Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the BitVector class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_BITVECTOR_H
     15 #define LLVM_ADT_BITVECTOR_H
     16 
     17 #include "llvm/ADT/ArrayRef.h"
     18 #include "llvm/ADT/iterator_range.h"
     19 #include "llvm/Support/MathExtras.h"
     20 #include <algorithm>
     21 #include <cassert>
     22 #include <climits>
     23 #include <cstdint>
     24 #include <cstdlib>
     25 #include <cstring>
     26 #include <utility>
     27 
     28 namespace llvm {
     29 
     30 /// ForwardIterator for the bits that are set.
     31 /// Iterators get invalidated when resize / reserve is called.
     32 template <typename BitVectorT> class const_set_bits_iterator_impl {
     33   const BitVectorT &Parent;
     34   int Current = 0;
     35 
     36   void advance() {
     37     assert(Current != -1 && "Trying to advance past end.");
     38     Current = Parent.find_next(Current);
     39   }
     40 
     41 public:
     42   const_set_bits_iterator_impl(const BitVectorT &Parent, int Current)
     43       : Parent(Parent), Current(Current) {}
     44   explicit const_set_bits_iterator_impl(const BitVectorT &Parent)
     45       : const_set_bits_iterator_impl(Parent, Parent.find_first()) {}
     46   const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default;
     47 
     48   const_set_bits_iterator_impl operator++(int) {
     49     auto Prev = *this;
     50     advance();
     51     return Prev;
     52   }
     53 
     54   const_set_bits_iterator_impl &operator++() {
     55     advance();
     56     return *this;
     57   }
     58 
     59   unsigned operator*() const { return Current; }
     60 
     61   bool operator==(const const_set_bits_iterator_impl &Other) const {
     62     assert(&Parent == &Other.Parent &&
     63            "Comparing iterators from different BitVectors");
     64     return Current == Other.Current;
     65   }
     66 
     67   bool operator!=(const const_set_bits_iterator_impl &Other) const {
     68     assert(&Parent == &Other.Parent &&
     69            "Comparing iterators from different BitVectors");
     70     return Current != Other.Current;
     71   }
     72 };
     73 
     74 class BitVector {
     75   typedef unsigned long BitWord;
     76 
     77   enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
     78 
     79   static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
     80                 "Unsupported word size");
     81 
     82   MutableArrayRef<BitWord> Bits; // Actual bits.
     83   unsigned Size;                 // Size of bitvector in bits.
     84 
     85 public:
     86   typedef unsigned size_type;
     87   // Encapsulation of a single bit.
     88   class reference {
     89     friend class BitVector;
     90 
     91     BitWord *WordRef;
     92     unsigned BitPos;
     93 
     94   public:
     95     reference(BitVector &b, unsigned Idx) {
     96       WordRef = &b.Bits[Idx / BITWORD_SIZE];
     97       BitPos = Idx % BITWORD_SIZE;
     98     }
     99 
    100     reference() = delete;
    101     reference(const reference&) = default;
    102 
    103     reference &operator=(reference t) {
    104       *this = bool(t);
    105       return *this;
    106     }
    107 
    108     reference& operator=(bool t) {
    109       if (t)
    110         *WordRef |= BitWord(1) << BitPos;
    111       else
    112         *WordRef &= ~(BitWord(1) << BitPos);
    113       return *this;
    114     }
    115 
    116     operator bool() const {
    117       return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
    118     }
    119   };
    120 
    121   typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator;
    122   typedef const_set_bits_iterator set_iterator;
    123 
    124   const_set_bits_iterator set_bits_begin() const {
    125     return const_set_bits_iterator(*this);
    126   }
    127   const_set_bits_iterator set_bits_end() const {
    128     return const_set_bits_iterator(*this, -1);
    129   }
    130   iterator_range<const_set_bits_iterator> set_bits() const {
    131     return make_range(set_bits_begin(), set_bits_end());
    132   }
    133 
    134   /// BitVector default ctor - Creates an empty bitvector.
    135   BitVector() : Size(0) {}
    136 
    137   /// BitVector ctor - Creates a bitvector of specified number of bits. All
    138   /// bits are initialized to the specified value.
    139   explicit BitVector(unsigned s, bool t = false) : Size(s) {
    140     size_t Capacity = NumBitWords(s);
    141     Bits = allocate(Capacity);
    142     init_words(Bits, t);
    143     if (t)
    144       clear_unused_bits();
    145   }
    146 
    147   /// BitVector copy ctor.
    148   BitVector(const BitVector &RHS) : Size(RHS.size()) {
    149     if (Size == 0) {
    150       Bits = MutableArrayRef<BitWord>();
    151       return;
    152     }
    153 
    154     size_t Capacity = NumBitWords(RHS.size());
    155     Bits = allocate(Capacity);
    156     std::memcpy(Bits.data(), RHS.Bits.data(), Capacity * sizeof(BitWord));
    157   }
    158 
    159   BitVector(BitVector &&RHS) : Bits(RHS.Bits), Size(RHS.Size) {
    160     RHS.Bits = MutableArrayRef<BitWord>();
    161     RHS.Size = 0;
    162   }
    163 
    164   ~BitVector() { std::free(Bits.data()); }
    165 
    166   /// empty - Tests whether there are no bits in this bitvector.
    167   bool empty() const { return Size == 0; }
    168 
    169   /// size - Returns the number of bits in this bitvector.
    170   size_type size() const { return Size; }
    171 
    172   /// count - Returns the number of bits which are set.
    173   size_type count() const {
    174     unsigned NumBits = 0;
    175     for (unsigned i = 0; i < NumBitWords(size()); ++i)
    176       NumBits += countPopulation(Bits[i]);
    177     return NumBits;
    178   }
    179 
    180   /// any - Returns true if any bit is set.
    181   bool any() const {
    182     for (unsigned i = 0; i < NumBitWords(size()); ++i)
    183       if (Bits[i] != 0)
    184         return true;
    185     return false;
    186   }
    187 
    188   /// all - Returns true if all bits are set.
    189   bool all() const {
    190     for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
    191       if (Bits[i] != ~0UL)
    192         return false;
    193 
    194     // If bits remain check that they are ones. The unused bits are always zero.
    195     if (unsigned Remainder = Size % BITWORD_SIZE)
    196       return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
    197 
    198     return true;
    199   }
    200 
    201   /// none - Returns true if none of the bits are set.
    202   bool none() const {
    203     return !any();
    204   }
    205 
    206   /// find_first_in - Returns the index of the first set bit in the range
    207   /// [Begin, End).  Returns -1 if all bits in the range are unset.
    208   int find_first_in(unsigned Begin, unsigned End) const {
    209     assert(Begin <= End && End <= Size);
    210     if (Begin == End)
    211       return -1;
    212 
    213     unsigned FirstWord = Begin / BITWORD_SIZE;
    214     unsigned LastWord = (End - 1) / BITWORD_SIZE;
    215 
    216     // Check subsequent words.
    217     for (unsigned i = FirstWord; i <= LastWord; ++i) {
    218       BitWord Copy = Bits[i];
    219 
    220       if (i == FirstWord) {
    221         unsigned FirstBit = Begin % BITWORD_SIZE;
    222         Copy &= maskTrailingZeros<BitWord>(FirstBit);
    223       }
    224 
    225       if (i == LastWord) {
    226         unsigned LastBit = (End - 1) % BITWORD_SIZE;
    227         Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
    228       }
    229       if (Copy != 0)
    230         return i * BITWORD_SIZE + countTrailingZeros(Copy);
    231     }
    232     return -1;
    233   }
    234 
    235   /// find_last_in - Returns the index of the last set bit in the range
    236   /// [Begin, End).  Returns -1 if all bits in the range are unset.
    237   int find_last_in(unsigned Begin, unsigned End) const {
    238     assert(Begin <= End && End <= Size);
    239     if (Begin == End)
    240       return -1;
    241 
    242     unsigned LastWord = (End - 1) / BITWORD_SIZE;
    243     unsigned FirstWord = Begin / BITWORD_SIZE;
    244 
    245     for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
    246       unsigned CurrentWord = i - 1;
    247 
    248       BitWord Copy = Bits[CurrentWord];
    249       if (CurrentWord == LastWord) {
    250         unsigned LastBit = (End - 1) % BITWORD_SIZE;
    251         Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
    252       }
    253 
    254       if (CurrentWord == FirstWord) {
    255         unsigned FirstBit = Begin % BITWORD_SIZE;
    256         Copy &= maskTrailingZeros<BitWord>(FirstBit);
    257       }
    258 
    259       if (Copy != 0)
    260         return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1;
    261     }
    262 
    263     return -1;
    264   }
    265 
    266   /// find_first_unset_in - Returns the index of the first unset bit in the
    267   /// range [Begin, End).  Returns -1 if all bits in the range are set.
    268   int find_first_unset_in(unsigned Begin, unsigned End) const {
    269     assert(Begin <= End && End <= Size);
    270     if (Begin == End)
    271       return -1;
    272 
    273     unsigned FirstWord = Begin / BITWORD_SIZE;
    274     unsigned LastWord = (End - 1) / BITWORD_SIZE;
    275 
    276     // Check subsequent words.
    277     for (unsigned i = FirstWord; i <= LastWord; ++i) {
    278       BitWord Copy = Bits[i];
    279 
    280       if (i == FirstWord) {
    281         unsigned FirstBit = Begin % BITWORD_SIZE;
    282         Copy |= maskTrailingOnes<BitWord>(FirstBit);
    283       }
    284 
    285       if (i == LastWord) {
    286         unsigned LastBit = (End - 1) % BITWORD_SIZE;
    287         Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
    288       }
    289       if (Copy != ~0UL) {
    290         unsigned Result = i * BITWORD_SIZE + countTrailingOnes(Copy);
    291         return Result < size() ? Result : -1;
    292       }
    293     }
    294     return -1;
    295   }
    296 
    297   /// find_last_unset_in - Returns the index of the last unset bit in the
    298   /// range [Begin, End).  Returns -1 if all bits in the range are set.
    299   int find_last_unset_in(unsigned Begin, unsigned End) const {
    300     assert(Begin <= End && End <= Size);
    301     if (Begin == End)
    302       return -1;
    303 
    304     unsigned LastWord = (End - 1) / BITWORD_SIZE;
    305     unsigned FirstWord = Begin / BITWORD_SIZE;
    306 
    307     for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
    308       unsigned CurrentWord = i - 1;
    309 
    310       BitWord Copy = Bits[CurrentWord];
    311       if (CurrentWord == LastWord) {
    312         unsigned LastBit = (End - 1) % BITWORD_SIZE;
    313         Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
    314       }
    315 
    316       if (CurrentWord == FirstWord) {
    317         unsigned FirstBit = Begin % BITWORD_SIZE;
    318         Copy |= maskTrailingOnes<BitWord>(FirstBit);
    319       }
    320 
    321       if (Copy != ~0UL) {
    322         unsigned Result =
    323             (CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1;
    324         return Result < Size ? Result : -1;
    325       }
    326     }
    327     return -1;
    328   }
    329 
    330   /// find_first - Returns the index of the first set bit, -1 if none
    331   /// of the bits are set.
    332   int find_first() const { return find_first_in(0, Size); }
    333 
    334   /// find_last - Returns the index of the last set bit, -1 if none of the bits
    335   /// are set.
    336   int find_last() const { return find_last_in(0, Size); }
    337 
    338   /// find_next - Returns the index of the next set bit following the
    339   /// "Prev" bit. Returns -1 if the next set bit is not found.
    340   int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); }
    341 
    342   /// find_prev - Returns the index of the first set bit that precedes the
    343   /// the bit at \p PriorTo.  Returns -1 if all previous bits are unset.
    344   int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); }
    345 
    346   /// find_first_unset - Returns the index of the first unset bit, -1 if all
    347   /// of the bits are set.
    348   int find_first_unset() const { return find_first_unset_in(0, Size); }
    349 
    350   /// find_next_unset - Returns the index of the next unset bit following the
    351   /// "Prev" bit.  Returns -1 if all remaining bits are set.
    352   int find_next_unset(unsigned Prev) const {
    353     return find_first_unset_in(Prev + 1, Size);
    354   }
    355 
    356   /// find_last_unset - Returns the index of the last unset bit, -1 if all of
    357   /// the bits are set.
    358   int find_last_unset() const { return find_last_unset_in(0, Size); }
    359 
    360   /// find_prev_unset - Returns the index of the first unset bit that precedes
    361   /// the bit at \p PriorTo.  Returns -1 if all previous bits are set.
    362   int find_prev_unset(unsigned PriorTo) {
    363     return find_last_unset_in(0, PriorTo);
    364   }
    365 
    366   /// clear - Removes all bits from the bitvector. Does not change capacity.
    367   void clear() {
    368     Size = 0;
    369   }
    370 
    371   /// resize - Grow or shrink the bitvector.
    372   void resize(unsigned N, bool t = false) {
    373     if (N > getBitCapacity()) {
    374       unsigned OldCapacity = Bits.size();
    375       grow(N);
    376       init_words(Bits.drop_front(OldCapacity), t);
    377     }
    378 
    379     // Set any old unused bits that are now included in the BitVector. This
    380     // may set bits that are not included in the new vector, but we will clear
    381     // them back out below.
    382     if (N > Size)
    383       set_unused_bits(t);
    384 
    385     // Update the size, and clear out any bits that are now unused
    386     unsigned OldSize = Size;
    387     Size = N;
    388     if (t || N < OldSize)
    389       clear_unused_bits();
    390   }
    391 
    392   void reserve(unsigned N) {
    393     if (N > getBitCapacity())
    394       grow(N);
    395   }
    396 
    397   // Set, reset, flip
    398   BitVector &set() {
    399     init_words(Bits, true);
    400     clear_unused_bits();
    401     return *this;
    402   }
    403 
    404   BitVector &set(unsigned Idx) {
    405     assert(Bits.data() && "Bits never allocated");
    406     Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
    407     return *this;
    408   }
    409 
    410   /// set - Efficiently set a range of bits in [I, E)
    411   BitVector &set(unsigned I, unsigned E) {
    412     assert(I <= E && "Attempted to set backwards range!");
    413     assert(E <= size() && "Attempted to set out-of-bounds range!");
    414 
    415     if (I == E) return *this;
    416 
    417     if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
    418       BitWord EMask = 1UL << (E % BITWORD_SIZE);
    419       BitWord IMask = 1UL << (I % BITWORD_SIZE);
    420       BitWord Mask = EMask - IMask;
    421       Bits[I / BITWORD_SIZE] |= Mask;
    422       return *this;
    423     }
    424 
    425     BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
    426     Bits[I / BITWORD_SIZE] |= PrefixMask;
    427     I = alignTo(I, BITWORD_SIZE);
    428 
    429     for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
    430       Bits[I / BITWORD_SIZE] = ~0UL;
    431 
    432     BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
    433     if (I < E)
    434       Bits[I / BITWORD_SIZE] |= PostfixMask;
    435 
    436     return *this;
    437   }
    438 
    439   BitVector &reset() {
    440     init_words(Bits, false);
    441     return *this;
    442   }
    443 
    444   BitVector &reset(unsigned Idx) {
    445     Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
    446     return *this;
    447   }
    448 
    449   /// reset - Efficiently reset a range of bits in [I, E)
    450   BitVector &reset(unsigned I, unsigned E) {
    451     assert(I <= E && "Attempted to reset backwards range!");
    452     assert(E <= size() && "Attempted to reset out-of-bounds range!");
    453 
    454     if (I == E) return *this;
    455 
    456     if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
    457       BitWord EMask = 1UL << (E % BITWORD_SIZE);
    458       BitWord IMask = 1UL << (I % BITWORD_SIZE);
    459       BitWord Mask = EMask - IMask;
    460       Bits[I / BITWORD_SIZE] &= ~Mask;
    461       return *this;
    462     }
    463 
    464     BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
    465     Bits[I / BITWORD_SIZE] &= ~PrefixMask;
    466     I = alignTo(I, BITWORD_SIZE);
    467 
    468     for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
    469       Bits[I / BITWORD_SIZE] = 0UL;
    470 
    471     BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
    472     if (I < E)
    473       Bits[I / BITWORD_SIZE] &= ~PostfixMask;
    474 
    475     return *this;
    476   }
    477 
    478   BitVector &flip() {
    479     for (unsigned i = 0; i < NumBitWords(size()); ++i)
    480       Bits[i] = ~Bits[i];
    481     clear_unused_bits();
    482     return *this;
    483   }
    484 
    485   BitVector &flip(unsigned Idx) {
    486     Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
    487     return *this;
    488   }
    489 
    490   // Indexing.
    491   reference operator[](unsigned Idx) {
    492     assert (Idx < Size && "Out-of-bounds Bit access.");
    493     return reference(*this, Idx);
    494   }
    495 
    496   bool operator[](unsigned Idx) const {
    497     assert (Idx < Size && "Out-of-bounds Bit access.");
    498     BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
    499     return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
    500   }
    501 
    502   bool test(unsigned Idx) const {
    503     return (*this)[Idx];
    504   }
    505 
    506   /// Test if any common bits are set.
    507   bool anyCommon(const BitVector &RHS) const {
    508     unsigned ThisWords = NumBitWords(size());
    509     unsigned RHSWords  = NumBitWords(RHS.size());
    510     for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
    511       if (Bits[i] & RHS.Bits[i])
    512         return true;
    513     return false;
    514   }
    515 
    516   // Comparison operators.
    517   bool operator==(const BitVector &RHS) const {
    518     unsigned ThisWords = NumBitWords(size());
    519     unsigned RHSWords  = NumBitWords(RHS.size());
    520     unsigned i;
    521     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
    522       if (Bits[i] != RHS.Bits[i])
    523         return false;
    524 
    525     // Verify that any extra words are all zeros.
    526     if (i != ThisWords) {
    527       for (; i != ThisWords; ++i)
    528         if (Bits[i])
    529           return false;
    530     } else if (i != RHSWords) {
    531       for (; i != RHSWords; ++i)
    532         if (RHS.Bits[i])
    533           return false;
    534     }
    535     return true;
    536   }
    537 
    538   bool operator!=(const BitVector &RHS) const {
    539     return !(*this == RHS);
    540   }
    541 
    542   /// Intersection, union, disjoint union.
    543   BitVector &operator&=(const BitVector &RHS) {
    544     unsigned ThisWords = NumBitWords(size());
    545     unsigned RHSWords  = NumBitWords(RHS.size());
    546     unsigned i;
    547     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
    548       Bits[i] &= RHS.Bits[i];
    549 
    550     // Any bits that are just in this bitvector become zero, because they aren't
    551     // in the RHS bit vector.  Any words only in RHS are ignored because they
    552     // are already zero in the LHS.
    553     for (; i != ThisWords; ++i)
    554       Bits[i] = 0;
    555 
    556     return *this;
    557   }
    558 
    559   /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
    560   BitVector &reset(const BitVector &RHS) {
    561     unsigned ThisWords = NumBitWords(size());
    562     unsigned RHSWords  = NumBitWords(RHS.size());
    563     unsigned i;
    564     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
    565       Bits[i] &= ~RHS.Bits[i];
    566     return *this;
    567   }
    568 
    569   /// test - Check if (This - RHS) is zero.
    570   /// This is the same as reset(RHS) and any().
    571   bool test(const BitVector &RHS) const {
    572     unsigned ThisWords = NumBitWords(size());
    573     unsigned RHSWords  = NumBitWords(RHS.size());
    574     unsigned i;
    575     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
    576       if ((Bits[i] & ~RHS.Bits[i]) != 0)
    577         return true;
    578 
    579     for (; i != ThisWords ; ++i)
    580       if (Bits[i] != 0)
    581         return true;
    582 
    583     return false;
    584   }
    585 
    586   BitVector &operator|=(const BitVector &RHS) {
    587     if (size() < RHS.size())
    588       resize(RHS.size());
    589     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
    590       Bits[i] |= RHS.Bits[i];
    591     return *this;
    592   }
    593 
    594   BitVector &operator^=(const BitVector &RHS) {
    595     if (size() < RHS.size())
    596       resize(RHS.size());
    597     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
    598       Bits[i] ^= RHS.Bits[i];
    599     return *this;
    600   }
    601 
    602   BitVector &operator>>=(unsigned N) {
    603     assert(N <= Size);
    604     if (LLVM_UNLIKELY(empty() || N == 0))
    605       return *this;
    606 
    607     unsigned NumWords = NumBitWords(Size);
    608     assert(NumWords >= 1);
    609 
    610     wordShr(N / BITWORD_SIZE);
    611 
    612     unsigned BitDistance = N % BITWORD_SIZE;
    613     if (BitDistance == 0)
    614       return *this;
    615 
    616     // When the shift size is not a multiple of the word size, then we have
    617     // a tricky situation where each word in succession needs to extract some
    618     // of the bits from the next word and or them into this word while
    619     // shifting this word to make room for the new bits.  This has to be done
    620     // for every word in the array.
    621 
    622     // Since we're shifting each word right, some bits will fall off the end
    623     // of each word to the right, and empty space will be created on the left.
    624     // The final word in the array will lose bits permanently, so starting at
    625     // the beginning, work forwards shifting each word to the right, and
    626     // OR'ing in the bits from the end of the next word to the beginning of
    627     // the current word.
    628 
    629     // Example:
    630     //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right
    631     //   by 4 bits.
    632     // Step 1: Word[0] >>= 4           ; 0x0ABBCCDD
    633     // Step 2: Word[0] |= 0x10000000   ; 0x1ABBCCDD
    634     // Step 3: Word[1] >>= 4           ; 0x0EEFF001
    635     // Step 4: Word[1] |= 0x50000000   ; 0x5EEFF001
    636     // Step 5: Word[2] >>= 4           ; 0x02334455
    637     // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 }
    638     const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance);
    639     const unsigned LSH = BITWORD_SIZE - BitDistance;
    640 
    641     for (unsigned I = 0; I < NumWords - 1; ++I) {
    642       Bits[I] >>= BitDistance;
    643       Bits[I] |= (Bits[I + 1] & Mask) << LSH;
    644     }
    645 
    646     Bits[NumWords - 1] >>= BitDistance;
    647 
    648     return *this;
    649   }
    650 
    651   BitVector &operator<<=(unsigned N) {
    652     assert(N <= Size);
    653     if (LLVM_UNLIKELY(empty() || N == 0))
    654       return *this;
    655 
    656     unsigned NumWords = NumBitWords(Size);
    657     assert(NumWords >= 1);
    658 
    659     wordShl(N / BITWORD_SIZE);
    660 
    661     unsigned BitDistance = N % BITWORD_SIZE;
    662     if (BitDistance == 0)
    663       return *this;
    664 
    665     // When the shift size is not a multiple of the word size, then we have
    666     // a tricky situation where each word in succession needs to extract some
    667     // of the bits from the previous word and or them into this word while
    668     // shifting this word to make room for the new bits.  This has to be done
    669     // for every word in the array.  This is similar to the algorithm outlined
    670     // in operator>>=, but backwards.
    671 
    672     // Since we're shifting each word left, some bits will fall off the end
    673     // of each word to the left, and empty space will be created on the right.
    674     // The first word in the array will lose bits permanently, so starting at
    675     // the end, work backwards shifting each word to the left, and OR'ing
    676     // in the bits from the end of the next word to the beginning of the
    677     // current word.
    678 
    679     // Example:
    680     //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left
    681     //   by 4 bits.
    682     // Step 1: Word[2] <<= 4           ; 0x23344550
    683     // Step 2: Word[2] |= 0x0000000E   ; 0x2334455E
    684     // Step 3: Word[1] <<= 4           ; 0xEFF00110
    685     // Step 4: Word[1] |= 0x0000000A   ; 0xEFF0011A
    686     // Step 5: Word[0] <<= 4           ; 0xABBCCDD0
    687     // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E }
    688     const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance);
    689     const unsigned RSH = BITWORD_SIZE - BitDistance;
    690 
    691     for (int I = NumWords - 1; I > 0; --I) {
    692       Bits[I] <<= BitDistance;
    693       Bits[I] |= (Bits[I - 1] & Mask) >> RSH;
    694     }
    695     Bits[0] <<= BitDistance;
    696     clear_unused_bits();
    697 
    698     return *this;
    699   }
    700 
    701   // Assignment operator.
    702   const BitVector &operator=(const BitVector &RHS) {
    703     if (this == &RHS) return *this;
    704 
    705     Size = RHS.size();
    706     unsigned RHSWords = NumBitWords(Size);
    707     if (Size <= getBitCapacity()) {
    708       if (Size)
    709         std::memcpy(Bits.data(), RHS.Bits.data(), RHSWords * sizeof(BitWord));
    710       clear_unused_bits();
    711       return *this;
    712     }
    713 
    714     // Grow the bitvector to have enough elements.
    715     unsigned NewCapacity = RHSWords;
    716     assert(NewCapacity > 0 && "negative capacity?");
    717     auto NewBits = allocate(NewCapacity);
    718     std::memcpy(NewBits.data(), RHS.Bits.data(), NewCapacity * sizeof(BitWord));
    719 
    720     // Destroy the old bits.
    721     std::free(Bits.data());
    722     Bits = NewBits;
    723 
    724     return *this;
    725   }
    726 
    727   const BitVector &operator=(BitVector &&RHS) {
    728     if (this == &RHS) return *this;
    729 
    730     std::free(Bits.data());
    731     Bits = RHS.Bits;
    732     Size = RHS.Size;
    733 
    734     RHS.Bits = MutableArrayRef<BitWord>();
    735     RHS.Size = 0;
    736 
    737     return *this;
    738   }
    739 
    740   void swap(BitVector &RHS) {
    741     std::swap(Bits, RHS.Bits);
    742     std::swap(Size, RHS.Size);
    743   }
    744 
    745   //===--------------------------------------------------------------------===//
    746   // Portable bit mask operations.
    747   //===--------------------------------------------------------------------===//
    748   //
    749   // These methods all operate on arrays of uint32_t, each holding 32 bits. The
    750   // fixed word size makes it easier to work with literal bit vector constants
    751   // in portable code.
    752   //
    753   // The LSB in each word is the lowest numbered bit.  The size of a portable
    754   // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
    755   // given, the bit mask is assumed to cover the entire BitVector.
    756 
    757   /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
    758   /// This computes "*this |= Mask".
    759   void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    760     applyMask<true, false>(Mask, MaskWords);
    761   }
    762 
    763   /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
    764   /// Don't resize. This computes "*this &= ~Mask".
    765   void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    766     applyMask<false, false>(Mask, MaskWords);
    767   }
    768 
    769   /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
    770   /// Don't resize.  This computes "*this |= ~Mask".
    771   void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    772     applyMask<true, true>(Mask, MaskWords);
    773   }
    774 
    775   /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
    776   /// Don't resize.  This computes "*this &= Mask".
    777   void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    778     applyMask<false, true>(Mask, MaskWords);
    779   }
    780 
    781 private:
    782   /// \brief Perform a logical left shift of \p Count words by moving everything
    783   /// \p Count words to the right in memory.
    784   ///
    785   /// While confusing, words are stored from least significant at Bits[0] to
    786   /// most significant at Bits[NumWords-1].  A logical shift left, however,
    787   /// moves the current least significant bit to a higher logical index, and
    788   /// fills the previous least significant bits with 0.  Thus, we actually
    789   /// need to move the bytes of the memory to the right, not to the left.
    790   /// Example:
    791   ///   Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000]
    792   /// represents a BitVector where 0xBBBBAAAA contain the least significant
    793   /// bits.  So if we want to shift the BitVector left by 2 words, we need to
    794   /// turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a
    795   /// memmove which moves right, not left.
    796   void wordShl(uint32_t Count) {
    797     if (Count == 0)
    798       return;
    799 
    800     uint32_t NumWords = NumBitWords(Size);
    801 
    802     auto Src = Bits.take_front(NumWords).drop_back(Count);
    803     auto Dest = Bits.take_front(NumWords).drop_front(Count);
    804 
    805     // Since we always move Word-sized chunks of data with src and dest both
    806     // aligned to a word-boundary, we don't need to worry about endianness
    807     // here.
    808     std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord));
    809     std::memset(Bits.data(), 0, Count * sizeof(BitWord));
    810     clear_unused_bits();
    811   }
    812 
    813   /// \brief Perform a logical right shift of \p Count words by moving those
    814   /// words to the left in memory.  See wordShl for more information.
    815   ///
    816   void wordShr(uint32_t Count) {
    817     if (Count == 0)
    818       return;
    819 
    820     uint32_t NumWords = NumBitWords(Size);
    821 
    822     auto Src = Bits.take_front(NumWords).drop_front(Count);
    823     auto Dest = Bits.take_front(NumWords).drop_back(Count);
    824     assert(Dest.size() == Src.size());
    825 
    826     std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord));
    827     std::memset(Dest.end(), 0, Count * sizeof(BitWord));
    828   }
    829 
    830   MutableArrayRef<BitWord> allocate(size_t NumWords) {
    831     BitWord *RawBits = (BitWord *)std::malloc(NumWords * sizeof(BitWord));
    832     return MutableArrayRef<BitWord>(RawBits, NumWords);
    833   }
    834 
    835   int next_unset_in_word(int WordIndex, BitWord Word) const {
    836     unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word);
    837     return Result < size() ? Result : -1;
    838   }
    839 
    840   unsigned NumBitWords(unsigned S) const {
    841     return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
    842   }
    843 
    844   // Set the unused bits in the high words.
    845   void set_unused_bits(bool t = true) {
    846     //  Set high words first.
    847     unsigned UsedWords = NumBitWords(Size);
    848     if (Bits.size() > UsedWords)
    849       init_words(Bits.drop_front(UsedWords), t);
    850 
    851     //  Then set any stray high bits of the last used word.
    852     unsigned ExtraBits = Size % BITWORD_SIZE;
    853     if (ExtraBits) {
    854       BitWord ExtraBitMask = ~0UL << ExtraBits;
    855       if (t)
    856         Bits[UsedWords-1] |= ExtraBitMask;
    857       else
    858         Bits[UsedWords-1] &= ~ExtraBitMask;
    859     }
    860   }
    861 
    862   // Clear the unused bits in the high words.
    863   void clear_unused_bits() {
    864     set_unused_bits(false);
    865   }
    866 
    867   void grow(unsigned NewSize) {
    868     size_t NewCapacity = std::max<size_t>(NumBitWords(NewSize), Bits.size() * 2);
    869     assert(NewCapacity > 0 && "realloc-ing zero space");
    870     BitWord *NewBits =
    871         (BitWord *)std::realloc(Bits.data(), NewCapacity * sizeof(BitWord));
    872     Bits = MutableArrayRef<BitWord>(NewBits, NewCapacity);
    873     clear_unused_bits();
    874   }
    875 
    876   void init_words(MutableArrayRef<BitWord> B, bool t) {
    877     if (B.size() > 0)
    878       memset(B.data(), 0 - (int)t, B.size() * sizeof(BitWord));
    879   }
    880 
    881   template<bool AddBits, bool InvertMask>
    882   void applyMask(const uint32_t *Mask, unsigned MaskWords) {
    883     static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
    884     MaskWords = std::min(MaskWords, (size() + 31) / 32);
    885     const unsigned Scale = BITWORD_SIZE / 32;
    886     unsigned i;
    887     for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
    888       BitWord BW = Bits[i];
    889       // This inner loop should unroll completely when BITWORD_SIZE > 32.
    890       for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
    891         uint32_t M = *Mask++;
    892         if (InvertMask) M = ~M;
    893         if (AddBits) BW |=   BitWord(M) << b;
    894         else         BW &= ~(BitWord(M) << b);
    895       }
    896       Bits[i] = BW;
    897     }
    898     for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
    899       uint32_t M = *Mask++;
    900       if (InvertMask) M = ~M;
    901       if (AddBits) Bits[i] |=   BitWord(M) << b;
    902       else         Bits[i] &= ~(BitWord(M) << b);
    903     }
    904     if (AddBits)
    905       clear_unused_bits();
    906   }
    907 
    908 public:
    909   /// Return the size (in bytes) of the bit vector.
    910   size_t getMemorySize() const { return Bits.size() * sizeof(BitWord); }
    911   size_t getBitCapacity() const { return Bits.size() * BITWORD_SIZE; }
    912 };
    913 
    914 static inline size_t capacity_in_bytes(const BitVector &X) {
    915   return X.getMemorySize();
    916 }
    917 
    918 } // end namespace llvm
    919 
    920 namespace std {
    921   /// Implement std::swap in terms of BitVector swap.
    922   inline void
    923   swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
    924     LHS.swap(RHS);
    925   }
    926 } // end namespace std
    927 
    928 #endif // LLVM_ADT_BITVECTOR_H
    929