Home | History | Annotate | Download | only in Analysis
      1 //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements an abstract sparse conditional propagation algorithm,
     11 // modeled after SCCP, but with a customizable lattice function.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
     16 #define LLVM_ANALYSIS_SPARSEPROPAGATION_H
     17 
     18 #include "llvm/IR/Instructions.h"
     19 #include "llvm/Support/Debug.h"
     20 #include <set>
     21 
     22 #define DEBUG_TYPE "sparseprop"
     23 
     24 namespace llvm {
     25 
     26 /// A template for translating between LLVM Values and LatticeKeys. Clients must
     27 /// provide a specialization of LatticeKeyInfo for their LatticeKey type.
     28 template <class LatticeKey> struct LatticeKeyInfo {
     29   // static inline Value *getValueFromLatticeKey(LatticeKey Key);
     30   // static inline LatticeKey getLatticeKeyFromValue(Value *V);
     31 };
     32 
     33 template <class LatticeKey, class LatticeVal,
     34           class KeyInfo = LatticeKeyInfo<LatticeKey>>
     35 class SparseSolver;
     36 
     37 /// AbstractLatticeFunction - This class is implemented by the dataflow instance
     38 /// to specify what the lattice values are and how they handle merges etc.  This
     39 /// gives the client the power to compute lattice values from instructions,
     40 /// constants, etc.  The current requirement is that lattice values must be
     41 /// copyable.  At the moment, nothing tries to avoid copying.  Additionally,
     42 /// lattice keys must be able to be used as keys of a mapping data structure.
     43 /// Internally, the generic solver currently uses a DenseMap to map lattice keys
     44 /// to lattice values.  If the lattice key is a non-standard type, a
     45 /// specialization of DenseMapInfo must be provided.
     46 template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
     47 private:
     48   LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
     49 
     50 public:
     51   AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
     52                           LatticeVal untrackedVal) {
     53     UndefVal = undefVal;
     54     OverdefinedVal = overdefinedVal;
     55     UntrackedVal = untrackedVal;
     56   }
     57 
     58   virtual ~AbstractLatticeFunction() = default;
     59 
     60   LatticeVal getUndefVal()       const { return UndefVal; }
     61   LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
     62   LatticeVal getUntrackedVal()   const { return UntrackedVal; }
     63 
     64   /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
     65   /// to the analysis (i.e., it would always return UntrackedVal), this
     66   /// function can return true to avoid pointless work.
     67   virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
     68 
     69   /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
     70   /// given LatticeKey.
     71   virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
     72     return getOverdefinedVal();
     73   }
     74 
     75   /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
     76   /// one that the we want to handle through ComputeInstructionState.
     77   virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
     78 
     79   /// MergeValues - Compute and return the merge of the two specified lattice
     80   /// values.  Merging should only move one direction down the lattice to
     81   /// guarantee convergence (toward overdefined).
     82   virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
     83     return getOverdefinedVal(); // always safe, never useful.
     84   }
     85 
     86   /// ComputeInstructionState - Compute the LatticeKeys that change as a result
     87   /// of executing instruction \p I. Their associated LatticeVals are store in
     88   /// \p ChangedValues.
     89   virtual void
     90   ComputeInstructionState(Instruction &I,
     91                           DenseMap<LatticeKey, LatticeVal> &ChangedValues,
     92                           SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
     93 
     94   /// PrintLatticeVal - Render the given LatticeVal to the specified stream.
     95   virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
     96 
     97   /// PrintLatticeKey - Render the given LatticeKey to the specified stream.
     98   virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
     99 
    100   /// GetValueFromLatticeVal - If the given LatticeVal is representable as an
    101   /// LLVM value, return it; otherwise, return nullptr. If a type is given, the
    102   /// returned value must have the same type. This function is used by the
    103   /// generic solver in attempting to resolve branch and switch conditions.
    104   virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
    105     return nullptr;
    106   }
    107 };
    108 
    109 /// SparseSolver - This class is a general purpose solver for Sparse Conditional
    110 /// Propagation with a programmable lattice function.
    111 template <class LatticeKey, class LatticeVal, class KeyInfo>
    112 class SparseSolver {
    113 
    114   /// LatticeFunc - This is the object that knows the lattice and how to
    115   /// compute transfer functions.
    116   AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
    117 
    118   /// ValueState - Holds the LatticeVals associated with LatticeKeys.
    119   DenseMap<LatticeKey, LatticeVal> ValueState;
    120 
    121   /// BBExecutable - Holds the basic blocks that are executable.
    122   SmallPtrSet<BasicBlock *, 16> BBExecutable;
    123 
    124   /// ValueWorkList - Holds values that should be processed.
    125   SmallVector<Value *, 64> ValueWorkList;
    126 
    127   /// BBWorkList - Holds basic blocks that should be processed.
    128   SmallVector<BasicBlock *, 64> BBWorkList;
    129 
    130   using Edge = std::pair<BasicBlock *, BasicBlock *>;
    131 
    132   /// KnownFeasibleEdges - Entries in this set are edges which have already had
    133   /// PHI nodes retriggered.
    134   std::set<Edge> KnownFeasibleEdges;
    135 
    136 public:
    137   explicit SparseSolver(
    138       AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
    139       : LatticeFunc(Lattice) {}
    140   SparseSolver(const SparseSolver &) = delete;
    141   SparseSolver &operator=(const SparseSolver &) = delete;
    142 
    143   /// Solve - Solve for constants and executable blocks.
    144   void Solve();
    145 
    146   void Print(raw_ostream &OS) const;
    147 
    148   /// getExistingValueState - Return the LatticeVal object corresponding to the
    149   /// given value from the ValueState map. If the value is not in the map,
    150   /// UntrackedVal is returned, unlike the getValueState method.
    151   LatticeVal getExistingValueState(LatticeKey Key) const {
    152     auto I = ValueState.find(Key);
    153     return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
    154   }
    155 
    156   /// getValueState - Return the LatticeVal object corresponding to the given
    157   /// value from the ValueState map. If the value is not in the map, its state
    158   /// is initialized.
    159   LatticeVal getValueState(LatticeKey Key);
    160 
    161   /// isEdgeFeasible - Return true if the control flow edge from the 'From'
    162   /// basic block to the 'To' basic block is currently feasible.  If
    163   /// AggressiveUndef is true, then this treats values with unknown lattice
    164   /// values as undefined.  This is generally only useful when solving the
    165   /// lattice, not when querying it.
    166   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
    167                       bool AggressiveUndef = false);
    168 
    169   /// isBlockExecutable - Return true if there are any known feasible
    170   /// edges into the basic block.  This is generally only useful when
    171   /// querying the lattice.
    172   bool isBlockExecutable(BasicBlock *BB) const {
    173     return BBExecutable.count(BB);
    174   }
    175 
    176   /// MarkBlockExecutable - This method can be used by clients to mark all of
    177   /// the blocks that are known to be intrinsically live in the processed unit.
    178   void MarkBlockExecutable(BasicBlock *BB);
    179 
    180 private:
    181   /// UpdateState - When the state of some LatticeKey is potentially updated to
    182   /// the given LatticeVal, this function notices and adds the LLVM value
    183   /// corresponding the key to the work list, if needed.
    184   void UpdateState(LatticeKey Key, LatticeVal LV);
    185 
    186   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
    187   /// work list if it is not already executable.
    188   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
    189 
    190   /// getFeasibleSuccessors - Return a vector of booleans to indicate which
    191   /// successors are reachable from a given terminator instruction.
    192   void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs,
    193                              bool AggressiveUndef);
    194 
    195   void visitInst(Instruction &I);
    196   void visitPHINode(PHINode &I);
    197   void visitTerminatorInst(TerminatorInst &TI);
    198 };
    199 
    200 //===----------------------------------------------------------------------===//
    201 //                  AbstractLatticeFunction Implementation
    202 //===----------------------------------------------------------------------===//
    203 
    204 template <class LatticeKey, class LatticeVal>
    205 void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
    206     LatticeVal V, raw_ostream &OS) {
    207   if (V == UndefVal)
    208     OS << "undefined";
    209   else if (V == OverdefinedVal)
    210     OS << "overdefined";
    211   else if (V == UntrackedVal)
    212     OS << "untracked";
    213   else
    214     OS << "unknown lattice value";
    215 }
    216 
    217 template <class LatticeKey, class LatticeVal>
    218 void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
    219     LatticeKey Key, raw_ostream &OS) {
    220   OS << "unknown lattice key";
    221 }
    222 
    223 //===----------------------------------------------------------------------===//
    224 //                          SparseSolver Implementation
    225 //===----------------------------------------------------------------------===//
    226 
    227 template <class LatticeKey, class LatticeVal, class KeyInfo>
    228 LatticeVal
    229 SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
    230   auto I = ValueState.find(Key);
    231   if (I != ValueState.end())
    232     return I->second; // Common case, in the map
    233 
    234   if (LatticeFunc->IsUntrackedValue(Key))
    235     return LatticeFunc->getUntrackedVal();
    236   LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
    237 
    238   // If this value is untracked, don't add it to the map.
    239   if (LV == LatticeFunc->getUntrackedVal())
    240     return LV;
    241   return ValueState[Key] = LV;
    242 }
    243 
    244 template <class LatticeKey, class LatticeVal, class KeyInfo>
    245 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
    246                                                                 LatticeVal LV) {
    247   auto I = ValueState.find(Key);
    248   if (I != ValueState.end() && I->second == LV)
    249     return; // No change.
    250 
    251   // Update the state of the given LatticeKey and add its corresponding LLVM
    252   // value to the work list.
    253   ValueState[Key] = LV;
    254   if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
    255     ValueWorkList.push_back(V);
    256 }
    257 
    258 template <class LatticeKey, class LatticeVal, class KeyInfo>
    259 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
    260     BasicBlock *BB) {
    261   if (!BBExecutable.insert(BB).second)
    262     return;
    263   DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
    264   BBWorkList.push_back(BB); // Add the block to the work list!
    265 }
    266 
    267 template <class LatticeKey, class LatticeVal, class KeyInfo>
    268 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
    269     BasicBlock *Source, BasicBlock *Dest) {
    270   if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
    271     return; // This edge is already known to be executable!
    272 
    273   DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() << " -> "
    274                << Dest->getName() << "\n");
    275 
    276   if (BBExecutable.count(Dest)) {
    277     // The destination is already executable, but we just made an edge
    278     // feasible that wasn't before.  Revisit the PHI nodes in the block
    279     // because they have potentially new operands.
    280     for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
    281       visitPHINode(*cast<PHINode>(I));
    282   } else {
    283     MarkBlockExecutable(Dest);
    284   }
    285 }
    286 
    287 template <class LatticeKey, class LatticeVal, class KeyInfo>
    288 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
    289     TerminatorInst &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
    290   Succs.resize(TI.getNumSuccessors());
    291   if (TI.getNumSuccessors() == 0)
    292     return;
    293 
    294   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
    295     if (BI->isUnconditional()) {
    296       Succs[0] = true;
    297       return;
    298     }
    299 
    300     LatticeVal BCValue;
    301     if (AggressiveUndef)
    302       BCValue =
    303           getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
    304     else
    305       BCValue = getExistingValueState(
    306           KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
    307 
    308     if (BCValue == LatticeFunc->getOverdefinedVal() ||
    309         BCValue == LatticeFunc->getUntrackedVal()) {
    310       // Overdefined condition variables can branch either way.
    311       Succs[0] = Succs[1] = true;
    312       return;
    313     }
    314 
    315     // If undefined, neither is feasible yet.
    316     if (BCValue == LatticeFunc->getUndefVal())
    317       return;
    318 
    319     Constant *C =
    320         dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
    321             BCValue, BI->getCondition()->getType()));
    322     if (!C || !isa<ConstantInt>(C)) {
    323       // Non-constant values can go either way.
    324       Succs[0] = Succs[1] = true;
    325       return;
    326     }
    327 
    328     // Constant condition variables mean the branch can only go a single way
    329     Succs[C->isNullValue()] = true;
    330     return;
    331   }
    332 
    333   if (TI.isExceptional()) {
    334     Succs.assign(Succs.size(), true);
    335     return;
    336   }
    337 
    338   if (isa<IndirectBrInst>(TI)) {
    339     Succs.assign(Succs.size(), true);
    340     return;
    341   }
    342 
    343   SwitchInst &SI = cast<SwitchInst>(TI);
    344   LatticeVal SCValue;
    345   if (AggressiveUndef)
    346     SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
    347   else
    348     SCValue = getExistingValueState(
    349         KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
    350 
    351   if (SCValue == LatticeFunc->getOverdefinedVal() ||
    352       SCValue == LatticeFunc->getUntrackedVal()) {
    353     // All destinations are executable!
    354     Succs.assign(TI.getNumSuccessors(), true);
    355     return;
    356   }
    357 
    358   // If undefined, neither is feasible yet.
    359   if (SCValue == LatticeFunc->getUndefVal())
    360     return;
    361 
    362   Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
    363       SCValue, SI.getCondition()->getType()));
    364   if (!C || !isa<ConstantInt>(C)) {
    365     // All destinations are executable!
    366     Succs.assign(TI.getNumSuccessors(), true);
    367     return;
    368   }
    369   SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
    370   Succs[Case.getSuccessorIndex()] = true;
    371 }
    372 
    373 template <class LatticeKey, class LatticeVal, class KeyInfo>
    374 bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
    375     BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
    376   SmallVector<bool, 16> SuccFeasible;
    377   TerminatorInst *TI = From->getTerminator();
    378   getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
    379 
    380   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    381     if (TI->getSuccessor(i) == To && SuccFeasible[i])
    382       return true;
    383 
    384   return false;
    385 }
    386 
    387 template <class LatticeKey, class LatticeVal, class KeyInfo>
    388 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminatorInst(
    389     TerminatorInst &TI) {
    390   SmallVector<bool, 16> SuccFeasible;
    391   getFeasibleSuccessors(TI, SuccFeasible, true);
    392 
    393   BasicBlock *BB = TI.getParent();
    394 
    395   // Mark all feasible successors executable...
    396   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    397     if (SuccFeasible[i])
    398       markEdgeExecutable(BB, TI.getSuccessor(i));
    399 }
    400 
    401 template <class LatticeKey, class LatticeVal, class KeyInfo>
    402 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
    403   // The lattice function may store more information on a PHINode than could be
    404   // computed from its incoming values.  For example, SSI form stores its sigma
    405   // functions as PHINodes with a single incoming value.
    406   if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
    407     DenseMap<LatticeKey, LatticeVal> ChangedValues;
    408     LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
    409     for (auto &ChangedValue : ChangedValues)
    410       if (ChangedValue.second != LatticeFunc->getUntrackedVal())
    411         UpdateState(ChangedValue.first, ChangedValue.second);
    412     return;
    413   }
    414 
    415   LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
    416   LatticeVal PNIV = getValueState(Key);
    417   LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
    418 
    419   // If this value is already overdefined (common) just return.
    420   if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
    421     return; // Quick exit
    422 
    423   // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
    424   // and slow us down a lot.  Just mark them overdefined.
    425   if (PN.getNumIncomingValues() > 64) {
    426     UpdateState(Key, Overdefined);
    427     return;
    428   }
    429 
    430   // Look at all of the executable operands of the PHI node.  If any of them
    431   // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
    432   // transfer function to give us the merge of the incoming values.
    433   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    434     // If the edge is not yet known to be feasible, it doesn't impact the PHI.
    435     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
    436       continue;
    437 
    438     // Merge in this value.
    439     LatticeVal OpVal =
    440         getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
    441     if (OpVal != PNIV)
    442       PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
    443 
    444     if (PNIV == Overdefined)
    445       break; // Rest of input values don't matter.
    446   }
    447 
    448   // Update the PHI with the compute value, which is the merge of the inputs.
    449   UpdateState(Key, PNIV);
    450 }
    451 
    452 template <class LatticeKey, class LatticeVal, class KeyInfo>
    453 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
    454   // PHIs are handled by the propagation logic, they are never passed into the
    455   // transfer functions.
    456   if (PHINode *PN = dyn_cast<PHINode>(&I))
    457     return visitPHINode(*PN);
    458 
    459   // Otherwise, ask the transfer function what the result is.  If this is
    460   // something that we care about, remember it.
    461   DenseMap<LatticeKey, LatticeVal> ChangedValues;
    462   LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
    463   for (auto &ChangedValue : ChangedValues)
    464     if (ChangedValue.second != LatticeFunc->getUntrackedVal())
    465       UpdateState(ChangedValue.first, ChangedValue.second);
    466 
    467   if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
    468     visitTerminatorInst(*TI);
    469 }
    470 
    471 template <class LatticeKey, class LatticeVal, class KeyInfo>
    472 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
    473   // Process the work lists until they are empty!
    474   while (!BBWorkList.empty() || !ValueWorkList.empty()) {
    475     // Process the value work list.
    476     while (!ValueWorkList.empty()) {
    477       Value *V = ValueWorkList.back();
    478       ValueWorkList.pop_back();
    479 
    480       DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");
    481 
    482       // "V" got into the work list because it made a transition. See if any
    483       // users are both live and in need of updating.
    484       for (User *U : V->users())
    485         if (Instruction *Inst = dyn_cast<Instruction>(U))
    486           if (BBExecutable.count(Inst->getParent())) // Inst is executable?
    487             visitInst(*Inst);
    488     }
    489 
    490     // Process the basic block work list.
    491     while (!BBWorkList.empty()) {
    492       BasicBlock *BB = BBWorkList.back();
    493       BBWorkList.pop_back();
    494 
    495       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
    496 
    497       // Notify all instructions in this basic block that they are newly
    498       // executable.
    499       for (Instruction &I : *BB)
    500         visitInst(I);
    501     }
    502   }
    503 }
    504 
    505 template <class LatticeKey, class LatticeVal, class KeyInfo>
    506 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
    507     raw_ostream &OS) const {
    508   if (ValueState.empty())
    509     return;
    510 
    511   LatticeKey Key;
    512   LatticeVal LV;
    513 
    514   OS << "ValueState:\n";
    515   for (auto &Entry : ValueState) {
    516     std::tie(Key, LV) = Entry;
    517     if (LV == LatticeFunc->getUntrackedVal())
    518       continue;
    519     OS << "\t";
    520     LatticeFunc->PrintLatticeVal(LV, OS);
    521     OS << ": ";
    522     LatticeFunc->PrintLatticeKey(Key, OS);
    523     OS << "\n";
    524   }
    525 }
    526 } // end namespace llvm
    527 
    528 #undef DEBUG_TYPE
    529 
    530 #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H
    531