Home | History | Annotate | Download | only in Support
      1 //===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both
     12 /// of these conform to an LLVM "Allocator" concept which consists of an
     13 /// Allocate method accepting a size and alignment, and a Deallocate accepting
     14 /// a pointer and size. Further, the LLVM "Allocator" concept has overloads of
     15 /// Allocate and Deallocate for setting size and alignment based on the final
     16 /// type. These overloads are typically provided by a base class template \c
     17 /// AllocatorBase.
     18 ///
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_SUPPORT_ALLOCATOR_H
     22 #define LLVM_SUPPORT_ALLOCATOR_H
     23 
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/Support/Compiler.h"
     26 #include "llvm/Support/MathExtras.h"
     27 #include <algorithm>
     28 #include <cassert>
     29 #include <cstddef>
     30 #include <cstdint>
     31 #include <cstdlib>
     32 #include <iterator>
     33 #include <type_traits>
     34 #include <utility>
     35 
     36 namespace llvm {
     37 
     38 /// \brief CRTP base class providing obvious overloads for the core \c
     39 /// Allocate() methods of LLVM-style allocators.
     40 ///
     41 /// This base class both documents the full public interface exposed by all
     42 /// LLVM-style allocators, and redirects all of the overloads to a single core
     43 /// set of methods which the derived class must define.
     44 template <typename DerivedT> class AllocatorBase {
     45 public:
     46   /// \brief Allocate \a Size bytes of \a Alignment aligned memory. This method
     47   /// must be implemented by \c DerivedT.
     48   void *Allocate(size_t Size, size_t Alignment) {
     49 #ifdef __clang__
     50     static_assert(static_cast<void *(AllocatorBase::*)(size_t, size_t)>(
     51                       &AllocatorBase::Allocate) !=
     52                       static_cast<void *(DerivedT::*)(size_t, size_t)>(
     53                           &DerivedT::Allocate),
     54                   "Class derives from AllocatorBase without implementing the "
     55                   "core Allocate(size_t, size_t) overload!");
     56 #endif
     57     return static_cast<DerivedT *>(this)->Allocate(Size, Alignment);
     58   }
     59 
     60   /// \brief Deallocate \a Ptr to \a Size bytes of memory allocated by this
     61   /// allocator.
     62   void Deallocate(const void *Ptr, size_t Size) {
     63 #ifdef __clang__
     64     static_assert(static_cast<void (AllocatorBase::*)(const void *, size_t)>(
     65                       &AllocatorBase::Deallocate) !=
     66                       static_cast<void (DerivedT::*)(const void *, size_t)>(
     67                           &DerivedT::Deallocate),
     68                   "Class derives from AllocatorBase without implementing the "
     69                   "core Deallocate(void *) overload!");
     70 #endif
     71     return static_cast<DerivedT *>(this)->Deallocate(Ptr, Size);
     72   }
     73 
     74   // The rest of these methods are helpers that redirect to one of the above
     75   // core methods.
     76 
     77   /// \brief Allocate space for a sequence of objects without constructing them.
     78   template <typename T> T *Allocate(size_t Num = 1) {
     79     return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
     80   }
     81 
     82   /// \brief Deallocate space for a sequence of objects without constructing them.
     83   template <typename T>
     84   typename std::enable_if<
     85       !std::is_same<typename std::remove_cv<T>::type, void>::value, void>::type
     86   Deallocate(T *Ptr, size_t Num = 1) {
     87     Deallocate(static_cast<const void *>(Ptr), Num * sizeof(T));
     88   }
     89 };
     90 
     91 class MallocAllocator : public AllocatorBase<MallocAllocator> {
     92 public:
     93   void Reset() {}
     94 
     95   LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size,
     96                                                 size_t /*Alignment*/) {
     97     return malloc(Size);
     98   }
     99 
    100   // Pull in base class overloads.
    101   using AllocatorBase<MallocAllocator>::Allocate;
    102 
    103   void Deallocate(const void *Ptr, size_t /*Size*/) {
    104     free(const_cast<void *>(Ptr));
    105   }
    106 
    107   // Pull in base class overloads.
    108   using AllocatorBase<MallocAllocator>::Deallocate;
    109 
    110   void PrintStats() const {}
    111 };
    112 
    113 namespace detail {
    114 
    115 // We call out to an external function to actually print the message as the
    116 // printing code uses Allocator.h in its implementation.
    117 void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
    118                                 size_t TotalMemory);
    119 
    120 } // end namespace detail
    121 
    122 /// \brief Allocate memory in an ever growing pool, as if by bump-pointer.
    123 ///
    124 /// This isn't strictly a bump-pointer allocator as it uses backing slabs of
    125 /// memory rather than relying on a boundless contiguous heap. However, it has
    126 /// bump-pointer semantics in that it is a monotonically growing pool of memory
    127 /// where every allocation is found by merely allocating the next N bytes in
    128 /// the slab, or the next N bytes in the next slab.
    129 ///
    130 /// Note that this also has a threshold for forcing allocations above a certain
    131 /// size into their own slab.
    132 ///
    133 /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
    134 /// object, which wraps malloc, to allocate memory, but it can be changed to
    135 /// use a custom allocator.
    136 template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
    137           size_t SizeThreshold = SlabSize>
    138 class BumpPtrAllocatorImpl
    139     : public AllocatorBase<
    140           BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold>> {
    141 public:
    142   static_assert(SizeThreshold <= SlabSize,
    143                 "The SizeThreshold must be at most the SlabSize to ensure "
    144                 "that objects larger than a slab go into their own memory "
    145                 "allocation.");
    146 
    147   BumpPtrAllocatorImpl() = default;
    148 
    149   template <typename T>
    150   BumpPtrAllocatorImpl(T &&Allocator)
    151       : Allocator(std::forward<T &&>(Allocator)) {}
    152 
    153   // Manually implement a move constructor as we must clear the old allocator's
    154   // slabs as a matter of correctness.
    155   BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
    156       : CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)),
    157         CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
    158         BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize),
    159         Allocator(std::move(Old.Allocator)) {
    160     Old.CurPtr = Old.End = nullptr;
    161     Old.BytesAllocated = 0;
    162     Old.Slabs.clear();
    163     Old.CustomSizedSlabs.clear();
    164   }
    165 
    166   ~BumpPtrAllocatorImpl() {
    167     DeallocateSlabs(Slabs.begin(), Slabs.end());
    168     DeallocateCustomSizedSlabs();
    169   }
    170 
    171   BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
    172     DeallocateSlabs(Slabs.begin(), Slabs.end());
    173     DeallocateCustomSizedSlabs();
    174 
    175     CurPtr = RHS.CurPtr;
    176     End = RHS.End;
    177     BytesAllocated = RHS.BytesAllocated;
    178     RedZoneSize = RHS.RedZoneSize;
    179     Slabs = std::move(RHS.Slabs);
    180     CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
    181     Allocator = std::move(RHS.Allocator);
    182 
    183     RHS.CurPtr = RHS.End = nullptr;
    184     RHS.BytesAllocated = 0;
    185     RHS.Slabs.clear();
    186     RHS.CustomSizedSlabs.clear();
    187     return *this;
    188   }
    189 
    190   /// \brief Deallocate all but the current slab and reset the current pointer
    191   /// to the beginning of it, freeing all memory allocated so far.
    192   void Reset() {
    193     // Deallocate all but the first slab, and deallocate all custom-sized slabs.
    194     DeallocateCustomSizedSlabs();
    195     CustomSizedSlabs.clear();
    196 
    197     if (Slabs.empty())
    198       return;
    199 
    200     // Reset the state.
    201     BytesAllocated = 0;
    202     CurPtr = (char *)Slabs.front();
    203     End = CurPtr + SlabSize;
    204 
    205     __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0));
    206     DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
    207     Slabs.erase(std::next(Slabs.begin()), Slabs.end());
    208   }
    209 
    210   /// \brief Allocate space at the specified alignment.
    211   LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void *
    212   Allocate(size_t Size, size_t Alignment) {
    213     assert(Alignment > 0 && "0-byte alignnment is not allowed. Use 1 instead.");
    214 
    215     // Keep track of how many bytes we've allocated.
    216     BytesAllocated += Size;
    217 
    218     size_t Adjustment = alignmentAdjustment(CurPtr, Alignment);
    219     assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
    220 
    221     size_t SizeToAllocate = Size;
    222 #if LLVM_ADDRESS_SANITIZER_BUILD
    223     // Add trailing bytes as a "red zone" under ASan.
    224     SizeToAllocate += RedZoneSize;
    225 #endif
    226 
    227     // Check if we have enough space.
    228     if (Adjustment + SizeToAllocate <= size_t(End - CurPtr)) {
    229       char *AlignedPtr = CurPtr + Adjustment;
    230       CurPtr = AlignedPtr + SizeToAllocate;
    231       // Update the allocation point of this memory block in MemorySanitizer.
    232       // Without this, MemorySanitizer messages for values originated from here
    233       // will point to the allocation of the entire slab.
    234       __msan_allocated_memory(AlignedPtr, Size);
    235       // Similarly, tell ASan about this space.
    236       __asan_unpoison_memory_region(AlignedPtr, Size);
    237       return AlignedPtr;
    238     }
    239 
    240     // If Size is really big, allocate a separate slab for it.
    241     size_t PaddedSize = SizeToAllocate + Alignment - 1;
    242     if (PaddedSize > SizeThreshold) {
    243       void *NewSlab = Allocator.Allocate(PaddedSize, 0);
    244       // We own the new slab and don't want anyone reading anyting other than
    245       // pieces returned from this method.  So poison the whole slab.
    246       __asan_poison_memory_region(NewSlab, PaddedSize);
    247       CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
    248 
    249       uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
    250       assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
    251       char *AlignedPtr = (char*)AlignedAddr;
    252       __msan_allocated_memory(AlignedPtr, Size);
    253       __asan_unpoison_memory_region(AlignedPtr, Size);
    254       return AlignedPtr;
    255     }
    256 
    257     // Otherwise, start a new slab and try again.
    258     StartNewSlab();
    259     uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
    260     assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&
    261            "Unable to allocate memory!");
    262     char *AlignedPtr = (char*)AlignedAddr;
    263     CurPtr = AlignedPtr + SizeToAllocate;
    264     __msan_allocated_memory(AlignedPtr, Size);
    265     __asan_unpoison_memory_region(AlignedPtr, Size);
    266     return AlignedPtr;
    267   }
    268 
    269   // Pull in base class overloads.
    270   using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
    271 
    272   // Bump pointer allocators are expected to never free their storage; and
    273   // clients expect pointers to remain valid for non-dereferencing uses even
    274   // after deallocation.
    275   void Deallocate(const void *Ptr, size_t Size) {
    276     __asan_poison_memory_region(Ptr, Size);
    277   }
    278 
    279   // Pull in base class overloads.
    280   using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
    281 
    282   size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
    283 
    284   size_t getTotalMemory() const {
    285     size_t TotalMemory = 0;
    286     for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
    287       TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
    288     for (auto &PtrAndSize : CustomSizedSlabs)
    289       TotalMemory += PtrAndSize.second;
    290     return TotalMemory;
    291   }
    292 
    293   size_t getBytesAllocated() const { return BytesAllocated; }
    294 
    295   void setRedZoneSize(size_t NewSize) {
    296     RedZoneSize = NewSize;
    297   }
    298 
    299   void PrintStats() const {
    300     detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
    301                                        getTotalMemory());
    302   }
    303 
    304 private:
    305   /// \brief The current pointer into the current slab.
    306   ///
    307   /// This points to the next free byte in the slab.
    308   char *CurPtr = nullptr;
    309 
    310   /// \brief The end of the current slab.
    311   char *End = nullptr;
    312 
    313   /// \brief The slabs allocated so far.
    314   SmallVector<void *, 4> Slabs;
    315 
    316   /// \brief Custom-sized slabs allocated for too-large allocation requests.
    317   SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
    318 
    319   /// \brief How many bytes we've allocated.
    320   ///
    321   /// Used so that we can compute how much space was wasted.
    322   size_t BytesAllocated = 0;
    323 
    324   /// \brief The number of bytes to put between allocations when running under
    325   /// a sanitizer.
    326   size_t RedZoneSize = 1;
    327 
    328   /// \brief The allocator instance we use to get slabs of memory.
    329   AllocatorT Allocator;
    330 
    331   static size_t computeSlabSize(unsigned SlabIdx) {
    332     // Scale the actual allocated slab size based on the number of slabs
    333     // allocated. Every 128 slabs allocated, we double the allocated size to
    334     // reduce allocation frequency, but saturate at multiplying the slab size by
    335     // 2^30.
    336     return SlabSize * ((size_t)1 << std::min<size_t>(30, SlabIdx / 128));
    337   }
    338 
    339   /// \brief Allocate a new slab and move the bump pointers over into the new
    340   /// slab, modifying CurPtr and End.
    341   void StartNewSlab() {
    342     size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
    343 
    344     void *NewSlab = Allocator.Allocate(AllocatedSlabSize, 0);
    345     // We own the new slab and don't want anyone reading anything other than
    346     // pieces returned from this method.  So poison the whole slab.
    347     __asan_poison_memory_region(NewSlab, AllocatedSlabSize);
    348 
    349     Slabs.push_back(NewSlab);
    350     CurPtr = (char *)(NewSlab);
    351     End = ((char *)NewSlab) + AllocatedSlabSize;
    352   }
    353 
    354   /// \brief Deallocate a sequence of slabs.
    355   void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
    356                        SmallVectorImpl<void *>::iterator E) {
    357     for (; I != E; ++I) {
    358       size_t AllocatedSlabSize =
    359           computeSlabSize(std::distance(Slabs.begin(), I));
    360       Allocator.Deallocate(*I, AllocatedSlabSize);
    361     }
    362   }
    363 
    364   /// \brief Deallocate all memory for custom sized slabs.
    365   void DeallocateCustomSizedSlabs() {
    366     for (auto &PtrAndSize : CustomSizedSlabs) {
    367       void *Ptr = PtrAndSize.first;
    368       size_t Size = PtrAndSize.second;
    369       Allocator.Deallocate(Ptr, Size);
    370     }
    371   }
    372 
    373   template <typename T> friend class SpecificBumpPtrAllocator;
    374 };
    375 
    376 /// \brief The standard BumpPtrAllocator which just uses the default template
    377 /// parameters.
    378 typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
    379 
    380 /// \brief A BumpPtrAllocator that allows only elements of a specific type to be
    381 /// allocated.
    382 ///
    383 /// This allows calling the destructor in DestroyAll() and when the allocator is
    384 /// destroyed.
    385 template <typename T> class SpecificBumpPtrAllocator {
    386   BumpPtrAllocator Allocator;
    387 
    388 public:
    389   SpecificBumpPtrAllocator() {
    390     // Because SpecificBumpPtrAllocator walks the memory to call destructors,
    391     // it can't have red zones between allocations.
    392     Allocator.setRedZoneSize(0);
    393   }
    394   SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
    395       : Allocator(std::move(Old.Allocator)) {}
    396   ~SpecificBumpPtrAllocator() { DestroyAll(); }
    397 
    398   SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
    399     Allocator = std::move(RHS.Allocator);
    400     return *this;
    401   }
    402 
    403   /// Call the destructor of each allocated object and deallocate all but the
    404   /// current slab and reset the current pointer to the beginning of it, freeing
    405   /// all memory allocated so far.
    406   void DestroyAll() {
    407     auto DestroyElements = [](char *Begin, char *End) {
    408       assert(Begin == (char *)alignAddr(Begin, alignof(T)));
    409       for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
    410         reinterpret_cast<T *>(Ptr)->~T();
    411     };
    412 
    413     for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
    414          ++I) {
    415       size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
    416           std::distance(Allocator.Slabs.begin(), I));
    417       char *Begin = (char *)alignAddr(*I, alignof(T));
    418       char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
    419                                                : (char *)*I + AllocatedSlabSize;
    420 
    421       DestroyElements(Begin, End);
    422     }
    423 
    424     for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
    425       void *Ptr = PtrAndSize.first;
    426       size_t Size = PtrAndSize.second;
    427       DestroyElements((char *)alignAddr(Ptr, alignof(T)), (char *)Ptr + Size);
    428     }
    429 
    430     Allocator.Reset();
    431   }
    432 
    433   /// \brief Allocate space for an array of objects without constructing them.
    434   T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
    435 };
    436 
    437 } // end namespace llvm
    438 
    439 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
    440 void *operator new(size_t Size,
    441                    llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
    442                                               SizeThreshold> &Allocator) {
    443   struct S {
    444     char c;
    445     union {
    446       double D;
    447       long double LD;
    448       long long L;
    449       void *P;
    450     } x;
    451   };
    452   return Allocator.Allocate(
    453       Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x)));
    454 }
    455 
    456 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
    457 void operator delete(
    458     void *, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold> &) {
    459 }
    460 
    461 #endif // LLVM_SUPPORT_ALLOCATOR_H
    462