Home | History | Annotate | Download | only in Analysis
      1 //===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
     11 // accesses. Currently, it is an implementation of the approach described in
     12 //
     13 //            Practical Dependence Testing
     14 //            Goff, Kennedy, Tseng
     15 //            PLDI 1991
     16 //
     17 // There's a single entry point that analyzes the dependence between a pair
     18 // of memory references in a function, returning either NULL, for no dependence,
     19 // or a more-or-less detailed description of the dependence between them.
     20 //
     21 // This pass exists to support the DependenceGraph pass. There are two separate
     22 // passes because there's a useful separation of concerns. A dependence exists
     23 // if two conditions are met:
     24 //
     25 //    1) Two instructions reference the same memory location, and
     26 //    2) There is a flow of control leading from one instruction to the other.
     27 //
     28 // DependenceAnalysis attacks the first condition; DependenceGraph will attack
     29 // the second (it's not yet ready).
     30 //
     31 // Please note that this is work in progress and the interface is subject to
     32 // change.
     33 //
     34 // Plausible changes:
     35 //    Return a set of more precise dependences instead of just one dependence
     36 //    summarizing all.
     37 //
     38 //===----------------------------------------------------------------------===//
     39 
     40 #ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
     41 #define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
     42 
     43 #include "llvm/ADT/SmallBitVector.h"
     44 #include "llvm/Analysis/AliasAnalysis.h"
     45 #include "llvm/IR/Instructions.h"
     46 #include "llvm/Pass.h"
     47 
     48 namespace llvm {
     49 template <typename T> class ArrayRef;
     50   class Loop;
     51   class LoopInfo;
     52   class ScalarEvolution;
     53   class SCEV;
     54   class SCEVConstant;
     55   class raw_ostream;
     56 
     57   /// Dependence - This class represents a dependence between two memory
     58   /// memory references in a function. It contains minimal information and
     59   /// is used in the very common situation where the compiler is unable to
     60   /// determine anything beyond the existence of a dependence; that is, it
     61   /// represents a confused dependence (see also FullDependence). In most
     62   /// cases (for output, flow, and anti dependences), the dependence implies
     63   /// an ordering, where the source must precede the destination; in contrast,
     64   /// input dependences are unordered.
     65   ///
     66   /// When a dependence graph is built, each Dependence will be a member of
     67   /// the set of predecessor edges for its destination instruction and a set
     68   /// if successor edges for its source instruction. These sets are represented
     69   /// as singly-linked lists, with the "next" fields stored in the dependence
     70   /// itelf.
     71   class Dependence {
     72   protected:
     73     Dependence(Dependence &&) = default;
     74     Dependence &operator=(Dependence &&) = default;
     75 
     76   public:
     77     Dependence(Instruction *Source,
     78                Instruction *Destination) :
     79       Src(Source),
     80       Dst(Destination),
     81       NextPredecessor(nullptr),
     82       NextSuccessor(nullptr) {}
     83     virtual ~Dependence() {}
     84 
     85     /// Dependence::DVEntry - Each level in the distance/direction vector
     86     /// has a direction (or perhaps a union of several directions), and
     87     /// perhaps a distance.
     88     struct DVEntry {
     89       enum { NONE = 0,
     90              LT = 1,
     91              EQ = 2,
     92              LE = 3,
     93              GT = 4,
     94              NE = 5,
     95              GE = 6,
     96              ALL = 7 };
     97       unsigned char Direction : 3; // Init to ALL, then refine.
     98       bool Scalar    : 1; // Init to true.
     99       bool PeelFirst : 1; // Peeling the first iteration will break dependence.
    100       bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
    101       bool Splitable : 1; // Splitting the loop will break dependence.
    102       const SCEV *Distance; // NULL implies no distance available.
    103       DVEntry() : Direction(ALL), Scalar(true), PeelFirst(false),
    104                   PeelLast(false), Splitable(false), Distance(nullptr) { }
    105     };
    106 
    107     /// getSrc - Returns the source instruction for this dependence.
    108     ///
    109     Instruction *getSrc() const { return Src; }
    110 
    111     /// getDst - Returns the destination instruction for this dependence.
    112     ///
    113     Instruction *getDst() const { return Dst; }
    114 
    115     /// isInput - Returns true if this is an input dependence.
    116     ///
    117     bool isInput() const;
    118 
    119     /// isOutput - Returns true if this is an output dependence.
    120     ///
    121     bool isOutput() const;
    122 
    123     /// isFlow - Returns true if this is a flow (aka true) dependence.
    124     ///
    125     bool isFlow() const;
    126 
    127     /// isAnti - Returns true if this is an anti dependence.
    128     ///
    129     bool isAnti() const;
    130 
    131     /// isOrdered - Returns true if dependence is Output, Flow, or Anti
    132     ///
    133     bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
    134 
    135     /// isUnordered - Returns true if dependence is Input
    136     ///
    137     bool isUnordered() const { return isInput(); }
    138 
    139     /// isLoopIndependent - Returns true if this is a loop-independent
    140     /// dependence.
    141     virtual bool isLoopIndependent() const { return true; }
    142 
    143     /// isConfused - Returns true if this dependence is confused
    144     /// (the compiler understands nothing and makes worst-case
    145     /// assumptions).
    146     virtual bool isConfused() const { return true; }
    147 
    148     /// isConsistent - Returns true if this dependence is consistent
    149     /// (occurs every time the source and destination are executed).
    150     virtual bool isConsistent() const { return false; }
    151 
    152     /// getLevels - Returns the number of common loops surrounding the
    153     /// source and destination of the dependence.
    154     virtual unsigned getLevels() const { return 0; }
    155 
    156     /// getDirection - Returns the direction associated with a particular
    157     /// level.
    158     virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
    159 
    160     /// getDistance - Returns the distance (or NULL) associated with a
    161     /// particular level.
    162     virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
    163 
    164     /// isPeelFirst - Returns true if peeling the first iteration from
    165     /// this loop will break this dependence.
    166     virtual bool isPeelFirst(unsigned Level) const { return false; }
    167 
    168     /// isPeelLast - Returns true if peeling the last iteration from
    169     /// this loop will break this dependence.
    170     virtual bool isPeelLast(unsigned Level) const { return false; }
    171 
    172     /// isSplitable - Returns true if splitting this loop will break
    173     /// the dependence.
    174     virtual bool isSplitable(unsigned Level) const { return false; }
    175 
    176     /// isScalar - Returns true if a particular level is scalar; that is,
    177     /// if no subscript in the source or destination mention the induction
    178     /// variable associated with the loop at this level.
    179     virtual bool isScalar(unsigned Level) const;
    180 
    181     /// getNextPredecessor - Returns the value of the NextPredecessor
    182     /// field.
    183     const Dependence *getNextPredecessor() const { return NextPredecessor; }
    184 
    185     /// getNextSuccessor - Returns the value of the NextSuccessor
    186     /// field.
    187     const Dependence *getNextSuccessor() const { return NextSuccessor; }
    188 
    189     /// setNextPredecessor - Sets the value of the NextPredecessor
    190     /// field.
    191     void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
    192 
    193     /// setNextSuccessor - Sets the value of the NextSuccessor
    194     /// field.
    195     void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
    196 
    197     /// dump - For debugging purposes, dumps a dependence to OS.
    198     ///
    199     void dump(raw_ostream &OS) const;
    200 
    201   private:
    202     Instruction *Src, *Dst;
    203     const Dependence *NextPredecessor, *NextSuccessor;
    204     friend class DependenceInfo;
    205   };
    206 
    207   /// FullDependence - This class represents a dependence between two memory
    208   /// references in a function. It contains detailed information about the
    209   /// dependence (direction vectors, etc.) and is used when the compiler is
    210   /// able to accurately analyze the interaction of the references; that is,
    211   /// it is not a confused dependence (see Dependence). In most cases
    212   /// (for output, flow, and anti dependences), the dependence implies an
    213   /// ordering, where the source must precede the destination; in contrast,
    214   /// input dependences are unordered.
    215   class FullDependence final : public Dependence {
    216   public:
    217     FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent,
    218                    unsigned Levels);
    219 
    220     /// isLoopIndependent - Returns true if this is a loop-independent
    221     /// dependence.
    222     bool isLoopIndependent() const override { return LoopIndependent; }
    223 
    224     /// isConfused - Returns true if this dependence is confused
    225     /// (the compiler understands nothing and makes worst-case
    226     /// assumptions).
    227     bool isConfused() const override { return false; }
    228 
    229     /// isConsistent - Returns true if this dependence is consistent
    230     /// (occurs every time the source and destination are executed).
    231     bool isConsistent() const override { return Consistent; }
    232 
    233     /// getLevels - Returns the number of common loops surrounding the
    234     /// source and destination of the dependence.
    235     unsigned getLevels() const override { return Levels; }
    236 
    237     /// getDirection - Returns the direction associated with a particular
    238     /// level.
    239     unsigned getDirection(unsigned Level) const override;
    240 
    241     /// getDistance - Returns the distance (or NULL) associated with a
    242     /// particular level.
    243     const SCEV *getDistance(unsigned Level) const override;
    244 
    245     /// isPeelFirst - Returns true if peeling the first iteration from
    246     /// this loop will break this dependence.
    247     bool isPeelFirst(unsigned Level) const override;
    248 
    249     /// isPeelLast - Returns true if peeling the last iteration from
    250     /// this loop will break this dependence.
    251     bool isPeelLast(unsigned Level) const override;
    252 
    253     /// isSplitable - Returns true if splitting the loop will break
    254     /// the dependence.
    255     bool isSplitable(unsigned Level) const override;
    256 
    257     /// isScalar - Returns true if a particular level is scalar; that is,
    258     /// if no subscript in the source or destination mention the induction
    259     /// variable associated with the loop at this level.
    260     bool isScalar(unsigned Level) const override;
    261 
    262   private:
    263     unsigned short Levels;
    264     bool LoopIndependent;
    265     bool Consistent; // Init to true, then refine.
    266     std::unique_ptr<DVEntry[]> DV;
    267     friend class DependenceInfo;
    268   };
    269 
    270   /// DependenceInfo - This class is the main dependence-analysis driver.
    271   ///
    272   class DependenceInfo {
    273   public:
    274     DependenceInfo(Function *F, AliasAnalysis *AA, ScalarEvolution *SE,
    275                    LoopInfo *LI)
    276         : AA(AA), SE(SE), LI(LI), F(F) {}
    277 
    278     /// depends - Tests for a dependence between the Src and Dst instructions.
    279     /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
    280     /// FullDependence) with as much information as can be gleaned.
    281     /// The flag PossiblyLoopIndependent should be set by the caller
    282     /// if it appears that control flow can reach from Src to Dst
    283     /// without traversing a loop back edge.
    284     std::unique_ptr<Dependence> depends(Instruction *Src,
    285                                         Instruction *Dst,
    286                                         bool PossiblyLoopIndependent);
    287 
    288     /// getSplitIteration - Give a dependence that's splittable at some
    289     /// particular level, return the iteration that should be used to split
    290     /// the loop.
    291     ///
    292     /// Generally, the dependence analyzer will be used to build
    293     /// a dependence graph for a function (basically a map from instructions
    294     /// to dependences). Looking for cycles in the graph shows us loops
    295     /// that cannot be trivially vectorized/parallelized.
    296     ///
    297     /// We can try to improve the situation by examining all the dependences
    298     /// that make up the cycle, looking for ones we can break.
    299     /// Sometimes, peeling the first or last iteration of a loop will break
    300     /// dependences, and there are flags for those possibilities.
    301     /// Sometimes, splitting a loop at some other iteration will do the trick,
    302     /// and we've got a flag for that case. Rather than waste the space to
    303     /// record the exact iteration (since we rarely know), we provide
    304     /// a method that calculates the iteration. It's a drag that it must work
    305     /// from scratch, but wonderful in that it's possible.
    306     ///
    307     /// Here's an example:
    308     ///
    309     ///    for (i = 0; i < 10; i++)
    310     ///        A[i] = ...
    311     ///        ... = A[11 - i]
    312     ///
    313     /// There's a loop-carried flow dependence from the store to the load,
    314     /// found by the weak-crossing SIV test. The dependence will have a flag,
    315     /// indicating that the dependence can be broken by splitting the loop.
    316     /// Calling getSplitIteration will return 5.
    317     /// Splitting the loop breaks the dependence, like so:
    318     ///
    319     ///    for (i = 0; i <= 5; i++)
    320     ///        A[i] = ...
    321     ///        ... = A[11 - i]
    322     ///    for (i = 6; i < 10; i++)
    323     ///        A[i] = ...
    324     ///        ... = A[11 - i]
    325     ///
    326     /// breaks the dependence and allows us to vectorize/parallelize
    327     /// both loops.
    328     const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
    329 
    330     Function *getFunction() const { return F; }
    331 
    332   private:
    333     AliasAnalysis *AA;
    334     ScalarEvolution *SE;
    335     LoopInfo *LI;
    336     Function *F;
    337 
    338     /// Subscript - This private struct represents a pair of subscripts from
    339     /// a pair of potentially multi-dimensional array references. We use a
    340     /// vector of them to guide subscript partitioning.
    341     struct Subscript {
    342       const SCEV *Src;
    343       const SCEV *Dst;
    344       enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
    345       SmallBitVector Loops;
    346       SmallBitVector GroupLoops;
    347       SmallBitVector Group;
    348     };
    349 
    350     struct CoefficientInfo {
    351       const SCEV *Coeff;
    352       const SCEV *PosPart;
    353       const SCEV *NegPart;
    354       const SCEV *Iterations;
    355     };
    356 
    357     struct BoundInfo {
    358       const SCEV *Iterations;
    359       const SCEV *Upper[8];
    360       const SCEV *Lower[8];
    361       unsigned char Direction;
    362       unsigned char DirSet;
    363     };
    364 
    365     /// Constraint - This private class represents a constraint, as defined
    366     /// in the paper
    367     ///
    368     ///           Practical Dependence Testing
    369     ///           Goff, Kennedy, Tseng
    370     ///           PLDI 1991
    371     ///
    372     /// There are 5 kinds of constraint, in a hierarchy.
    373     ///   1) Any - indicates no constraint, any dependence is possible.
    374     ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
    375     ///             representing the dependence equation.
    376     ///   3) Distance - The value d of the dependence distance;
    377     ///   4) Point - A point <x, y> representing the dependence from
    378     ///              iteration x to iteration y.
    379     ///   5) Empty - No dependence is possible.
    380     class Constraint {
    381     private:
    382       enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
    383       ScalarEvolution *SE;
    384       const SCEV *A;
    385       const SCEV *B;
    386       const SCEV *C;
    387       const Loop *AssociatedLoop;
    388 
    389     public:
    390       /// isEmpty - Return true if the constraint is of kind Empty.
    391       bool isEmpty() const { return Kind == Empty; }
    392 
    393       /// isPoint - Return true if the constraint is of kind Point.
    394       bool isPoint() const { return Kind == Point; }
    395 
    396       /// isDistance - Return true if the constraint is of kind Distance.
    397       bool isDistance() const { return Kind == Distance; }
    398 
    399       /// isLine - Return true if the constraint is of kind Line.
    400       /// Since Distance's can also be represented as Lines, we also return
    401       /// true if the constraint is of kind Distance.
    402       bool isLine() const { return Kind == Line || Kind == Distance; }
    403 
    404       /// isAny - Return true if the constraint is of kind Any;
    405       bool isAny() const { return Kind == Any; }
    406 
    407       /// getX - If constraint is a point <X, Y>, returns X.
    408       /// Otherwise assert.
    409       const SCEV *getX() const;
    410 
    411       /// getY - If constraint is a point <X, Y>, returns Y.
    412       /// Otherwise assert.
    413       const SCEV *getY() const;
    414 
    415       /// getA - If constraint is a line AX + BY = C, returns A.
    416       /// Otherwise assert.
    417       const SCEV *getA() const;
    418 
    419       /// getB - If constraint is a line AX + BY = C, returns B.
    420       /// Otherwise assert.
    421       const SCEV *getB() const;
    422 
    423       /// getC - If constraint is a line AX + BY = C, returns C.
    424       /// Otherwise assert.
    425       const SCEV *getC() const;
    426 
    427       /// getD - If constraint is a distance, returns D.
    428       /// Otherwise assert.
    429       const SCEV *getD() const;
    430 
    431       /// getAssociatedLoop - Returns the loop associated with this constraint.
    432       const Loop *getAssociatedLoop() const;
    433 
    434       /// setPoint - Change a constraint to Point.
    435       void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
    436 
    437       /// setLine - Change a constraint to Line.
    438       void setLine(const SCEV *A, const SCEV *B,
    439                    const SCEV *C, const Loop *CurrentLoop);
    440 
    441       /// setDistance - Change a constraint to Distance.
    442       void setDistance(const SCEV *D, const Loop *CurrentLoop);
    443 
    444       /// setEmpty - Change a constraint to Empty.
    445       void setEmpty();
    446 
    447       /// setAny - Change a constraint to Any.
    448       void setAny(ScalarEvolution *SE);
    449 
    450       /// dump - For debugging purposes. Dumps the constraint
    451       /// out to OS.
    452       void dump(raw_ostream &OS) const;
    453     };
    454 
    455     /// establishNestingLevels - Examines the loop nesting of the Src and Dst
    456     /// instructions and establishes their shared loops. Sets the variables
    457     /// CommonLevels, SrcLevels, and MaxLevels.
    458     /// The source and destination instructions needn't be contained in the same
    459     /// loop. The routine establishNestingLevels finds the level of most deeply
    460     /// nested loop that contains them both, CommonLevels. An instruction that's
    461     /// not contained in a loop is at level = 0. MaxLevels is equal to the level
    462     /// of the source plus the level of the destination, minus CommonLevels.
    463     /// This lets us allocate vectors MaxLevels in length, with room for every
    464     /// distinct loop referenced in both the source and destination subscripts.
    465     /// The variable SrcLevels is the nesting depth of the source instruction.
    466     /// It's used to help calculate distinct loops referenced by the destination.
    467     /// Here's the map from loops to levels:
    468     ///            0 - unused
    469     ///            1 - outermost common loop
    470     ///          ... - other common loops
    471     /// CommonLevels - innermost common loop
    472     ///          ... - loops containing Src but not Dst
    473     ///    SrcLevels - innermost loop containing Src but not Dst
    474     ///          ... - loops containing Dst but not Src
    475     ///    MaxLevels - innermost loop containing Dst but not Src
    476     /// Consider the follow code fragment:
    477     ///    for (a = ...) {
    478     ///      for (b = ...) {
    479     ///        for (c = ...) {
    480     ///          for (d = ...) {
    481     ///            A[] = ...;
    482     ///          }
    483     ///        }
    484     ///        for (e = ...) {
    485     ///          for (f = ...) {
    486     ///            for (g = ...) {
    487     ///              ... = A[];
    488     ///            }
    489     ///          }
    490     ///        }
    491     ///      }
    492     ///    }
    493     /// If we're looking at the possibility of a dependence between the store
    494     /// to A (the Src) and the load from A (the Dst), we'll note that they
    495     /// have 2 loops in common, so CommonLevels will equal 2 and the direction
    496     /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
    497     /// A map from loop names to level indices would look like
    498     ///     a - 1
    499     ///     b - 2 = CommonLevels
    500     ///     c - 3
    501     ///     d - 4 = SrcLevels
    502     ///     e - 5
    503     ///     f - 6
    504     ///     g - 7 = MaxLevels
    505     void establishNestingLevels(const Instruction *Src,
    506                                 const Instruction *Dst);
    507 
    508     unsigned CommonLevels, SrcLevels, MaxLevels;
    509 
    510     /// mapSrcLoop - Given one of the loops containing the source, return
    511     /// its level index in our numbering scheme.
    512     unsigned mapSrcLoop(const Loop *SrcLoop) const;
    513 
    514     /// mapDstLoop - Given one of the loops containing the destination,
    515     /// return its level index in our numbering scheme.
    516     unsigned mapDstLoop(const Loop *DstLoop) const;
    517 
    518     /// isLoopInvariant - Returns true if Expression is loop invariant
    519     /// in LoopNest.
    520     bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
    521 
    522     /// Makes sure all subscript pairs share the same integer type by
    523     /// sign-extending as necessary.
    524     /// Sign-extending a subscript is safe because getelementptr assumes the
    525     /// array subscripts are signed.
    526     void unifySubscriptType(ArrayRef<Subscript *> Pairs);
    527 
    528     /// removeMatchingExtensions - Examines a subscript pair.
    529     /// If the source and destination are identically sign (or zero)
    530     /// extended, it strips off the extension in an effort to
    531     /// simplify the actual analysis.
    532     void removeMatchingExtensions(Subscript *Pair);
    533 
    534     /// collectCommonLoops - Finds the set of loops from the LoopNest that
    535     /// have a level <= CommonLevels and are referred to by the SCEV Expression.
    536     void collectCommonLoops(const SCEV *Expression,
    537                             const Loop *LoopNest,
    538                             SmallBitVector &Loops) const;
    539 
    540     /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
    541     /// linear. Collect the set of loops mentioned by Src.
    542     bool checkSrcSubscript(const SCEV *Src,
    543                            const Loop *LoopNest,
    544                            SmallBitVector &Loops);
    545 
    546     /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
    547     /// linear. Collect the set of loops mentioned by Dst.
    548     bool checkDstSubscript(const SCEV *Dst,
    549                            const Loop *LoopNest,
    550                            SmallBitVector &Loops);
    551 
    552     /// isKnownPredicate - Compare X and Y using the predicate Pred.
    553     /// Basically a wrapper for SCEV::isKnownPredicate,
    554     /// but tries harder, especially in the presence of sign and zero
    555     /// extensions and symbolics.
    556     bool isKnownPredicate(ICmpInst::Predicate Pred,
    557                           const SCEV *X,
    558                           const SCEV *Y) const;
    559 
    560     /// collectUpperBound - All subscripts are the same type (on my machine,
    561     /// an i64). The loop bound may be a smaller type. collectUpperBound
    562     /// find the bound, if available, and zero extends it to the Type T.
    563     /// (I zero extend since the bound should always be >= 0.)
    564     /// If no upper bound is available, return NULL.
    565     const SCEV *collectUpperBound(const Loop *l, Type *T) const;
    566 
    567     /// collectConstantUpperBound - Calls collectUpperBound(), then
    568     /// attempts to cast it to SCEVConstant. If the cast fails,
    569     /// returns NULL.
    570     const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
    571 
    572     /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
    573     /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
    574     /// Collects the associated loops in a set.
    575     Subscript::ClassificationKind classifyPair(const SCEV *Src,
    576                                            const Loop *SrcLoopNest,
    577                                            const SCEV *Dst,
    578                                            const Loop *DstLoopNest,
    579                                            SmallBitVector &Loops);
    580 
    581     /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
    582     /// Returns true if any possible dependence is disproved.
    583     /// If there might be a dependence, returns false.
    584     /// If the dependence isn't proven to exist,
    585     /// marks the Result as inconsistent.
    586     bool testZIV(const SCEV *Src,
    587                  const SCEV *Dst,
    588                  FullDependence &Result) const;
    589 
    590     /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
    591     /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
    592     /// i and j are induction variables, c1 and c2 are loop invariant,
    593     /// and a1 and a2 are constant.
    594     /// Returns true if any possible dependence is disproved.
    595     /// If there might be a dependence, returns false.
    596     /// Sets appropriate direction vector entry and, when possible,
    597     /// the distance vector entry.
    598     /// If the dependence isn't proven to exist,
    599     /// marks the Result as inconsistent.
    600     bool testSIV(const SCEV *Src,
    601                  const SCEV *Dst,
    602                  unsigned &Level,
    603                  FullDependence &Result,
    604                  Constraint &NewConstraint,
    605                  const SCEV *&SplitIter) const;
    606 
    607     /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
    608     /// Things of the form [c1 + a1*i] and [c2 + a2*j]
    609     /// where i and j are induction variables, c1 and c2 are loop invariant,
    610     /// and a1 and a2 are constant.
    611     /// With minor algebra, this test can also be used for things like
    612     /// [c1 + a1*i + a2*j][c2].
    613     /// Returns true if any possible dependence is disproved.
    614     /// If there might be a dependence, returns false.
    615     /// Marks the Result as inconsistent.
    616     bool testRDIV(const SCEV *Src,
    617                   const SCEV *Dst,
    618                   FullDependence &Result) const;
    619 
    620     /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
    621     /// Returns true if dependence disproved.
    622     /// Can sometimes refine direction vectors.
    623     bool testMIV(const SCEV *Src,
    624                  const SCEV *Dst,
    625                  const SmallBitVector &Loops,
    626                  FullDependence &Result) const;
    627 
    628     /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
    629     /// for dependence.
    630     /// Things of the form [c1 + a*i] and [c2 + a*i],
    631     /// where i is an induction variable, c1 and c2 are loop invariant,
    632     /// and a is a constant
    633     /// Returns true if any possible dependence is disproved.
    634     /// If there might be a dependence, returns false.
    635     /// Sets appropriate direction and distance.
    636     bool strongSIVtest(const SCEV *Coeff,
    637                        const SCEV *SrcConst,
    638                        const SCEV *DstConst,
    639                        const Loop *CurrentLoop,
    640                        unsigned Level,
    641                        FullDependence &Result,
    642                        Constraint &NewConstraint) const;
    643 
    644     /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
    645     /// (Src and Dst) for dependence.
    646     /// Things of the form [c1 + a*i] and [c2 - a*i],
    647     /// where i is an induction variable, c1 and c2 are loop invariant,
    648     /// and a is a constant.
    649     /// Returns true if any possible dependence is disproved.
    650     /// If there might be a dependence, returns false.
    651     /// Sets appropriate direction entry.
    652     /// Set consistent to false.
    653     /// Marks the dependence as splitable.
    654     bool weakCrossingSIVtest(const SCEV *SrcCoeff,
    655                              const SCEV *SrcConst,
    656                              const SCEV *DstConst,
    657                              const Loop *CurrentLoop,
    658                              unsigned Level,
    659                              FullDependence &Result,
    660                              Constraint &NewConstraint,
    661                              const SCEV *&SplitIter) const;
    662 
    663     /// ExactSIVtest - Tests the SIV subscript pair
    664     /// (Src and Dst) for dependence.
    665     /// Things of the form [c1 + a1*i] and [c2 + a2*i],
    666     /// where i is an induction variable, c1 and c2 are loop invariant,
    667     /// and a1 and a2 are constant.
    668     /// Returns true if any possible dependence is disproved.
    669     /// If there might be a dependence, returns false.
    670     /// Sets appropriate direction entry.
    671     /// Set consistent to false.
    672     bool exactSIVtest(const SCEV *SrcCoeff,
    673                       const SCEV *DstCoeff,
    674                       const SCEV *SrcConst,
    675                       const SCEV *DstConst,
    676                       const Loop *CurrentLoop,
    677                       unsigned Level,
    678                       FullDependence &Result,
    679                       Constraint &NewConstraint) const;
    680 
    681     /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
    682     /// (Src and Dst) for dependence.
    683     /// Things of the form [c1] and [c2 + a*i],
    684     /// where i is an induction variable, c1 and c2 are loop invariant,
    685     /// and a is a constant. See also weakZeroDstSIVtest.
    686     /// Returns true if any possible dependence is disproved.
    687     /// If there might be a dependence, returns false.
    688     /// Sets appropriate direction entry.
    689     /// Set consistent to false.
    690     /// If loop peeling will break the dependence, mark appropriately.
    691     bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
    692                             const SCEV *SrcConst,
    693                             const SCEV *DstConst,
    694                             const Loop *CurrentLoop,
    695                             unsigned Level,
    696                             FullDependence &Result,
    697                             Constraint &NewConstraint) const;
    698 
    699     /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
    700     /// (Src and Dst) for dependence.
    701     /// Things of the form [c1 + a*i] and [c2],
    702     /// where i is an induction variable, c1 and c2 are loop invariant,
    703     /// and a is a constant. See also weakZeroSrcSIVtest.
    704     /// Returns true if any possible dependence is disproved.
    705     /// If there might be a dependence, returns false.
    706     /// Sets appropriate direction entry.
    707     /// Set consistent to false.
    708     /// If loop peeling will break the dependence, mark appropriately.
    709     bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
    710                             const SCEV *SrcConst,
    711                             const SCEV *DstConst,
    712                             const Loop *CurrentLoop,
    713                             unsigned Level,
    714                             FullDependence &Result,
    715                             Constraint &NewConstraint) const;
    716 
    717     /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
    718     /// Things of the form [c1 + a*i] and [c2 + b*j],
    719     /// where i and j are induction variable, c1 and c2 are loop invariant,
    720     /// and a and b are constants.
    721     /// Returns true if any possible dependence is disproved.
    722     /// Marks the result as inconsistent.
    723     /// Works in some cases that symbolicRDIVtest doesn't,
    724     /// and vice versa.
    725     bool exactRDIVtest(const SCEV *SrcCoeff,
    726                        const SCEV *DstCoeff,
    727                        const SCEV *SrcConst,
    728                        const SCEV *DstConst,
    729                        const Loop *SrcLoop,
    730                        const Loop *DstLoop,
    731                        FullDependence &Result) const;
    732 
    733     /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
    734     /// Things of the form [c1 + a*i] and [c2 + b*j],
    735     /// where i and j are induction variable, c1 and c2 are loop invariant,
    736     /// and a and b are constants.
    737     /// Returns true if any possible dependence is disproved.
    738     /// Marks the result as inconsistent.
    739     /// Works in some cases that exactRDIVtest doesn't,
    740     /// and vice versa. Can also be used as a backup for
    741     /// ordinary SIV tests.
    742     bool symbolicRDIVtest(const SCEV *SrcCoeff,
    743                           const SCEV *DstCoeff,
    744                           const SCEV *SrcConst,
    745                           const SCEV *DstConst,
    746                           const Loop *SrcLoop,
    747                           const Loop *DstLoop) const;
    748 
    749     /// gcdMIVtest - Tests an MIV subscript pair for dependence.
    750     /// Returns true if any possible dependence is disproved.
    751     /// Marks the result as inconsistent.
    752     /// Can sometimes disprove the equal direction for 1 or more loops.
    753     //  Can handle some symbolics that even the SIV tests don't get,
    754     /// so we use it as a backup for everything.
    755     bool gcdMIVtest(const SCEV *Src,
    756                     const SCEV *Dst,
    757                     FullDependence &Result) const;
    758 
    759     /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
    760     /// Returns true if any possible dependence is disproved.
    761     /// Marks the result as inconsistent.
    762     /// Computes directions.
    763     bool banerjeeMIVtest(const SCEV *Src,
    764                          const SCEV *Dst,
    765                          const SmallBitVector &Loops,
    766                          FullDependence &Result) const;
    767 
    768     /// collectCoefficientInfo - Walks through the subscript,
    769     /// collecting each coefficient, the associated loop bounds,
    770     /// and recording its positive and negative parts for later use.
    771     CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
    772                                       bool SrcFlag,
    773                                       const SCEV *&Constant) const;
    774 
    775     /// getPositivePart - X^+ = max(X, 0).
    776     ///
    777     const SCEV *getPositivePart(const SCEV *X) const;
    778 
    779     /// getNegativePart - X^- = min(X, 0).
    780     ///
    781     const SCEV *getNegativePart(const SCEV *X) const;
    782 
    783     /// getLowerBound - Looks through all the bounds info and
    784     /// computes the lower bound given the current direction settings
    785     /// at each level.
    786     const SCEV *getLowerBound(BoundInfo *Bound) const;
    787 
    788     /// getUpperBound - Looks through all the bounds info and
    789     /// computes the upper bound given the current direction settings
    790     /// at each level.
    791     const SCEV *getUpperBound(BoundInfo *Bound) const;
    792 
    793     /// exploreDirections - Hierarchically expands the direction vector
    794     /// search space, combining the directions of discovered dependences
    795     /// in the DirSet field of Bound. Returns the number of distinct
    796     /// dependences discovered. If the dependence is disproved,
    797     /// it will return 0.
    798     unsigned exploreDirections(unsigned Level,
    799                                CoefficientInfo *A,
    800                                CoefficientInfo *B,
    801                                BoundInfo *Bound,
    802                                const SmallBitVector &Loops,
    803                                unsigned &DepthExpanded,
    804                                const SCEV *Delta) const;
    805 
    806     /// testBounds - Returns true iff the current bounds are plausible.
    807     bool testBounds(unsigned char DirKind,
    808                     unsigned Level,
    809                     BoundInfo *Bound,
    810                     const SCEV *Delta) const;
    811 
    812     /// findBoundsALL - Computes the upper and lower bounds for level K
    813     /// using the * direction. Records them in Bound.
    814     void findBoundsALL(CoefficientInfo *A,
    815                        CoefficientInfo *B,
    816                        BoundInfo *Bound,
    817                        unsigned K) const;
    818 
    819     /// findBoundsLT - Computes the upper and lower bounds for level K
    820     /// using the < direction. Records them in Bound.
    821     void findBoundsLT(CoefficientInfo *A,
    822                       CoefficientInfo *B,
    823                       BoundInfo *Bound,
    824                       unsigned K) const;
    825 
    826     /// findBoundsGT - Computes the upper and lower bounds for level K
    827     /// using the > direction. Records them in Bound.
    828     void findBoundsGT(CoefficientInfo *A,
    829                       CoefficientInfo *B,
    830                       BoundInfo *Bound,
    831                       unsigned K) const;
    832 
    833     /// findBoundsEQ - Computes the upper and lower bounds for level K
    834     /// using the = direction. Records them in Bound.
    835     void findBoundsEQ(CoefficientInfo *A,
    836                       CoefficientInfo *B,
    837                       BoundInfo *Bound,
    838                       unsigned K) const;
    839 
    840     /// intersectConstraints - Updates X with the intersection
    841     /// of the Constraints X and Y. Returns true if X has changed.
    842     bool intersectConstraints(Constraint *X,
    843                               const Constraint *Y);
    844 
    845     /// propagate - Review the constraints, looking for opportunities
    846     /// to simplify a subscript pair (Src and Dst).
    847     /// Return true if some simplification occurs.
    848     /// If the simplification isn't exact (that is, if it is conservative
    849     /// in terms of dependence), set consistent to false.
    850     bool propagate(const SCEV *&Src,
    851                    const SCEV *&Dst,
    852                    SmallBitVector &Loops,
    853                    SmallVectorImpl<Constraint> &Constraints,
    854                    bool &Consistent);
    855 
    856     /// propagateDistance - Attempt to propagate a distance
    857     /// constraint into a subscript pair (Src and Dst).
    858     /// Return true if some simplification occurs.
    859     /// If the simplification isn't exact (that is, if it is conservative
    860     /// in terms of dependence), set consistent to false.
    861     bool propagateDistance(const SCEV *&Src,
    862                            const SCEV *&Dst,
    863                            Constraint &CurConstraint,
    864                            bool &Consistent);
    865 
    866     /// propagatePoint - Attempt to propagate a point
    867     /// constraint into a subscript pair (Src and Dst).
    868     /// Return true if some simplification occurs.
    869     bool propagatePoint(const SCEV *&Src,
    870                         const SCEV *&Dst,
    871                         Constraint &CurConstraint);
    872 
    873     /// propagateLine - Attempt to propagate a line
    874     /// constraint into a subscript pair (Src and Dst).
    875     /// Return true if some simplification occurs.
    876     /// If the simplification isn't exact (that is, if it is conservative
    877     /// in terms of dependence), set consistent to false.
    878     bool propagateLine(const SCEV *&Src,
    879                        const SCEV *&Dst,
    880                        Constraint &CurConstraint,
    881                        bool &Consistent);
    882 
    883     /// findCoefficient - Given a linear SCEV,
    884     /// return the coefficient corresponding to specified loop.
    885     /// If there isn't one, return the SCEV constant 0.
    886     /// For example, given a*i + b*j + c*k, returning the coefficient
    887     /// corresponding to the j loop would yield b.
    888     const SCEV *findCoefficient(const SCEV *Expr,
    889                                 const Loop *TargetLoop) const;
    890 
    891     /// zeroCoefficient - Given a linear SCEV,
    892     /// return the SCEV given by zeroing out the coefficient
    893     /// corresponding to the specified loop.
    894     /// For example, given a*i + b*j + c*k, zeroing the coefficient
    895     /// corresponding to the j loop would yield a*i + c*k.
    896     const SCEV *zeroCoefficient(const SCEV *Expr,
    897                                 const Loop *TargetLoop) const;
    898 
    899     /// addToCoefficient - Given a linear SCEV Expr,
    900     /// return the SCEV given by adding some Value to the
    901     /// coefficient corresponding to the specified TargetLoop.
    902     /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
    903     /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
    904     const SCEV *addToCoefficient(const SCEV *Expr,
    905                                  const Loop *TargetLoop,
    906                                  const SCEV *Value)  const;
    907 
    908     /// updateDirection - Update direction vector entry
    909     /// based on the current constraint.
    910     void updateDirection(Dependence::DVEntry &Level,
    911                          const Constraint &CurConstraint) const;
    912 
    913     bool tryDelinearize(Instruction *Src, Instruction *Dst,
    914                         SmallVectorImpl<Subscript> &Pair);
    915   }; // class DependenceInfo
    916 
    917   /// \brief AnalysisPass to compute dependence information in a function
    918   class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> {
    919   public:
    920     typedef DependenceInfo Result;
    921     Result run(Function &F, FunctionAnalysisManager &FAM);
    922 
    923   private:
    924     static AnalysisKey Key;
    925     friend struct AnalysisInfoMixin<DependenceAnalysis>;
    926   }; // class DependenceAnalysis
    927 
    928   /// \brief Legacy pass manager pass to access dependence information
    929   class DependenceAnalysisWrapperPass : public FunctionPass {
    930   public:
    931     static char ID; // Class identification, replacement for typeinfo
    932     DependenceAnalysisWrapperPass() : FunctionPass(ID) {
    933       initializeDependenceAnalysisWrapperPassPass(
    934           *PassRegistry::getPassRegistry());
    935     }
    936 
    937     bool runOnFunction(Function &F) override;
    938     void releaseMemory() override;
    939     void getAnalysisUsage(AnalysisUsage &) const override;
    940     void print(raw_ostream &, const Module * = nullptr) const override;
    941     DependenceInfo &getDI() const;
    942 
    943   private:
    944     std::unique_ptr<DependenceInfo> info;
    945   }; // class DependenceAnalysisWrapperPass
    946 
    947   /// createDependenceAnalysisPass - This creates an instance of the
    948   /// DependenceAnalysis wrapper pass.
    949   FunctionPass *createDependenceAnalysisWrapperPass();
    950 
    951 } // namespace llvm
    952 
    953 #endif
    954