__LINE__, *Ident__FILE__;   // __LINE__, __FILE__
    127   IdentifierInfo *Ident__DATE__, *Ident__TIME__;   // __DATE__, __TIME__
    128   IdentifierInfo *Ident__INCLUDE_LEVEL__;          // __INCLUDE_LEVEL__
    129   IdentifierInfo *Ident__BASE_FILE__;              // __BASE_FILE__
    130   IdentifierInfo *Ident__TIMESTAMP__;              // __TIMESTAMP__
    131   IdentifierInfo *Ident__COUNTER__;                // __COUNTER__
    132   IdentifierInfo *Ident_Pragma, *Ident__pragma;    // _Pragma, __pragma
    133   IdentifierInfo *Ident__identifier;               // __identifier
    134   IdentifierInfo *Ident__VA_ARGS__;                // __VA_ARGS__
    135   IdentifierInfo *Ident__VA_OPT__;                 // __VA_OPT__
    136   IdentifierInfo *Ident__has_feature;              // __has_feature
    137   IdentifierInfo *Ident__has_extension;            // __has_extension
    138   IdentifierInfo *Ident__has_builtin;              // __has_builtin
    139   IdentifierInfo *Ident__has_attribute;            // __has_attribute
    140   IdentifierInfo *Ident__has_include;              // __has_include
    141   IdentifierInfo *Ident__has_include_next;         // __has_include_next
    142   IdentifierInfo *Ident__has_warning;              // __has_warning
    143   IdentifierInfo *Ident__is_identifier;            // __is_identifier
    144   IdentifierInfo *Ident__building_module;          // __building_module
    145   IdentifierInfo *Ident__MODULE__;                 // __MODULE__
    146   IdentifierInfo *Ident__has_cpp_attribute;        // __has_cpp_attribute
    147   IdentifierInfo *Ident__has_declspec;             // __has_declspec_attribute
    148 
    149   SourceLocation DATELoc, TIMELoc;
    150   unsigned CounterValue;  // Next __COUNTER__ value.
    151 
    152   enum {
    153     /// \brief Maximum depth of \#includes.
    154     MaxAllowedIncludeStackDepth = 200
    155   };
    156 
    157   // State that is set before the preprocessor begins.
    158   bool KeepComments : 1;
    159   bool KeepMacroComments : 1;
    160   bool SuppressIncludeNotFoundError : 1;
    161 
    162   // State that changes while the preprocessor runs:
    163   bool InMacroArgs : 1;            // True if parsing fn macro invocation args.
    164 
    165   /// Whether the preprocessor owns the header search object.
    166   bool OwnsHeaderSearch : 1;
    167 
    168   /// True if macro expansion is disabled.
    169   bool DisableMacroExpansion : 1;
    170 
    171   /// Temporarily disables DisableMacroExpansion (i.e. enables expansion)
    172   /// when parsing preprocessor directives.
    173   bool MacroExpansionInDirectivesOverride : 1;
    174 
    175   class ResetMacroExpansionHelper;
    176 
    177   /// \brief Whether we have already loaded macros from the external source.
    178   mutable bool ReadMacrosFromExternalSource : 1;
    179 
    180   /// \brief True if pragmas are enabled.
    181   bool PragmasEnabled : 1;
    182 
    183   /// \brief True if the current build action is a preprocessing action.
    184   bool PreprocessedOutput : 1;
    185 
    186   /// \brief True if we are currently preprocessing a #if or #elif directive
    187   bool ParsingIfOrElifDirective;
    188 
    189   /// \brief True if we are pre-expanding macro arguments.
    190   bool InMacroArgPreExpansion;
    191 
    192   /// \brief Mapping/lookup information for all identifiers in
    193   /// the program, including program keywords.
    194   mutable IdentifierTable Identifiers;
    195 
    196   /// \brief This table contains all the selectors in the program.
    197   ///
    198   /// Unlike IdentifierTable above, this table *isn't* populated by the
    199   /// preprocessor. It is declared/expanded here because its role/lifetime is
    200   /// conceptually similar to the IdentifierTable. In addition, the current
    201   /// control flow (in clang::ParseAST()), make it convenient to put here.
    202   ///
    203   /// FIXME: Make sure the lifetime of Identifiers/Selectors *isn't* tied to
    204   /// the lifetime of the preprocessor.
    205   SelectorTable Selectors;
    206 
    207   /// \brief Information about builtins.
    208   Builtin::Context BuiltinInfo;
    209 
    210   /// \brief Tracks all of the pragmas that the client registered
    211   /// with this preprocessor.
    212   std::unique_ptr<PragmaNamespace> PragmaHandlers;
    213 
    214   /// \brief Pragma handlers of the original source is stored here during the
    215   /// parsing of a model file.
    216   std::unique_ptr<PragmaNamespace> PragmaHandlersBackup;
    217 
    218   /// \brief Tracks all of the comment handlers that the client registered
    219   /// with this preprocessor.
    220   std::vector<CommentHandler *> CommentHandlers;
    221 
    222   /// \brief True if we want to ignore EOF token and continue later on (thus
    223   /// avoid tearing the Lexer and etc. down).
    224   bool IncrementalProcessing;
    225 
    226   /// The kind of translation unit we are processing.
    227   TranslationUnitKind TUKind;
    228 
    229   /// \brief The code-completion handler.
    230   CodeCompletionHandler *CodeComplete;
    231 
    232   /// \brief The file that we're performing code-completion for, if any.
    233   const FileEntry *CodeCompletionFile;
    234 
    235   /// \brief The offset in file for the code-completion point.
    236   unsigned CodeCompletionOffset;
    237 
    238   /// \brief The location for the code-completion point. This gets instantiated
    239   /// when the CodeCompletionFile gets \#include'ed for preprocessing.
    240   SourceLocation CodeCompletionLoc;
    241 
    242   /// \brief The start location for the file of the code-completion point.
    243   ///
    244   /// This gets instantiated when the CodeCompletionFile gets \#include'ed
    245   /// for preprocessing.
    246   SourceLocation CodeCompletionFileLoc;
    247 
    248   /// \brief The source location of the \c import contextual keyword we just
    249   /// lexed, if any.
    250   SourceLocation ModuleImportLoc;
    251 
    252   /// \brief The module import path that we're currently processing.
    253   SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> ModuleImportPath;
    254 
    255   /// \brief Whether the last token we lexed was an '@'.
    256   bool LastTokenWasAt;
    257 
    258   /// \brief Whether the module import expects an identifier next. Otherwise,
    259   /// it expects a '.' or ';'.
    260   bool ModuleImportExpectsIdentifier;
    261 
    262   /// \brief The source location of the currently-active
    263   /// \#pragma clang arc_cf_code_audited begin.
    264   SourceLocation PragmaARCCFCodeAuditedLoc;
    265 
    266   /// \brief The source location of the currently-active
    267   /// \#pragma clang assume_nonnull begin.
    268   SourceLocation PragmaAssumeNonNullLoc;
    269 
    270   /// \brief True if we hit the code-completion point.
    271   bool CodeCompletionReached;
    272 
    273   /// \brief The code completion token containing the information
    274   /// on the stem that is to be code completed.
    275   IdentifierInfo *CodeCompletionII;
    276 
    277   /// \brief The directory that the main file should be considered to occupy,
    278   /// if it does not correspond to a real file (as happens when building a
    279   /// module).
    280   const DirectoryEntry *MainFileDir;
    281 
    282   /// \brief The number of bytes that we will initially skip when entering the
    283   /// main file, along with a flag that indicates whether skipping this number
    284   /// of bytes will place the lexer at the start of a line.
    285   ///
    286   /// This is used when loading a precompiled preamble.
    287   std::pair<int, bool> SkipMainFilePreamble;
    288 
    289   class PreambleConditionalStackStore {
    290     enum State {
    291       Off = 0,
    292       Recording = 1,
    293       Replaying = 2,
    294     };
    295 
    296   public:
    297     PreambleConditionalStackStore() : ConditionalStackState(Off) {}
    298 
    299     void startRecording() { ConditionalStackState = Recording; }
    300     void startReplaying() { ConditionalStackState = Replaying; }
    301     bool isRecording() const { return ConditionalStackState == Recording; }
    302     bool isReplaying() const { return ConditionalStackState == Replaying; }
    303 
    304     ArrayRef<PPConditionalInfo> getStack() const {
    305       return ConditionalStack;
    306     }
    307 
    308     void doneReplaying() {
    309       ConditionalStack.clear();
    310       ConditionalStackState = Off;
    311     }
    312 
    313     void setStack(ArrayRef<PPConditionalInfo> s) {
    314       if (!isRecording() && !isReplaying())
    315         return;
    316       ConditionalStack.clear();
    317       ConditionalStack.append(s.begin(), s.end());
    318     }
    319 
    320     bool hasRecordedPreamble() const { return !ConditionalStack.empty(); }
    321 
    322   private:
    323     SmallVector<PPConditionalInfo, 4> ConditionalStack;
    324     State ConditionalStackState;
    325   } PreambleConditionalStack;
    326 
    327   /// \brief The current top of the stack that we're lexing from if
    328   /// not expanding a macro and we are lexing directly from source code.
    329   ///
    330   /// Only one of CurLexer, CurPTHLexer, or CurTokenLexer will be non-null.
    331   std::unique_ptr<Lexer> CurLexer;
    332 
    333   /// \brief The current top of stack that we're lexing from if
    334   /// not expanding from a macro and we are lexing from a PTH cache.
    335   ///
    336   /// Only one of CurLexer, CurPTHLexer, or CurTokenLexer will be non-null.
    337   std::unique_ptr<PTHLexer> CurPTHLexer;
    338 
    339   /// \brief The current top of the stack what we're lexing from
    340   /// if not expanding a macro.
    341   ///
    342   /// This is an alias for either CurLexer or  CurPTHLexer.
    343   PreprocessorLexer *CurPPLexer;
    344 
    345   /// \brief Used to find the current FileEntry, if CurLexer is non-null
    346   /// and if applicable.
    347   ///
    348   /// This allows us to implement \#include_next and find directory-specific
    349   /// properties.
    350   const DirectoryLookup *CurDirLookup;
    351 
    352   /// \brief The current macro we are expanding, if we are expanding a macro.
    353   ///
    354   /// One of CurLexer and CurTokenLexer must be null.
    355   std::unique_ptr<TokenLexer> CurTokenLexer;
    356 
    357   /// \brief The kind of lexer we're currently working with.
    358   enum CurLexerKind {
    359     CLK_Lexer,
    360     CLK_PTHLexer,
    361     CLK_TokenLexer,
    362     CLK_CachingLexer,
    363     CLK_LexAfterModuleImport
    364   } CurLexerKind;
    365 
    366   /// \brief If the current lexer is for a submodule that is being built, this
    367   /// is that submodule.
    368   Module *CurLexerSubmodule;
    369 
    370   /// \brief Keeps track of the stack of files currently
    371   /// \#included, and macros currently being expanded from, not counting
    372   /// CurLexer/CurTokenLexer.
    373   struct IncludeStackInfo {
    374     enum CurLexerKind           CurLexerKind;
    375     Module                     *TheSubmodule;
    376     std::unique_ptr<Lexer>      TheLexer;
    377     std::unique_ptr<PTHLexer>   ThePTHLexer;
    378     PreprocessorLexer          *ThePPLexer;
    379     std::unique_ptr<TokenLexer> TheTokenLexer;
    380     const DirectoryLookup      *TheDirLookup;
    381 
    382     // The following constructors are completely useless copies of the default
    383     // versions, only needed to pacify MSVC.
    384     IncludeStackInfo(enum CurLexerKind CurLexerKind, Module *TheSubmodule,
    385                      std::unique_ptr<Lexer> &&TheLexer,
    386                      std::unique_ptr<PTHLexer> &&ThePTHLexer,
    387                      PreprocessorLexer *ThePPLexer,
    388                      std::unique_ptr<TokenLexer> &&TheTokenLexer,
    389                      const DirectoryLookup *TheDirLookup)
    390         : CurLexerKind(std::move(CurLexerKind)),
    391           TheSubmodule(std::move(TheSubmodule)), TheLexer(std::move(TheLexer)),
    392           ThePTHLexer(std::move(ThePTHLexer)),
    393           ThePPLexer(std::move(ThePPLexer)),
    394           TheTokenLexer(std::move(TheTokenLexer)),
    395           TheDirLookup(std::move(TheDirLookup)) {}
    396   };
    397   std::vector<IncludeStackInfo> IncludeMacroStack;
    398 
    399   /// \brief Actions invoked when some preprocessor activity is
    400   /// encountered (e.g. a file is \#included, etc).
    401   std::unique_ptr<PPCallbacks> Callbacks;
    402 
    403   struct MacroExpandsInfo {
    404     Token Tok;
    405     MacroDefinition MD;
    406     SourceRange Range;
    407     MacroExpandsInfo(Token Tok, MacroDefinition MD, SourceRange Range)
    408       : Tok(Tok), MD(MD), Range(Range) { }
    409   };
    410   SmallVector<MacroExpandsInfo, 2> DelayedMacroExpandsCallbacks;
    411 
    412   /// Information about a name that has been used to define a module macro.
    413   struct ModuleMacroInfo {
    414     ModuleMacroInfo(MacroDirective *MD)
    415         : MD(MD), ActiveModuleMacrosGeneration(0), IsAmbiguous(false) {}
    416 
    417     /// The most recent macro directive for this identifier.
    418     MacroDirective *MD;
    419     /// The active module macros for this identifier.
    420     llvm::TinyPtrVector<ModuleMacro*> ActiveModuleMacros;
    421     /// The generation number at which we last updated ActiveModuleMacros.
    422     /// \see Preprocessor::VisibleModules.
    423     unsigned ActiveModuleMacrosGeneration;
    424     /// Whether this macro name is ambiguous.
    425     bool IsAmbiguous;
    426     /// The module macros that are overridden by this macro.
    427     llvm::TinyPtrVector<ModuleMacro*> OverriddenMacros;
    428   };
    429 
    430   /// The state of a macro for an identifier.
    431   class MacroState {
    432     mutable llvm::PointerUnion<MacroDirective *, ModuleMacroInfo *> State;
    433 
    434     ModuleMacroInfo *getModuleInfo(Preprocessor &PP,
    435                                    const IdentifierInfo *II) const {
    436       if (II->isOutOfDate())
    437         PP.updateOutOfDateIdentifier(const_cast<IdentifierInfo&>(*II));
    438       // FIXME: Find a spare bit on IdentifierInfo and store a
    439       //        HasModuleMacros flag.
    440       if (!II->hasMacroDefinition() ||
    441           (!PP.getLangOpts().Modules &&
    442            !PP.getLangOpts().ModulesLocalVisibility) ||
    443           !PP.CurSubmoduleState->VisibleModules.getGeneration())
    444         return nullptr;
    445 
    446       auto *Info = State.dyn_cast<ModuleMacroInfo*>();
    447       if (!Info) {
    448         Info = new (PP.getPreprocessorAllocator())
    449             ModuleMacroInfo(State.get<MacroDirective *>());
    450         State = Info;
    451       }
    452 
    453       if (PP.CurSubmoduleState->VisibleModules.getGeneration() !=
    454           Info->ActiveModuleMacrosGeneration)
    455         PP.updateModuleMacroInfo(II, *Info);
    456       return Info;
    457     }
    458 
    459   public:
    460     MacroState() : MacroState(nullptr) {}
    461     MacroState(MacroDirective *MD) : State(MD) {}
    462     MacroState(MacroState &&O) noexcept : State(O.State) {
    463       O.State = (MacroDirective *)nullptr;
    464     }
    465     MacroState &operator=(MacroState &&O) noexcept {
    466       auto S = O.State;
    467       O.State = (MacroDirective *)nullptr;
    468       State = S;
    469       return *this;
    470     }
    471     ~MacroState() {
    472       if (auto *Info = State.dyn_cast<ModuleMacroInfo*>())
    473         Info->~ModuleMacroInfo();
    474     }
    475 
    476     MacroDirective *getLatest() const {
    477       if (auto *Info = State.dyn_cast<ModuleMacroInfo*>())
    478         return Info->MD;
    479       return State.get<MacroDirective*>();
    480     }
    481     void setLatest(MacroDirective *MD) {
    482       if (auto *Info = State.dyn_cast<ModuleMacroInfo*>())
    483         Info->MD = MD;
    484       else
    485         State = MD;
    486     }
    487 
    488     bool isAmbiguous(Preprocessor &PP, const IdentifierInfo *II) const {
    489       auto *Info = getModuleInfo(PP, II);
    490       return Info ? Info->IsAmbiguous : false;
    491     }
    492     ArrayRef<ModuleMacro *>
    493     getActiveModuleMacros(Preprocessor &PP, const IdentifierInfo *II) const {
    494       if (auto *Info = getModuleInfo(PP, II))
    495         return Info->ActiveModuleMacros;
    496       return None;
    497     }
    498 
    499     MacroDirective::DefInfo findDirectiveAtLoc(SourceLocation Loc,
    500                                                SourceManager &SourceMgr) const {
    501       // FIXME: Incorporate module macros into the result of this.
    502       if (auto *Latest = getLatest())
    503         return Latest->findDirectiveAtLoc(Loc, SourceMgr);
    504       return MacroDirective::DefInfo();
    505     }
    506 
    507     void overrideActiveModuleMacros(Preprocessor &PP, IdentifierInfo *II) {
    508       if (auto *Info = getModuleInfo(PP, II)) {
    509         Info->OverriddenMacros.insert(Info->OverriddenMacros.end(),
    510                                       Info->ActiveModuleMacros.begin(),
    511                                       Info->ActiveModuleMacros.end());
    512         Info->ActiveModuleMacros.clear();
    513         Info->IsAmbiguous = false;
    514       }
    515     }
    516     ArrayRef<ModuleMacro*> getOverriddenMacros() const {
    517       if (auto *Info = State.dyn_cast<ModuleMacroInfo*>())
    518         return Info->OverriddenMacros;
    519       return None;
    520     }
    521     void setOverriddenMacros(Preprocessor &PP,
    522                              ArrayRef<ModuleMacro *> Overrides) {
    523       auto *Info = State.dyn_cast<ModuleMacroInfo*>();
    524       if (!Info) {
    525         if (Overrides.empty())
    526           return;
    527         Info = new (PP.getPreprocessorAllocator())
    528             ModuleMacroInfo(State.get<MacroDirective *>());
    529         State = Info;
    530       }
    531       Info->OverriddenMacros.clear();
    532       Info->OverriddenMacros.insert(Info->OverriddenMacros.end(),
    533                                     Overrides.begin(), Overrides.end());
    534       Info->ActiveModuleMacrosGeneration = 0;
    535     }
    536   };
    537 
    538   /// For each IdentifierInfo that was associated with a macro, we
    539   /// keep a mapping to the history of all macro definitions and #undefs in
    540   /// the reverse order (the latest one is in the head of the list).
    541   ///
    542   /// This mapping lives within the \p CurSubmoduleState.
    543   typedef llvm::DenseMap<const IdentifierInfo *, MacroState> MacroMap;
    544 
    545   friend class ASTReader;
    546 
    547   struct SubmoduleState;
    548 
    549   /// \brief Information about a submodule that we're currently building.
    550   struct BuildingSubmoduleInfo {
    551     BuildingSubmoduleInfo(Module *M, SourceLocation ImportLoc, bool IsPragma,
    552                           SubmoduleState *OuterSubmoduleState,
    553                           unsigned OuterPendingModuleMacroNames)
    554         : M(M), ImportLoc(ImportLoc), IsPragma(IsPragma),
    555           OuterSubmoduleState(OuterSubmoduleState),
    556           OuterPendingModuleMacroNames(OuterPendingModuleMacroNames) {}
    557 
    558     /// The module that we are building.
    559     Module *M;
    560     /// The location at which the module was included.
    561     SourceLocation ImportLoc;
    562     /// Whether we entered this submodule via a pragma.
    563     bool IsPragma;
    564     /// The previous SubmoduleState.
    565     SubmoduleState *OuterSubmoduleState;
    566     /// The number of pending module macro names when we started building this.
    567     unsigned OuterPendingModuleMacroNames;
    568   };
    569   SmallVector<BuildingSubmoduleInfo, 8> BuildingSubmoduleStack;
    570 
    571   /// \brief Information about a submodule's preprocessor state.
    572   struct SubmoduleState {
    573     /// The macros for the submodule.
    574     MacroMap Macros;
    575     /// The set of modules that are visible within the submodule.
    576     VisibleModuleSet VisibleModules;
    577     // FIXME: CounterValue?
    578     // FIXME: PragmaPushMacroInfo?
    579   };
    580   std::map<Module*, SubmoduleState> Submodules;
    581 
    582   /// The preprocessor state for preprocessing outside of any submodule.
    583   SubmoduleState NullSubmoduleState;
    584 
    585   /// The current submodule state. Will be \p NullSubmoduleState if we're not
    586   /// in a submodule.
    587   SubmoduleState *CurSubmoduleState;
    588 
    589   /// The set of known macros exported from modules.
    590   llvm::FoldingSet<ModuleMacro> ModuleMacros;
    591 
    592   /// The names of potential module macros that we've not yet processed.
    593   llvm::SmallVector<const IdentifierInfo*, 32> PendingModuleMacroNames;
    594 
    595   /// The list of module macros, for each identifier, that are not overridden by
    596   /// any other module macro.
    597   llvm::DenseMap<const IdentifierInfo *, llvm::TinyPtrVector<ModuleMacro*>>
    598       LeafModuleMacros;
    599 
    600   /// \brief Macros that we want to warn because they are not used at the end
    601   /// of the translation unit.
    602   ///
    603   /// We store just their SourceLocations instead of
    604   /// something like MacroInfo*. The benefit of this is that when we are
    605   /// deserializing from PCH, we don't need to deserialize identifier & macros
    606   /// just so that we can report that they are unused, we just warn using
    607   /// the SourceLocations of this set (that will be filled by the ASTReader).
    608   /// We are using SmallPtrSet instead of a vector for faster removal.
    609   typedef llvm::SmallPtrSet<SourceLocation, 32> WarnUnusedMacroLocsTy;
    610   WarnUnusedMacroLocsTy WarnUnusedMacroLocs;
    611 
    612   /// \brief A "freelist" of MacroArg objects that can be
    613   /// reused for quick allocation.
    614   MacroArgs *MacroArgCache;
    615   friend class MacroArgs;
    616 
    617   /// For each IdentifierInfo used in a \#pragma push_macro directive,
    618   /// we keep a MacroInfo stack used to restore the previous macro value.
    619   llvm::DenseMap<IdentifierInfo*, std::vector<MacroInfo*> > PragmaPushMacroInfo;
    620 
    621   // Various statistics we track for performance analysis.
    622   unsigned NumDirectives, NumDefined, NumUndefined, NumPragma;
    623   unsigned NumIf, NumElse, NumEndif;
    624   unsigned NumEnteredSourceFiles, MaxIncludeStackDepth;
    625   unsigned NumMacroExpanded, NumFnMacroExpanded, NumBuiltinMacroExpanded;
    626   unsigned NumFastMacroExpanded, NumTokenPaste, NumFastTokenPaste;
    627   unsigned NumSkipped;
    628 
    629   /// \brief The predefined macros that preprocessor should use from the
    630   /// command line etc.
    631   std::string Predefines;
    632 
    633   /// \brief The file ID for the preprocessor predefines.
    634   FileID PredefinesFileID;
    635 
    636   /// \{
    637   /// \brief Cache of macro expanders to reduce malloc traffic.
    638   enum { TokenLexerCacheSize = 8 };
    639   unsigned NumCachedTokenLexers;
    640   std::unique_ptr<TokenLexer> TokenLexerCache[TokenLexerCacheSize];
    641   /// \}
    642 
    643   /// \brief Keeps macro expanded tokens for TokenLexers.
    644   //
    645   /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
    646   /// going to lex in the cache and when it finishes the tokens are removed
    647   /// from the end of the cache.
    648   SmallVector<Token, 16> MacroExpandedTokens;
    649   std::vector<std::pair<TokenLexer *, size_t> > MacroExpandingLexersStack;
    650 
    651   /// \brief A record of the macro definitions and expansions that
    652   /// occurred during preprocessing.
    653   ///
    654   /// This is an optional side structure that can be enabled with
    655   /// \c createPreprocessingRecord() prior to preprocessing.
    656   PreprocessingRecord *Record;
    657 
    658   /// Cached tokens state.
    659   typedef SmallVector<Token, 1> CachedTokensTy;
    660 
    661   /// \brief Cached tokens are stored here when we do backtracking or
    662   /// lookahead. They are "lexed" by the CachingLex() method.
    663   CachedTokensTy CachedTokens;
    664 
    665   /// \brief The position of the cached token that CachingLex() should
    666   /// "lex" next.
    667   ///
    668   /// If it points beyond the CachedTokens vector, it means that a normal
    669   /// Lex() should be invoked.
    670   CachedTokensTy::size_type CachedLexPos;
    671 
    672   /// \brief Stack of backtrack positions, allowing nested backtracks.
    673   ///
    674   /// The EnableBacktrackAtThisPos() method pushes a position to
    675   /// indicate where CachedLexPos should be set when the BackTrack() method is
    676   /// invoked (at which point the last position is popped).
    677   std::vector<CachedTokensTy::size_type> BacktrackPositions;
    678 
    679   struct MacroInfoChain {
    680     MacroInfo MI;
    681     MacroInfoChain *Next;
    682   };
    683 
    684   /// MacroInfos are managed as a chain for easy disposal.  This is the head
    685   /// of that list.
    686   MacroInfoChain *MIChainHead;
    687 
    688   void updateOutOfDateIdentifier(IdentifierInfo &II) const;
    689 
    690 public:
    691   Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts,
    692                DiagnosticsEngine &diags, LangOptions &opts, SourceManager &SM,
    693                MemoryBufferCache &PCMCache,
    694                HeaderSearch &Headers, ModuleLoader &TheModuleLoader,
    695                IdentifierInfoLookup *IILookup = nullptr,
    696                bool OwnsHeaderSearch = false,
    697                TranslationUnitKind TUKind = TU_Complete);
    698 
    699   ~Preprocessor();
    700 
    701   /// \brief Initialize the preprocessor using information about the target.
    702   ///
    703   /// \param Target is owned by the caller and must remain valid for the
    704   /// lifetime of the preprocessor.
    705   /// \param AuxTarget is owned by the caller and must remain valid for
    706   /// the lifetime of the preprocessor.
    707   void Initialize(const TargetInfo &Target,
    708                   const TargetInfo *AuxTarget = nullptr);
    709 
    710   /// \brief Initialize the preprocessor to parse a model file
    711   ///
    712   /// To parse model files the preprocessor of the original source is reused to
    713   /// preserver the identifier table. However to avoid some duplicate
    714   /// information in the preprocessor some cleanup is needed before it is used
    715   /// to parse model files. This method does that cleanup.
    716   void InitializeForModelFile();
    717 
    718   /// \brief Cleanup after model file parsing
    719   void FinalizeForModelFile();
    720 
    721   /// \brief Retrieve the preprocessor options used to initialize this
    722   /// preprocessor.
    723   PreprocessorOptions &getPreprocessorOpts() const { return *PPOpts; }
    724 
    725   DiagnosticsEngine &getDiagnostics() const { return *Diags; }
    726   void setDiagnostics(DiagnosticsEngine &D) { Diags = &D; }
    727 
    728   const LangOptions &getLangOpts() const { return LangOpts; }
    729   const TargetInfo &getTargetInfo() const { return *Target; }
    730   const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
    731   FileManager &getFileManager() const { return FileMgr; }
    732   SourceManager &getSourceManager() const { return SourceMgr; }
    733   MemoryBufferCache &getPCMCache() const { return PCMCache; }
    734   HeaderSearch &getHeaderSearchInfo() const { return HeaderInfo; }
    735 
    736   IdentifierTable &getIdentifierTable() { return Identifiers; }
    737   const IdentifierTable &getIdentifierTable() const { return Identifiers; }
    738   SelectorTable &getSelectorTable() { return Selectors; }
    739   Builtin::Context &getBuiltinInfo() { return BuiltinInfo; }
    740   llvm::BumpPtrAllocator &getPreprocessorAllocator() { return BP; }
    741 
    742   void setPTHManager(PTHManager* pm);
    743 
    744   PTHManager *getPTHManager() { return PTH.get(); }
    745 
    746   void setExternalSource(ExternalPreprocessorSource *Source) {
    747     ExternalSource = Source;
    748   }
    749 
    750   ExternalPreprocessorSource *getExternalSource() const {
    751     return ExternalSource;
    752   }
    753 
    754   /// \brief Retrieve the module loader associated with this preprocessor.
    755   ModuleLoader &getModuleLoader() const { return TheModuleLoader; }
    756 
    757   bool hadModuleLoaderFatalFailure() const {
    758     return TheModuleLoader.HadFatalFailure;
    759   }
    760 
    761   /// \brief True if we are currently preprocessing a #if or #elif directive
    762   bool isParsingIfOrElifDirective() const {
    763     return ParsingIfOrElifDirective;
    764   }
    765 
    766   /// \brief Control whether the preprocessor retains comments in output.
    767   void SetCommentRetentionState(bool KeepComments, bool KeepMacroComments) {
    768     this->KeepComments = KeepComments | KeepMacroComments;
    769     this->KeepMacroComments = KeepMacroComments;
    770   }
    771 
    772   bool getCommentRetentionState() const { return KeepComments; }
    773 
    774   void setPragmasEnabled(bool Enabled) { PragmasEnabled = Enabled; }
    775   bool getPragmasEnabled() const { return PragmasEnabled; }
    776 
    777   void SetSuppressIncludeNotFoundError(bool Suppress) {
    778     SuppressIncludeNotFoundError = Suppress;
    779   }
    780 
    781   bool GetSuppressIncludeNotFoundError() {
    782     return SuppressIncludeNotFoundError;
    783   }
    784 
    785   /// Sets whether the preprocessor is responsible for producing output or if
    786   /// it is producing tokens to be consumed by Parse and Sema.
    787   void setPreprocessedOutput(bool IsPreprocessedOutput) {
    788     PreprocessedOutput = IsPreprocessedOutput;
    789   }
    790 
    791   /// Returns true if the preprocessor is responsible for generating output,
    792   /// false if it is producing tokens to be consumed by Parse and Sema.
    793   bool isPreprocessedOutput() const { return PreprocessedOutput; }
    794 
    795   /// \brief Return true if we are lexing directly from the specified lexer.
    796   bool isCurrentLexer(const PreprocessorLexer *L) const {
    797     return CurPPLexer == L;
    798   }
    799 
    800   /// \brief Return the current lexer being lexed from.
    801   ///
    802   /// Note that this ignores any potentially active macro expansions and _Pragma
    803   /// expansions going on at the time.
    804   PreprocessorLexer *getCurrentLexer() const { return CurPPLexer; }
    805 
    806   /// \brief Return the current file lexer being lexed from.
    807   ///
    808   /// Note that this ignores any potentially active macro expansions and _Pragma
    809   /// expansions going on at the time.
    810   PreprocessorLexer *getCurrentFileLexer() const;
    811 
    812   /// \brief Return the submodule owning the file being lexed. This may not be
    813   /// the current module if we have changed modules since entering the file.
    814   Module *getCurrentLexerSubmodule() const { return CurLexerSubmodule; }
    815 
    816   /// \brief Returns the FileID for the preprocessor predefines.
    817   FileID getPredefinesFileID() const { return PredefinesFileID; }
    818 
    819   /// \{
    820   /// \brief Accessors for preprocessor callbacks.
    821   ///
    822   /// Note that this class takes ownership of any PPCallbacks object given to
    823   /// it.
    824   PPCallbacks *getPPCallbacks() const { return Callbacks.get(); }
    825   void addPPCallbacks(std::unique_ptr<PPCallbacks> C) {
    826     if (Callbacks)
    827       C = llvm::make_unique<PPChainedCallbacks>(std::move(C),
    828                                                 std::move(Callbacks));
    829     Callbacks = std::move(C);
    830   }
    831   /// \}
    832 
    833   bool isMacroDefined(StringRef Id) {
    834     return isMacroDefined(&Identifiers.get(Id));
    835   }
    836   bool isMacroDefined(const IdentifierInfo *II) {
    837     return II->hasMacroDefinition() &&
    838            (!getLangOpts().Modules || (bool)getMacroDefinition(II));
    839   }
    840 
    841   /// \brief Determine whether II is defined as a macro within the module M,
    842   /// if that is a module that we've already preprocessed. Does not check for
    843   /// macros imported into M.
    844   bool isMacroDefinedInLocalModule(const IdentifierInfo *II, Module *M) {
    845     if (!II->hasMacroDefinition())
    846       return false;
    847     auto I = Submodules.find(M);
    848     if (I == Submodules.end())
    849       return false;
    850     auto J = I->second.Macros.find(II);
    851     if (J == I->second.Macros.end())
    852       return false;
    853     auto *MD = J->second.getLatest();
    854     return MD && MD->isDefined();
    855   }
    856 
    857   MacroDefinition getMacroDefinition(const IdentifierInfo *II) {
    858     if (!II->hasMacroDefinition())
    859       return MacroDefinition();
    860 
    861     MacroState &S = CurSubmoduleState->Macros[II];
    862     auto *MD = S.getLatest();
    863     while (MD && isa<VisibilityMacroDirective>(MD))
    864       MD = MD->getPrevious();
    865     return MacroDefinition(dyn_cast_or_null<DefMacroDirective>(MD),
    866                            S.getActiveModuleMacros(*this, II),
    867                            S.isAmbiguous(*this, II));
    868   }
    869 
    870   MacroDefinition getMacroDefinitionAtLoc(const IdentifierInfo *II,
    871                                           SourceLocation Loc) {
    872     if (!II->hadMacroDefinition())
    873       return MacroDefinition();
    874 
    875     MacroState &S = CurSubmoduleState->Macros[II];
    876     MacroDirective::DefInfo DI;
    877     if (auto *MD = S.getLatest())
    878       DI = MD->findDirectiveAtLoc(Loc, getSourceManager());
    879     // FIXME: Compute the set of active module macros at the specified location.
    880     return MacroDefinition(DI.getDirective(),
    881                            S.getActiveModuleMacros(*this, II),
    882                            S.isAmbiguous(*this, II));
    883   }
    884 
    885   /// \brief Given an identifier, return its latest non-imported MacroDirective
    886   /// if it is \#define'd and not \#undef'd, or null if it isn't \#define'd.
    887   MacroDirective *getLocalMacroDirective(const IdentifierInfo *II) const {
    888     if (!II->hasMacroDefinition())
    889       return nullptr;
    890 
    891     auto *MD = getLocalMacroDirectiveHistory(II);
    892     if (!MD || MD->getDefinition().isUndefined())
    893       return nullptr;
    894 
    895     return MD;
    896   }
    897 
    898   const MacroInfo *getMacroInfo(const IdentifierInfo *II) const {
    899     return const_cast<Preprocessor*>(this)->getMacroInfo(II);
    900   }
    901 
    902   MacroInfo *getMacroInfo(const IdentifierInfo *II) {
    903     if (!II->hasMacroDefinition())
    904       return nullptr;
    905     if (auto MD = getMacroDefinition(II))
    906       return MD.getMacroInfo();
    907     return nullptr;
    908   }
    909 
    910   /// \brief Given an identifier, return the latest non-imported macro
    911   /// directive for that identifier.
    912   ///
    913   /// One can iterate over all previous macro directives from the most recent
    914   /// one.
    915   MacroDirective *getLocalMacroDirectiveHistory(const IdentifierInfo *II) const;
    916 
    917   /// \brief Add a directive to the macro directive history for this identifier.
    918   void appendMacroDirective(IdentifierInfo *II, MacroDirective *MD);
    919   DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, MacroInfo *MI,
    920                                              SourceLocation Loc) {
    921     DefMacroDirective *MD = AllocateDefMacroDirective(MI, Loc);
    922     appendMacroDirective(II, MD);
    923     return MD;
    924   }
    925   DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II,
    926                                              MacroInfo *MI) {
    927     return appendDefMacroDirective(II, MI, MI->getDefinitionLoc());
    928   }
    929   /// \brief Set a MacroDirective that was loaded from a PCH file.
    930   void setLoadedMacroDirective(IdentifierInfo *II, MacroDirective *ED,
    931                                MacroDirective *MD);
    932 
    933   /// \brief Register an exported macro for a module and identifier.
    934   ModuleMacro *addModuleMacro(Module *Mod, IdentifierInfo *II, MacroInfo *Macro,
    935                               ArrayRef<ModuleMacro *> Overrides, bool &IsNew);
    936   ModuleMacro *getModuleMacro(Module *Mod, IdentifierInfo *II);
    937 
    938   /// \brief Get the list of leaf (non-overridden) module macros for a name.
    939   ArrayRef<ModuleMacro*> getLeafModuleMacros(const IdentifierInfo *II) const {
    940     if (II->isOutOfDate())
    941       updateOutOfDateIdentifier(const_cast<IdentifierInfo&>(*II));
    942     auto I = LeafModuleMacros.find(II);
    943     if (I != LeafModuleMacros.end())
    944       return I->second;
    945     return None;
    946   }
    947 
    948   /// \{
    949   /// Iterators for the macro history table. Currently defined macros have
    950   /// IdentifierInfo::hasMacroDefinition() set and an empty
    951   /// MacroInfo::getUndefLoc() at the head of the list.
    952   typedef MacroMap::const_iterator macro_iterator;
    953   macro_iterator macro_begin(bool IncludeExternalMacros = true) const;
    954   macro_iterator macro_end(bool IncludeExternalMacros = true) const;
    955   llvm::iterator_range<macro_iterator>
    956   macros(bool IncludeExternalMacros = true) const {
    957     return llvm::make_range(macro_begin(IncludeExternalMacros),
    958                             macro_end(IncludeExternalMacros));
    959   }
    960   /// \}
    961 
    962   /// \brief Return the name of the macro defined before \p Loc that has
    963   /// spelling \p Tokens.  If there are multiple macros with same spelling,
    964   /// return the last one defined.
    965   StringRef getLastMacroWithSpelling(SourceLocation Loc,
    966                                      ArrayRef<TokenValue> Tokens) const;
    967 
    968   const std::string &getPredefines() const { return Predefines; }
    969   /// \brief Set the predefines for this Preprocessor.
    970   ///
    971   /// These predefines are automatically injected when parsing the main file.
    972   void setPredefines(const char *P) { Predefines = P; }
    973   void setPredefines(StringRef P) { Predefines = P; }
    974 
    975   /// Return information about the specified preprocessor
    976   /// identifier token.
    977   IdentifierInfo *getIdentifierInfo(StringRef Name) const {
    978     return &Identifiers.get(Name);
    979   }
    980 
    981   /// \brief Add the specified pragma handler to this preprocessor.
    982   ///
    983   /// If \p Namespace is non-null, then it is a token required to exist on the
    984   /// pragma line before the pragma string starts, e.g. "STDC" or "GCC".
    985   void AddPragmaHandler(StringRef Namespace, PragmaHandler *Handler);
    986   void AddPragmaHandler(PragmaHandler *Handler) {
    987     AddPragmaHandler(StringRef(), Handler);
    988   }
    989 
    990   /// \brief Remove the specific pragma handler from this preprocessor.
    991   ///
    992   /// If \p Namespace is non-null, then it should be the namespace that
    993   /// \p Handler was added to. It is an error to remove a handler that
    994   /// has not been registered.
    995   void RemovePragmaHandler(StringRef Namespace, PragmaHandler *Handler);
    996   void RemovePragmaHandler(PragmaHandler *Handler) {
    997     RemovePragmaHandler(StringRef(), Handler);
    998   }
    999 
   1000   /// Install empty handlers for all pragmas (making them ignored).
   1001   void IgnorePragmas();
   1002 
   1003   /// \brief Add the specified comment handler to the preprocessor.
   1004   void addCommentHandler(CommentHandler *Handler);
   1005 
   1006   /// \brief Remove the specified comment handler.
   1007   ///
   1008   /// It is an error to remove a handler that has not been registered.
   1009   void removeCommentHandler(CommentHandler *Handler);
   1010 
   1011   /// \brief Set the code completion handler to the given object.
   1012   void setCodeCompletionHandler(CodeCompletionHandler &Handler) {
   1013     CodeComplete = &Handler;
   1014   }
   1015 
   1016   /// \brief Retrieve the current code-completion handler.
   1017   CodeCompletionHandler *getCodeCompletionHandler() const {
   1018     return CodeComplete;
   1019   }
   1020 
   1021   /// \brief Clear out the code completion handler.
   1022   void clearCodeCompletionHandler() {
   1023     CodeComplete = nullptr;
   1024   }
   1025 
   1026   /// \brief Hook used by the lexer to invoke the "natural language" code
   1027   /// completion point.
   1028   void CodeCompleteNaturalLanguage();
   1029 
   1030   /// \brief Set the code completion token for filtering purposes.
   1031   void setCodeCompletionIdentifierInfo(IdentifierInfo *Filter) {
   1032     CodeCompletionII = Filter;
   1033   }
   1034 
   1035   /// \brief Get the code completion token for filtering purposes.
   1036   StringRef getCodeCompletionFilter() {
   1037     if (CodeCompletionII)
   1038       return CodeCompletionII->getName();
   1039     return {};
   1040   }
   1041 
   1042   /// \brief Retrieve the preprocessing record, or NULL if there is no
   1043   /// preprocessing record.
   1044   PreprocessingRecord *getPreprocessingRecord() const { return Record; }
   1045 
   1046   /// \brief Create a new preprocessing record, which will keep track of
   1047   /// all macro expansions, macro definitions, etc.
   1048   void createPreprocessingRecord();
   1049 
   1050   /// \brief Enter the specified FileID as the main source file,
   1051   /// which implicitly adds the builtin defines etc.
   1052   void EnterMainSourceFile();
   1053 
   1054   /// \brief Inform the preprocessor callbacks that processing is complete.
   1055   void EndSourceFile();
   1056 
   1057   /// \brief Add a source file to the top of the include stack and
   1058   /// start lexing tokens from it instead of the current buffer.
   1059   ///
   1060   /// Emits a diagnostic, doesn't enter the file, and returns true on error.
   1061   bool EnterSourceFile(FileID CurFileID, const DirectoryLookup *Dir,
   1062                        SourceLocation Loc);
   1063 
   1064   /// \brief Add a Macro to the top of the include stack and start lexing
   1065   /// tokens from it instead of the current buffer.
   1066   ///
   1067   /// \param Args specifies the tokens input to a function-like macro.
   1068   /// \param ILEnd specifies the location of the ')' for a function-like macro
   1069   /// or the identifier for an object-like macro.
   1070   void EnterMacro(Token &Identifier, SourceLocation ILEnd, MacroInfo *Macro,
   1071                   MacroArgs *Args);
   1072 
   1073   /// \brief Add a "macro" context to the top of the include stack,
   1074   /// which will cause the lexer to start returning the specified tokens.
   1075   ///
   1076   /// If \p DisableMacroExpansion is true, tokens lexed from the token stream
   1077   /// will not be subject to further macro expansion. Otherwise, these tokens
   1078   /// will be re-macro-expanded when/if expansion is enabled.
   1079   ///
   1080   /// If \p OwnsTokens is false, this method assumes that the specified stream
   1081   /// of tokens has a permanent owner somewhere, so they do not need to be
   1082   /// copied. If it is true, it assumes the array of tokens is allocated with
   1083   /// \c new[] and the Preprocessor will delete[] it.
   1084 private:
   1085   void EnterTokenStream(const Token *Toks, unsigned NumToks,
   1086                         bool DisableMacroExpansion, bool OwnsTokens);
   1087 
   1088 public:
   1089   void EnterTokenStream(std::unique_ptr<Token[]> Toks, unsigned NumToks,
   1090                         bool DisableMacroExpansion) {
   1091     EnterTokenStream(Toks.release(), NumToks, DisableMacroExpansion, true);
   1092   }
   1093   void EnterTokenStream(ArrayRef<Token> Toks, bool DisableMacroExpansion) {
   1094     EnterTokenStream(Toks.data(), Toks.size(), DisableMacroExpansion, false);
   1095   }
   1096 
   1097   /// \brief Pop the current lexer/macro exp off the top of the lexer stack.
   1098   ///
   1099   /// This should only be used in situations where the current state of the
   1100   /// top-of-stack lexer is known.
   1101   void RemoveTopOfLexerStack();
   1102 
   1103   /// From the point that this method is called, and until
   1104   /// CommitBacktrackedTokens() or Backtrack() is called, the Preprocessor
   1105   /// keeps track of the lexed tokens so that a subsequent Backtrack() call will
   1106   /// make the Preprocessor re-lex the same tokens.
   1107   ///
   1108   /// Nested backtracks are allowed, meaning that EnableBacktrackAtThisPos can
   1109   /// be called multiple times and CommitBacktrackedTokens/Backtrack calls will
   1110   /// be combined with the EnableBacktrackAtThisPos calls in reverse order.
   1111   ///
   1112   /// NOTE: *DO NOT* forget to call either CommitBacktrackedTokens or Backtrack
   1113   /// at some point after EnableBacktrackAtThisPos. If you don't, caching of
   1114   /// tokens will continue indefinitely.
   1115   ///
   1116   void EnableBacktrackAtThisPos();
   1117 
   1118   /// \brief Disable the last EnableBacktrackAtThisPos call.
   1119   void CommitBacktrackedTokens();
   1120 
   1121   struct CachedTokensRange {
   1122     CachedTokensTy::size_type Begin, End;
   1123   };
   1124 
   1125 private:
   1126   /// \brief A range of cached tokens that should be erased after lexing
   1127   /// when backtracking requires the erasure of such cached tokens.
   1128   Optional<CachedTokensRange> CachedTokenRangeToErase;
   1129 
   1130 public:
   1131   /// \brief Returns the range of cached tokens that were lexed since
   1132   /// EnableBacktrackAtThisPos() was previously called.
   1133   CachedTokensRange LastCachedTokenRange();
   1134 
   1135   /// \brief Erase the range of cached tokens that were lexed since
   1136   /// EnableBacktrackAtThisPos() was previously called.
   1137   void EraseCachedTokens(CachedTokensRange TokenRange);
   1138 
   1139   /// \brief Make Preprocessor re-lex the tokens that were lexed since
   1140   /// EnableBacktrackAtThisPos() was previously called.
   1141   void Backtrack();
   1142 
   1143   /// \brief True if EnableBacktrackAtThisPos() was called and
   1144   /// caching of tokens is on.
   1145   bool isBacktrackEnabled() const { return !BacktrackPositions.empty(); }
   1146 
   1147   /// \brief Lex the next token for this preprocessor.
   1148   void Lex(Token &Result);
   1149 
   1150   void LexAfterModuleImport(Token &Result);
   1151 
   1152   void makeModuleVisible(Module *M, SourceLocation Loc);
   1153 
   1154   SourceLocation getModuleImportLoc(Module *M) const {
   1155     return CurSubmoduleState->VisibleModules.getImportLoc(M);
   1156   }
   1157 
   1158   /// \brief Lex a string literal, which may be the concatenation of multiple
   1159   /// string literals and may even come from macro expansion.
   1160   /// \returns true on success, false if a error diagnostic has been generated.
   1161   bool LexStringLiteral(Token &Result, std::string &String,
   1162                         const char *DiagnosticTag, bool AllowMacroExpansion) {
   1163     if (AllowMacroExpansion)
   1164       Lex(Result);
   1165     else
   1166       LexUnexpandedToken(Result);
   1167     return FinishLexStringLiteral(Result, String, DiagnosticTag,
   1168                                   AllowMacroExpansion);
   1169   }
   1170 
   1171   /// \brief Complete the lexing of a string literal where the first token has
   1172   /// already been lexed (see LexStringLiteral).
   1173   bool FinishLexStringLiteral(Token &Result, std::string &String,
   1174                               const char *DiagnosticTag,
   1175                               bool AllowMacroExpansion);
   1176 
   1177   /// \brief Lex a token.  If it's a comment, keep lexing until we get
   1178   /// something not a comment.
   1179   ///
   1180   /// This is useful in -E -C mode where comments would foul up preprocessor
   1181   /// directive handling.
   1182   void LexNonComment(Token &Result) {
   1183     do
   1184       Lex(Result);
   1185     while (Result.getKind() == tok::comment);
   1186   }
   1187 
   1188   /// \brief Just like Lex, but disables macro expansion of identifier tokens.
   1189   void LexUnexpandedToken(Token &Result) {
   1190     // Disable macro expansion.
   1191     bool OldVal = DisableMacroExpansion;
   1192     DisableMacroExpansion = true;
   1193     // Lex the token.
   1194     Lex(Result);
   1195 
   1196     // Reenable it.
   1197     DisableMacroExpansion = OldVal;
   1198   }
   1199 
   1200   /// \brief Like LexNonComment, but this disables macro expansion of
   1201   /// identifier tokens.
   1202   void LexUnexpandedNonComment(Token &Result) {
   1203     do
   1204       LexUnexpandedToken(Result);
   1205     while (Result.getKind() == tok::comment);
   1206   }
   1207 
   1208   /// \brief Parses a simple integer literal to get its numeric value.  Floating
   1209   /// point literals and user defined literals are rejected.  Used primarily to
   1210   /// handle pragmas that accept integer arguments.
   1211   bool parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value);
   1212 
   1213   /// Disables macro expansion everywhere except for preprocessor directives.
   1214   void SetMacroExpansionOnlyInDirectives() {
   1215     DisableMacroExpansion = true;
   1216     MacroExpansionInDirectivesOverride = true;
   1217   }
   1218 
   1219   /// \brief Peeks ahead N tokens and returns that token without consuming any
   1220   /// tokens.
   1221   ///
   1222   /// LookAhead(0) returns the next token that would be returned by Lex(),
   1223   /// LookAhead(1) returns the token after it, etc.  This returns normal
   1224   /// tokens after phase 5.  As such, it is equivalent to using
   1225   /// 'Lex', not 'LexUnexpandedToken'.
   1226   const Token &LookAhead(unsigned N) {
   1227     if (CachedLexPos + N < CachedTokens.size())
   1228       return CachedTokens[CachedLexPos+N];
   1229     else
   1230       return PeekAhead(N+1);
   1231   }
   1232 
   1233   /// \brief When backtracking is enabled and tokens are cached,
   1234   /// this allows to revert a specific number of tokens.
   1235   ///
   1236   /// Note that the number of tokens being reverted should be up to the last
   1237   /// backtrack position, not more.
   1238   void RevertCachedTokens(unsigned N) {
   1239     assert(isBacktrackEnabled() &&
   1240            "Should only be called when tokens are cached for backtracking");
   1241     assert(signed(CachedLexPos) - signed(N) >= signed(BacktrackPositions.back())
   1242          && "Should revert tokens up to the last backtrack position, not more");
   1243     assert(signed(CachedLexPos) - signed(N) >= 0 &&
   1244            "Corrupted backtrack positions ?");
   1245     CachedLexPos -= N;
   1246   }
   1247 
   1248   /// \brief Enters a token in the token stream to be lexed next.
   1249   ///
   1250   /// If BackTrack() is called afterwards, the token will remain at the
   1251   /// insertion point.
   1252   void EnterToken(const Token &Tok) {
   1253     EnterCachingLexMode();
   1254     CachedTokens.insert(CachedTokens.begin()+CachedLexPos, Tok);
   1255   }
   1256 
   1257   /// We notify the Preprocessor that if it is caching tokens (because
   1258   /// backtrack is enabled) it should replace the most recent cached tokens
   1259   /// with the given annotation token. This function has no effect if
   1260   /// backtracking is not enabled.
   1261   ///
   1262   /// Note that the use of this function is just for optimization, so that the
   1263   /// cached tokens doesn't get re-parsed and re-resolved after a backtrack is
   1264   /// invoked.
   1265   void AnnotateCachedTokens(const Token &Tok) {
   1266     assert(Tok.isAnnotation() && "Expected annotation token");
   1267     if (CachedLexPos != 0 && isBacktrackEnabled())
   1268       AnnotatePreviousCachedTokens(Tok);
   1269   }
   1270 
   1271   /// Get the location of the last cached token, suitable for setting the end
   1272   /// location of an annotation token.
   1273   SourceLocation getLastCachedTokenLocation() const {
   1274     assert(CachedLexPos != 0);
   1275     return CachedTokens[CachedLexPos-1].getLastLoc();
   1276   }
   1277 
   1278   /// \brief Whether \p Tok is the most recent token (`CachedLexPos - 1`) in
   1279   /// CachedTokens.
   1280   bool IsPreviousCachedToken(const Token &Tok) const;
   1281 
   1282   /// \brief Replace token in `CachedLexPos - 1` in CachedTokens by the tokens
   1283   /// in \p NewToks.
   1284   ///
   1285   /// Useful when a token needs to be split in smaller ones and CachedTokens
   1286   /// most recent token must to be updated to reflect that.
   1287   void ReplacePreviousCachedToken(ArrayRef<Token> NewToks);
   1288 
   1289   /// \brief Replace the last token with an annotation token.
   1290   ///
   1291   /// Like AnnotateCachedTokens(), this routine replaces an
   1292   /// already-parsed (and resolved) token with an annotation
   1293   /// token. However, this routine only replaces the last token with
   1294   /// the annotation token; it does not affect any other cached
   1295   /// tokens. This function has no effect if backtracking is not
   1296   /// enabled.
   1297   void ReplaceLastTokenWithAnnotation(const Token &Tok) {
   1298     assert(Tok.isAnnotation() && "Expected annotation token");
   1299     if (CachedLexPos != 0 && isBacktrackEnabled())
   1300       CachedTokens[CachedLexPos-1] = Tok;
   1301   }
   1302 
   1303   /// Enter an annotation token into the token stream.
   1304   void EnterAnnotationToken(SourceRange Range, tok::TokenKind Kind,
   1305                             void *AnnotationVal);
   1306 
   1307   /// Update the current token to represent the provided
   1308   /// identifier, in order to cache an action performed by typo correction.
   1309   void TypoCorrectToken(const Token &Tok) {
   1310     assert(Tok.getIdentifierInfo() && "Expected identifier token");
   1311     if (CachedLexPos != 0 && isBacktrackEnabled())
   1312       CachedTokens[CachedLexPos-1] = Tok;
   1313   }
   1314 
   1315   /// \brief Recompute the current lexer kind based on the CurLexer/CurPTHLexer/
   1316   /// CurTokenLexer pointers.
   1317   void recomputeCurLexerKind();
   1318 
   1319   /// \brief Returns true if incremental processing is enabled
   1320   bool isIncrementalProcessingEnabled() const { return IncrementalProcessing; }
   1321 
   1322   /// \brief Enables the incremental processing
   1323   void enableIncrementalProcessing(bool value = true) {
   1324     IncrementalProcessing = value;
   1325   }
   1326 
   1327   /// \brief Specify the point at which code-completion will be performed.
   1328   ///
   1329   /// \param File the file in which code completion should occur. If
   1330   /// this file is included multiple times, code-completion will
   1331   /// perform completion the first time it is included. If NULL, this
   1332   /// function clears out the code-completion point.
   1333   ///
   1334   /// \param Line the line at which code completion should occur
   1335   /// (1-based).
   1336   ///
   1337   /// \param Column the column at which code completion should occur
   1338   /// (1-based).
   1339   ///
   1340   /// \returns true if an error occurred, false otherwise.
   1341   bool SetCodeCompletionPoint(const FileEntry *File,
   1342                               unsigned Line, unsigned Column);
   1343 
   1344   /// \brief Determine if we are performing code completion.
   1345   bool isCodeCompletionEnabled() const { return CodeCompletionFile != nullptr; }
   1346 
   1347   /// \brief Returns the location of the code-completion point.
   1348   ///
   1349   /// Returns an invalid location if code-completion is not enabled or the file
   1350   /// containing the code-completion point has not been lexed yet.
   1351   SourceLocation getCodeCompletionLoc() const { return CodeCompletionLoc; }
   1352 
   1353   /// \brief Returns the start location of the file of code-completion point.
   1354   ///
   1355   /// Returns an invalid location if code-completion is not enabled or the file
   1356   /// containing the code-completion point has not been lexed yet.
   1357   SourceLocation getCodeCompletionFileLoc() const {
   1358     return CodeCompletionFileLoc;
   1359   }
   1360 
   1361   /// \brief Returns true if code-completion is enabled and we have hit the
   1362   /// code-completion point.
   1363   bool isCodeCompletionReached() const { return CodeCompletionReached; }
   1364 
   1365   /// \brief Note that we hit the code-completion point.
   1366   void setCodeCompletionReached() {
   1367     assert(isCodeCompletionEnabled() && "Code-completion not enabled!");
   1368     CodeCompletionReached = true;
   1369     // Silence any diagnostics that occur after we hit the code-completion.
   1370     getDiagnostics().setSuppressAllDiagnostics(true);
   1371   }
   1372 
   1373   /// \brief The location of the currently-active \#pragma clang
   1374   /// arc_cf_code_audited begin.
   1375   ///
   1376   /// Returns an invalid location if there is no such pragma active.
   1377   SourceLocation getPragmaARCCFCodeAuditedLoc() const {
   1378     return PragmaARCCFCodeAuditedLoc;
   1379   }
   1380 
   1381   /// \brief Set the location of the currently-active \#pragma clang
   1382   /// arc_cf_code_audited begin.  An invalid location ends the pragma.
   1383   void setPragmaARCCFCodeAuditedLoc(SourceLocation Loc) {
   1384     PragmaARCCFCodeAuditedLoc = Loc;
   1385   }
   1386 
   1387   /// \brief The location of the currently-active \#pragma clang
   1388   /// assume_nonnull begin.
   1389   ///
   1390   /// Returns an invalid location if there is no such pragma active.
   1391   SourceLocation getPragmaAssumeNonNullLoc() const {
   1392     return PragmaAssumeNonNullLoc;
   1393   }
   1394 
   1395   /// \brief Set the location of the currently-active \#pragma clang
   1396   /// assume_nonnull begin.  An invalid location ends the pragma.
   1397   void setPragmaAssumeNonNullLoc(SourceLocation Loc) {
   1398     PragmaAssumeNonNullLoc = Loc;
   1399   }
   1400 
   1401   /// \brief Set the directory in which the main file should be considered
   1402   /// to have been found, if it is not a real file.
   1403   void setMainFileDir(const DirectoryEntry *Dir) {
   1404     MainFileDir = Dir;
   1405   }
   1406 
   1407   /// \brief Instruct the preprocessor to skip part of the main source file.
   1408   ///
   1409   /// \param Bytes The number of bytes in the preamble to skip.
   1410   ///
   1411   /// \param StartOfLine Whether skipping these bytes puts the lexer at the
   1412   /// start of a line.
   1413   void setSkipMainFilePreamble(unsigned Bytes, bool StartOfLine) {
   1414     SkipMainFilePreamble.first = Bytes;
   1415     SkipMainFilePreamble.second = StartOfLine;
   1416   }
   1417 
   1418   /// Forwarding function for diagnostics.  This emits a diagnostic at
   1419   /// the specified Token's location, translating the token's start
   1420   /// position in the current buffer into a SourcePosition object for rendering.
   1421   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) const {
   1422     return Diags->Report(Loc, DiagID);
   1423   }
   1424 
   1425   DiagnosticBuilder Diag(const Token &Tok, unsigned DiagID) const {
   1426     return Diags->Report(Tok.getLocation(), DiagID);
   1427   }
   1428 
   1429   /// Return the 'spelling' of the token at the given
   1430   /// location; does not go up to the spelling location or down to the
   1431   /// expansion location.
   1432   ///
   1433   /// \param buffer A buffer which will be used only if the token requires
   1434   ///   "cleaning", e.g. if it contains trigraphs or escaped newlines
   1435   /// \param invalid If non-null, will be set \c true if an error occurs.
   1436   StringRef getSpelling(SourceLocation loc,
   1437                         SmallVectorImpl<char> &buffer,
   1438                         bool *invalid = nullptr) const {
   1439     return Lexer::getSpelling(loc, buffer, SourceMgr, LangOpts, invalid);
   1440   }
   1441 
   1442   /// \brief Return the 'spelling' of the Tok token.
   1443   ///
   1444   /// The spelling of a token is the characters used to represent the token in
   1445   /// the source file after trigraph expansion and escaped-newline folding.  In
   1446   /// particular, this wants to get the true, uncanonicalized, spelling of
   1447   /// things like digraphs, UCNs, etc.
   1448   ///
   1449   /// \param Invalid If non-null, will be set \c true if an error occurs.
   1450   std::string getSpelling(const Token &Tok, bool *Invalid = nullptr) const {
   1451     return Lexer::getSpelling(Tok, SourceMgr, LangOpts, Invalid);
   1452   }
   1453 
   1454   /// \brief Get the spelling of a token into a preallocated buffer, instead
   1455   /// of as an std::string.
   1456   ///
   1457   /// The caller is required to allocate enough space for the token, which is
   1458   /// guaranteed to be at least Tok.getLength() bytes long. The length of the
   1459   /// actual result is returned.
   1460   ///
   1461   /// Note that this method may do two possible things: it may either fill in
   1462   /// the buffer specified with characters, or it may *change the input pointer*
   1463   /// to point to a constant buffer with the data already in it (avoiding a
   1464   /// copy).  The caller is not allowed to modify the returned buffer pointer
   1465   /// if an internal buffer is returned.
   1466   unsigned getSpelling(const Token &Tok, const char *&Buffer,
   1467                        bool *Invalid = nullptr) const {
   1468     return Lexer::getSpelling(Tok, Buffer, SourceMgr, LangOpts, Invalid);
   1469   }
   1470 
   1471   /// \brief Get the spelling of a token into a SmallVector.
   1472   ///
   1473   /// Note that the returned StringRef may not point to the
   1474   /// supplied buffer if a copy can be avoided.
   1475   StringRef getSpelling(const Token &Tok,
   1476                         SmallVectorImpl<char> &Buffer,
   1477                         bool *Invalid = nullptr) const;
   1478 
   1479   /// \brief Relex the token at the specified location.
   1480   /// \returns true if there was a failure, false on success.
   1481   bool getRawToken(SourceLocation Loc, Token &Result,
   1482                    bool IgnoreWhiteSpace = false) {
   1483     return Lexer::getRawToken(Loc, Result, SourceMgr, LangOpts, IgnoreWhiteSpace);
   1484   }
   1485 
   1486   /// \brief Given a Token \p Tok that is a numeric constant with length 1,
   1487   /// return the character.
   1488   char
   1489   getSpellingOfSingleCharacterNumericConstant(const Token &Tok,
   1490                                               bool *Invalid = nullptr) const {
   1491     assert(Tok.is(tok::numeric_constant) &&
   1492            Tok.getLength() == 1 && "Called on unsupported token");
   1493     assert(!Tok.needsCleaning() && "Token can't need cleaning with length 1");
   1494 
   1495     // If the token is carrying a literal data pointer, just use it.
   1496     if (const char *D = Tok.getLiteralData())
   1497       return *D;
   1498 
   1499     // Otherwise, fall back on getCharacterData, which is slower, but always
   1500     // works.
   1501     return *SourceMgr.getCharacterData(Tok.getLocation(), Invalid);
   1502   }
   1503 
   1504   /// \brief Retrieve the name of the immediate macro expansion.
   1505   ///
   1506   /// This routine starts from a source location, and finds the name of the
   1507   /// macro responsible for its immediate expansion. It looks through any
   1508   /// intervening macro argument expansions to compute this. It returns a
   1509   /// StringRef that refers to the SourceManager-owned buffer of the source
   1510   /// where that macro name is spelled. Thus, the result shouldn't out-live
   1511   /// the SourceManager.
   1512   StringRef getImmediateMacroName(SourceLocation Loc) {
   1513     return Lexer::getImmediateMacroName(Loc, SourceMgr, getLangOpts());
   1514   }
   1515 
   1516   /// \brief Plop the specified string into a scratch buffer and set the
   1517   /// specified token's location and length to it.
   1518   ///
   1519   /// If specified, the source location provides a location of the expansion
   1520   /// point of the token.
   1521   void CreateString(StringRef Str, Token &Tok,
   1522                     SourceLocation ExpansionLocStart = SourceLocation(),
   1523                     SourceLocation ExpansionLocEnd = SourceLocation());
   1524 
   1525   /// \brief Computes the source location just past the end of the
   1526   /// token at this source location.
   1527   ///
   1528   /// This routine can be used to produce a source location that
   1529   /// points just past the end of the token referenced by \p Loc, and
   1530   /// is generally used when a diagnostic needs to point just after a
   1531   /// token where it expected something different that it received. If
   1532   /// the returned source location would not be meaningful (e.g., if
   1533   /// it points into a macro), this routine returns an invalid
   1534   /// source location.
   1535   ///
   1536   /// \param Offset an offset from the end of the token, where the source
   1537   /// location should refer to. The default offset (0) produces a source
   1538   /// location pointing just past the end of the token; an offset of 1 produces
   1539   /// a source location pointing to the last character in the token, etc.
   1540   SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0) {
   1541     return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts);
   1542   }
   1543 
   1544   /// \brief Returns true if the given MacroID location points at the first
   1545   /// token of the macro expansion.
   1546   ///
   1547   /// \param MacroBegin If non-null and function returns true, it is set to
   1548   /// begin location of the macro.
   1549   bool isAtStartOfMacroExpansion(SourceLocation loc,
   1550                                  SourceLocation *MacroBegin = nullptr) const {
   1551     return Lexer::isAtStartOfMacroExpansion(loc, SourceMgr, LangOpts,
   1552                                             MacroBegin);
   1553   }
   1554 
   1555   /// \brief Returns true if the given MacroID location points at the last
   1556   /// token of the macro expansion.
   1557   ///
   1558   /// \param MacroEnd If non-null and function returns true, it is set to
   1559   /// end location of the macro.
   1560   bool isAtEndOfMacroExpansion(SourceLocation loc,
   1561                                SourceLocation *MacroEnd = nullptr) const {
   1562     return Lexer::isAtEndOfMacroExpansion(loc, SourceMgr, LangOpts, MacroEnd);
   1563   }
   1564 
   1565   /// \brief Print the token to stderr, used for debugging.
   1566   void DumpToken(const Token &Tok, bool DumpFlags = false) const;
   1567   void DumpLocation(SourceLocation Loc) const;
   1568   void DumpMacro(const MacroInfo &MI) const;
   1569   void dumpMacroInfo(const IdentifierInfo *II);
   1570 
   1571   /// \brief Given a location that specifies the start of a
   1572   /// token, return a new location that specifies a character within the token.
   1573   SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart,
   1574                                          unsigned Char) const {
   1575     return Lexer::AdvanceToTokenCharacter(TokStart, Char, SourceMgr, LangOpts);
   1576   }
   1577 
   1578   /// \brief Increment the counters for the number of token paste operations
   1579   /// performed.
   1580   ///
   1581   /// If fast was specified, this is a 'fast paste' case we handled.
   1582   void IncrementPasteCounter(bool isFast) {
   1583     if (isFast)
   1584       ++NumFastTokenPaste;
   1585     else
   1586       ++NumTokenPaste;
   1587   }
   1588 
   1589   void PrintStats();
   1590 
   1591   size_t getTotalMemory() const;
   1592 
   1593   /// When the macro expander pastes together a comment (/##/) in Microsoft
   1594   /// mode, this method handles updating the current state, returning the
   1595   /// token on the next source line.
   1596   void HandleMicrosoftCommentPaste(Token &Tok);
   1597 
   1598   //===--------------------------------------------------------------------===//
   1599   // Preprocessor callback methods.  These are invoked by a lexer as various
   1600   // directives and events are found.
   1601 
   1602   /// Given a tok::raw_identifier token, look up the
   1603   /// identifier information for the token and install it into the token,
   1604   /// updating the token kind accordingly.
   1605   IdentifierInfo *LookUpIdentifierInfo(Token &Identifier) const;
   1606 
   1607 private:
   1608   llvm::DenseMap<IdentifierInfo*,unsigned> PoisonReasons;
   1609 
   1610 public:
   1611 
   1612   /// \brief Specifies the reason for poisoning an identifier.
   1613   ///
   1614   /// If that identifier is accessed while poisoned, then this reason will be
   1615   /// used instead of the default "poisoned" diagnostic.
   1616   void SetPoisonReason(IdentifierInfo *II, unsigned DiagID);
   1617 
   1618   /// \brief Display reason for poisoned identifier.
   1619   void HandlePoisonedIdentifier(Token & Tok);
   1620 
   1621   void MaybeHandlePoisonedIdentifier(Token & Identifier) {
   1622     if(IdentifierInfo * II = Identifier.getIdentifierInfo()) {
   1623       if(II->isPoisoned()) {
   1624         HandlePoisonedIdentifier(Identifier);
   1625       }
   1626     }
   1627   }
   1628 
   1629 private:
   1630   /// Identifiers used for SEH handling in Borland. These are only
   1631   /// allowed in particular circumstances
   1632   // __except block
   1633   IdentifierInfo *Ident__exception_code,
   1634                  *Ident___exception_code,
   1635                  *Ident_GetExceptionCode;
   1636   // __except filter expression
   1637   IdentifierInfo *Ident__exception_info,
   1638                  *Ident___exception_info,
   1639                  *Ident_GetExceptionInfo;
   1640   // __finally
   1641   IdentifierInfo *Ident__abnormal_termination,
   1642                  *Ident___abnormal_termination,
   1643                  *Ident_AbnormalTermination;
   1644 
   1645   const char *getCurLexerEndPos();
   1646   void diagnoseMissingHeaderInUmbrellaDir(const Module &Mod);
   1647 
   1648 public:
   1649   void PoisonSEHIdentifiers(bool Poison = true); // Borland
   1650 
   1651   /// \brief Callback invoked when the lexer reads an identifier and has
   1652   /// filled in the tokens IdentifierInfo member.
   1653   ///
   1654   /// This callback potentially macro expands it or turns it into a named
   1655   /// token (like 'for').
   1656   ///
   1657   /// \returns true if we actually computed a token, false if we need to
   1658   /// lex again.
   1659   bool HandleIdentifier(Token &Identifier);
   1660 
   1661 
   1662   /// \brief Callback invoked when the lexer hits the end of the current file.
   1663   ///
   1664   /// This either returns the EOF token and returns true, or
   1665   /// pops a level off the include stack and returns false, at which point the
   1666   /// client should call lex again.
   1667   bool HandleEndOfFile(Token &Result, bool isEndOfMacro = false);
   1668 
   1669   /// \brief Callback invoked when the current TokenLexer hits the end of its
   1670   /// token stream.
   1671   bool HandleEndOfTokenLexer(Token &Result);
   1672 
   1673   /// \brief Callback invoked when the lexer sees a # token at the start of a
   1674   /// line.
   1675   ///
   1676   /// This consumes the directive, modifies the lexer/preprocessor state, and
   1677   /// advances the lexer(s) so that the next token read is the correct one.
   1678   void HandleDirective(Token &Result);
   1679 
   1680   /// \brief Ensure that the next token is a tok::eod token.
   1681   ///
   1682   /// If not, emit a diagnostic and consume up until the eod.
   1683   /// If \p EnableMacros is true, then we consider macros that expand to zero
   1684   /// tokens as being ok.
   1685   void CheckEndOfDirective(const char *Directive, bool EnableMacros = false);
   1686 
   1687   /// \brief Read and discard all tokens remaining on the current line until
   1688   /// the tok::eod token is found.
   1689   void DiscardUntilEndOfDirective();
   1690 
   1691   /// \brief Returns true if the preprocessor has seen a use of
   1692   /// __DATE__ or __TIME__ in the file so far.
   1693   bool SawDateOrTime() const {
   1694     return DATELoc != SourceLocation() || TIMELoc != SourceLocation();
   1695   }
   1696   unsigned getCounterValue() const { return CounterValue; }
   1697   void setCounterValue(unsigned V) { CounterValue = V; }
   1698 
   1699   /// \brief Retrieves the module that we're currently building, if any.
   1700   Module *getCurrentModule();
   1701 
   1702   /// \brief Allocate a new MacroInfo object with the provided SourceLocation.
   1703   MacroInfo *AllocateMacroInfo(SourceLocation L);
   1704 
   1705   /// \brief Turn the specified lexer token into a fully checked and spelled
   1706   /// filename, e.g. as an operand of \#include.
   1707   ///
   1708   /// The caller is expected to provide a buffer that is large enough to hold
   1709   /// the spelling of the filename, but is also expected to handle the case
   1710   /// when this method decides to use a different buffer.
   1711   ///
   1712   /// \returns true if the input filename was in <>'s or false if it was
   1713   /// in ""'s.
   1714   bool GetIncludeFilenameSpelling(SourceLocation Loc,StringRef &Filename);
   1715 
   1716   /// \brief Given a "foo" or \<foo> reference, look up the indicated file.
   1717   ///
   1718   /// Returns null on failure.  \p isAngled indicates whether the file
   1719   /// reference is for system \#include's or not (i.e. using <> instead of "").
   1720   const FileEntry *LookupFile(SourceLocation FilenameLoc, StringRef Filename,
   1721                               bool isAngled, const DirectoryLookup *FromDir,
   1722                               const FileEntry *FromFile,
   1723                               const DirectoryLookup *&CurDir,
   1724                               SmallVectorImpl<char> *SearchPath,
   1725                               SmallVectorImpl<char> *RelativePath,
   1726                               ModuleMap::KnownHeader *SuggestedModule,
   1727                               bool *IsMapped, bool SkipCache = false);
   1728 
   1729   /// \brief Get the DirectoryLookup structure used to find the current
   1730   /// FileEntry, if CurLexer is non-null and if applicable.
   1731   ///
   1732   /// This allows us to implement \#include_next and find directory-specific
   1733   /// properties.
   1734   const DirectoryLookup *GetCurDirLookup() { return CurDirLookup; }
   1735 
   1736   /// \brief Return true if we're in the top-level file, not in a \#include.
   1737   bool isInPrimaryFile() const;
   1738 
   1739   /// \brief Handle cases where the \#include name is expanded
   1740   /// from a macro as multiple tokens, which need to be glued together.
   1741   ///
   1742   /// This occurs for code like:
   1743   /// \code
   1744   ///    \#define FOO <x/y.h>
   1745   ///    \#include FOO
   1746   /// \endcode
   1747   /// because in this case, "<x/y.h>" is returned as 7 tokens, not one.
   1748   ///
   1749   /// This code concatenates and consumes tokens up to the '>' token.  It
   1750   /// returns false if the > was found, otherwise it returns true if it finds
   1751   /// and consumes the EOD marker.
   1752   bool ConcatenateIncludeName(SmallString<128> &FilenameBuffer,
   1753                               SourceLocation &End);
   1754 
   1755   /// \brief Lex an on-off-switch (C99 6.10.6p2) and verify that it is
   1756   /// followed by EOD.  Return true if the token is not a valid on-off-switch.
   1757   bool LexOnOffSwitch(tok::OnOffSwitch &OOS);
   1758 
   1759   bool CheckMacroName(Token &MacroNameTok, MacroUse isDefineUndef,
   1760                       bool *ShadowFlag = nullptr);
   1761 
   1762   void EnterSubmodule(Module *M, SourceLocation ImportLoc, bool ForPragma);
   1763   Module *LeaveSubmodule(bool ForPragma);
   1764 
   1765 private:
   1766   void PushIncludeMacroStack() {
   1767     assert(CurLexerKind != CLK_CachingLexer && "cannot push a caching lexer");
   1768     IncludeMacroStack.emplace_back(CurLexerKind, CurLexerSubmodule,
   1769                                    std::move(CurLexer), std::move(CurPTHLexer),
   1770                                    CurPPLexer, std::move(CurTokenLexer),
   1771                                    CurDirLookup);
   1772     CurPPLexer = nullptr;
   1773   }
   1774 
   1775   void PopIncludeMacroStack() {
   1776     CurLexer = std::move(IncludeMacroStack.back().TheLexer);
   1777     CurPTHLexer = std::move(IncludeMacroStack.back().ThePTHLexer);
   1778     CurPPLexer = IncludeMacroStack.back().ThePPLexer;
   1779     CurTokenLexer = std::move(IncludeMacroStack.back().TheTokenLexer);
   1780     CurDirLookup  = IncludeMacroStack.back().TheDirLookup;
   1781     CurLexerSubmodule = IncludeMacroStack.back().TheSubmodule;
   1782     CurLexerKind = IncludeMacroStack.back().CurLexerKind;
   1783     IncludeMacroStack.pop_back();
   1784   }
   1785 
   1786   void PropagateLineStartLeadingSpaceInfo(Token &Result);
   1787 
   1788   /// Determine whether we need to create module macros for #defines in the
   1789   /// current context.
   1790   bool needModuleMacros() const;
   1791 
   1792   /// Update the set of active module macros and ambiguity flag for a module
   1793   /// macro name.
   1794   void updateModuleMacroInfo(const IdentifierInfo *II, ModuleMacroInfo &Info);
   1795 
   1796   DefMacroDirective *AllocateDefMacroDirective(MacroInfo *MI,
   1797                                                SourceLocation Loc);
   1798   UndefMacroDirective *AllocateUndefMacroDirective(SourceLocation UndefLoc);
   1799   VisibilityMacroDirective *AllocateVisibilityMacroDirective(SourceLocation Loc,
   1800                                                              bool isPublic);
   1801 
   1802   /// \brief Lex and validate a macro name, which occurs after a
   1803   /// \#define or \#undef.
   1804   ///
   1805   /// \param MacroNameTok Token that represents the name defined or undefined.
   1806   /// \param IsDefineUndef Kind if preprocessor directive.
   1807   /// \param ShadowFlag Points to flag that is set if macro name shadows
   1808   ///                   a keyword.
   1809   ///
   1810   /// This emits a diagnostic, sets the token kind to eod,
   1811   /// and discards the rest of the macro line if the macro name is invalid.
   1812   void ReadMacroName(Token &MacroNameTok, MacroUse IsDefineUndef = MU_Other,
   1813                      bool *ShadowFlag = nullptr);
   1814 
   1815   /// ReadOptionalMacroParameterListAndBody - This consumes all (i.e. the
   1816   /// entire line) of the macro's tokens and adds them to MacroInfo, and while
   1817   /// doing so performs certain validity checks including (but not limited to):
   1818   ///   - # (stringization) is followed by a macro parameter
   1819   /// \param MacroNameTok - Token that represents the macro name
   1820   /// \param ImmediatelyAfterHeaderGuard - Macro follows an #ifdef header guard
   1821   ///
   1822   ///  Either returns a pointer to a MacroInfo object OR emits a diagnostic and
   1823   ///  returns a nullptr if an invalid sequence of tokens is encountered.
   1824 
   1825   MacroInfo *ReadOptionalMacroParameterListAndBody(
   1826       const Token &MacroNameTok, bool ImmediatelyAfterHeaderGuard);
   1827 
   1828   /// The ( starting an argument list of a macro definition has just been read.
   1829   /// Lex the rest of the parameters and the closing ), updating \p MI with
   1830   /// what we learn and saving in \p LastTok the last token read.
   1831   /// Return true if an error occurs parsing the arg list.
   1832   bool ReadMacroParameterList(MacroInfo *MI, Token& LastTok);
   1833 
   1834   /// We just read a \#if or related directive and decided that the
   1835   /// subsequent tokens are in the \#if'd out portion of the
   1836   /// file.  Lex the rest of the file, until we see an \#endif.  If \p
   1837   /// FoundNonSkipPortion is true, then we have already emitted code for part of
   1838   /// this \#if directive, so \#else/\#elif blocks should never be entered. If
   1839   /// \p FoundElse is false, then \#else directives are ok, if not, then we have
   1840   /// already seen one so a \#else directive is a duplicate.  When this returns,
   1841   /// the caller can lex the first valid token.
   1842   void SkipExcludedConditionalBlock(const Token &HashToken,
   1843                                     SourceLocation IfTokenLoc,
   1844                                     bool FoundNonSkipPortion, bool FoundElse,
   1845                                     SourceLocation ElseLoc = SourceLocation());
   1846 
   1847   /// \brief A fast PTH version of SkipExcludedConditionalBlock.
   1848   void PTHSkipExcludedConditionalBlock();
   1849 
   1850   /// Information about the result for evaluating an expression for a
   1851   /// preprocessor directive.
   1852   struct DirectiveEvalResult {
   1853     /// Whether the expression was evaluated as true or not.
   1854     bool Conditional;
   1855     /// True if the expression contained identifiers that were undefined.
   1856     bool IncludedUndefinedIds;
   1857   };
   1858 
   1859   /// \brief Evaluate an integer constant expression that may occur after a
   1860   /// \#if or \#elif directive and return a \p DirectiveEvalResult object.
   1861   ///
   1862   /// If the expression is equivalent to "!defined(X)" return X in IfNDefMacro.
   1863   DirectiveEvalResult EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro);
   1864 
   1865   /// \brief Install the standard preprocessor pragmas:
   1866   /// \#pragma GCC poison/system_header/dependency and \#pragma once.
   1867   void RegisterBuiltinPragmas();
   1868 
   1869   /// \brief Register builtin macros such as __LINE__ with the identifier table.
   1870   void RegisterBuiltinMacros();
   1871 
   1872   /// If an identifier token is read that is to be expanded as a macro, handle
   1873   /// it and return the next token as 'Tok'.  If we lexed a token, return true;
   1874   /// otherwise the caller should lex again.
   1875   bool HandleMacroExpandedIdentifier(Token &Tok, const MacroDefinition &MD);
   1876 
   1877   /// \brief Cache macro expanded tokens for TokenLexers.
   1878   //
   1879   /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
   1880   /// going to lex in the cache and when it finishes the tokens are removed
   1881   /// from the end of the cache.
   1882   Token *cacheMacroExpandedTokens(TokenLexer *tokLexer,
   1883                                   ArrayRef<Token> tokens);
   1884   void removeCachedMacroExpandedTokensOfLastLexer();
   1885   friend void TokenLexer::ExpandFunctionArguments();
   1886 
   1887   /// Determine whether the next preprocessor token to be
   1888   /// lexed is a '('.  If so, consume the token and return true, if not, this
   1889   /// method should have no observable side-effect on the lexed tokens.
   1890   bool isNextPPTokenLParen();
   1891 
   1892   /// After reading "MACRO(", this method is invoked to read all of the formal
   1893   /// arguments specified for the macro invocation.  Returns null on error.
   1894   MacroArgs *ReadMacroCallArgumentList(Token &MacroName, MacroInfo *MI,
   1895                                        SourceLocation &ExpansionEnd);
   1896 
   1897   /// \brief If an identifier token is read that is to be expanded
   1898   /// as a builtin macro, handle it and return the next token as 'Tok'.
   1899   void ExpandBuiltinMacro(Token &Tok);
   1900 
   1901   /// \brief Read a \c _Pragma directive, slice it up, process it, then
   1902   /// return the first token after the directive.
   1903   /// This assumes that the \c _Pragma token has just been read into \p Tok.
   1904   void Handle_Pragma(Token &Tok);
   1905 
   1906   /// \brief Like Handle_Pragma except the pragma text is not enclosed within
   1907   /// a string literal.
   1908   void HandleMicrosoft__pragma(Token &Tok);
   1909 
   1910   /// \brief Add a lexer to the top of the include stack and
   1911   /// start lexing tokens from it instead of the current buffer.
   1912   void EnterSourceFileWithLexer(Lexer *TheLexer, const DirectoryLookup *Dir);
   1913 
   1914   /// \brief Add a lexer to the top of the include stack and
   1915   /// start getting tokens from it using the PTH cache.
   1916   void EnterSourceFileWithPTH(PTHLexer *PL, const DirectoryLookup *Dir);
   1917 
   1918   /// \brief Set the FileID for the preprocessor predefines.
   1919   void setPredefinesFileID(FileID FID) {
   1920     assert(PredefinesFileID.isInvalid() && "PredefinesFileID already set!");
   1921     PredefinesFileID = FID;
   1922   }
   1923 
   1924   /// \brief Returns true if we are lexing from a file and not a
   1925   /// pragma or a macro.
   1926   static bool IsFileLexer(const Lexer* L, const PreprocessorLexer* P) {
   1927     return L ? !L->isPragmaLexer() : P != nullptr;
   1928   }
   1929 
   1930   static bool IsFileLexer(const IncludeStackInfo& I) {
   1931     return IsFileLexer(I.TheLexer.get(), I.ThePPLexer);
   1932   }
   1933 
   1934   bool IsFileLexer() const {
   1935     return IsFileLexer(CurLexer.get(), CurPPLexer);
   1936   }
   1937 
   1938   //===--------------------------------------------------------------------===//
   1939   // Caching stuff.
   1940   void CachingLex(Token &Result);
   1941   bool InCachingLexMode() const {
   1942     // If the Lexer pointers are 0 and IncludeMacroStack is empty, it means
   1943     // that we are past EOF, not that we are in CachingLex mode.
   1944     return !CurPPLexer && !CurTokenLexer && !CurPTHLexer &&
   1945            !IncludeMacroStack.empty();
   1946   }
   1947   void EnterCachingLexMode();
   1948   void ExitCachingLexMode() {
   1949     if (InCachingLexMode())
   1950       RemoveTopOfLexerStack();
   1951   }
   1952   const Token &PeekAhead(unsigned N);
   1953   void AnnotatePreviousCachedTokens(const Token &Tok);
   1954 
   1955   //===--------------------------------------------------------------------===//
   1956   /// Handle*Directive - implement the various preprocessor directives.  These
   1957   /// should side-effect the current preprocessor object so that the next call
   1958   /// to Lex() will return the appropriate token next.
   1959   void HandleLineDirective();
   1960   void HandleDigitDirective(Token &Tok);
   1961   void HandleUserDiagnosticDirective(Token &Tok, bool isWarning);
   1962   void HandleIdentSCCSDirective(Token &Tok);
   1963   void HandleMacroPublicDirective(Token &Tok);
   1964   void HandleMacroPrivateDirective();
   1965 
   1966   // File inclusion.
   1967   void HandleIncludeDirective(SourceLocation HashLoc,
   1968                               Token &Tok,
   1969                               const DirectoryLookup *LookupFrom = nullptr,
   1970                               const FileEntry *LookupFromFile = nullptr,
   1971                               bool isImport = false);
   1972   void HandleIncludeNextDirective(SourceLocation HashLoc, Token &Tok);
   1973   void HandleIncludeMacrosDirective(SourceLocation HashLoc, Token &Tok);
   1974   void HandleImportDirective(SourceLocation HashLoc, Token &Tok);
   1975   void HandleMicrosoftImportDirective(Token &Tok);
   1976 
   1977 public:
   1978   /// Check that the given module is available, producing a diagnostic if not.
   1979   /// \return \c true if the check failed (because the module is not available).
   1980   ///         \c false if the module appears to be usable.
   1981   static bool checkModuleIsAvailable(const LangOptions &LangOpts,
   1982                                      const TargetInfo &TargetInfo,
   1983                                      DiagnosticsEngine &Diags, Module *M);
   1984 
   1985   // Module inclusion testing.
   1986   /// \brief Find the module that owns the source or header file that
   1987   /// \p Loc points to. If the location is in a file that was included
   1988   /// into a module, or is outside any module, returns nullptr.
   1989   Module *getModuleForLocation(SourceLocation Loc);
   1990 
   1991   /// \brief We want to produce a diagnostic at location IncLoc concerning a
   1992   /// missing module import.
   1993   ///
   1994   /// \param IncLoc The location at which the missing import was detected.
   1995   /// \param M The desired module.
   1996   /// \param MLoc A location within the desired module at which some desired
   1997   ///        effect occurred (eg, where a desired entity was declared).
   1998   ///
   1999   /// \return A file that can be #included to import a module containing MLoc.
   2000   ///         Null if no such file could be determined or if a #include is not
   2001   ///         appropriate.
   2002   const FileEntry *getModuleHeaderToIncludeForDiagnostics(SourceLocation IncLoc,
   2003                                                           Module *M,
   2004                                                           SourceLocation MLoc);
   2005 
   2006   bool isRecordingPreamble() const {
   2007     return PreambleConditionalStack.isRecording();
   2008   }
   2009 
   2010   bool hasRecordedPreamble() const {
   2011     return PreambleConditionalStack.hasRecordedPreamble();
   2012   }
   2013 
   2014   ArrayRef<PPConditionalInfo> getPreambleConditionalStack() const {
   2015       return PreambleConditionalStack.getStack();
   2016   }
   2017 
   2018   void setRecordedPreambleConditionalStack(ArrayRef<PPConditionalInfo> s) {
   2019     PreambleConditionalStack.setStack(s);
   2020   }
   2021 
   2022   void setReplayablePreambleConditionalStack(ArrayRef<PPConditionalInfo> s) {
   2023     PreambleConditionalStack.startReplaying();
   2024     PreambleConditionalStack.setStack(s);
   2025   }
   2026 
   2027 private:
   2028   /// \brief After processing predefined file, initialize the conditional stack from
   2029   /// the preamble.
   2030   void replayPreambleConditionalStack();
   2031 
   2032   // Macro handling.
   2033   void HandleDefineDirective(Token &Tok, bool ImmediatelyAfterTopLevelIfndef);
   2034   void HandleUndefDirective();
   2035 
   2036   // Conditional Inclusion.
   2037   void HandleIfdefDirective(Token &Tok, const Token &HashToken,
   2038                             bool isIfndef, bool ReadAnyTokensBeforeDirective);
   2039   void HandleIfDirective(Token &Tok, const Token &HashToken,
   2040                          bool ReadAnyTokensBeforeDirective);
   2041   void HandleEndifDirective(Token &Tok);
   2042   void HandleElseDirective(Token &Tok, const Token &HashToken);
   2043   void HandleElifDirective(Token &Tok, const Token &HashToken);
   2044 
   2045   // Pragmas.
   2046   void HandlePragmaDirective(SourceLocation IntroducerLoc,
   2047                              PragmaIntroducerKind Introducer);
   2048 public:
   2049   void HandlePragmaOnce(Token &OnceTok);
   2050   void HandlePragmaMark();
   2051   void HandlePragmaPoison();
   2052   void HandlePragmaSystemHeader(Token &SysHeaderTok);
   2053   void HandlePragmaDependency(Token &DependencyTok);
   2054   void HandlePragmaPushMacro(Token &Tok);
   2055   void HandlePragmaPopMacro(Token &Tok);
   2056   void HandlePragmaIncludeAlias(Token &Tok);
   2057   void HandlePragmaModuleBuild(Token &Tok);
   2058   IdentifierInfo *ParsePragmaPushOrPopMacro(Token &Tok);
   2059 
   2060   // Return true and store the first token only if any CommentHandler
   2061   // has inserted some tokens and getCommentRetentionState() is false.
   2062   bool HandleComment(Token &Token, SourceRange Comment);
   2063 
   2064   /// \brief A macro is used, update information about macros that need unused
   2065   /// warnings.
   2066   void markMacroAsUsed(MacroInfo *MI);
   2067 };
   2068 
   2069 /// \brief Abstract base class that describes a handler that will receive
   2070 /// source ranges for each of the comments encountered in the source file.
   2071 class CommentHandler {
   2072 public:
   2073   virtual ~CommentHandler();
   2074 
   2075   // The handler shall return true if it has pushed any tokens
   2076   // to be read using e.g. EnterToken or EnterTokenStream.
   2077   virtual bool HandleComment(Preprocessor &PP, SourceRange Comment) = 0;
   2078 };
   2079 
   2080 /// \brief Registry of pragma handlers added by plugins
   2081 typedef llvm::Registry<PragmaHandler> PragmaHandlerRegistry;
   2082 
   2083 }  // end namespace clang
   2084 
   2085 #endif
   2086