Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the DenseMap class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_DENSEMAP_H
     15 #define LLVM_ADT_DENSEMAP_H
     16 
     17 #include "llvm/ADT/DenseMapInfo.h"
     18 #include "llvm/ADT/EpochTracker.h"
     19 #include "llvm/Support/AlignOf.h"
     20 #include "llvm/Support/Compiler.h"
     21 #include "llvm/Support/MathExtras.h"
     22 #include "llvm/Support/ReverseIteration.h"
     23 #include "llvm/Support/type_traits.h"
     24 #include <algorithm>
     25 #include <cassert>
     26 #include <cstddef>
     27 #include <cstring>
     28 #include <iterator>
     29 #include <new>
     30 #include <type_traits>
     31 #include <utility>
     32 
     33 namespace llvm {
     34 
     35 namespace detail {
     36 
     37 // We extend a pair to allow users to override the bucket type with their own
     38 // implementation without requiring two members.
     39 template <typename KeyT, typename ValueT>
     40 struct DenseMapPair : public std::pair<KeyT, ValueT> {
     41   KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
     42   const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
     43   ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
     44   const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
     45 };
     46 
     47 } // end namespace detail
     48 
     49 template <
     50     typename KeyT, typename ValueT, typename KeyInfoT = DenseMapInfo<KeyT>,
     51     typename Bucket = detail::DenseMapPair<KeyT, ValueT>, bool IsConst = false>
     52 class DenseMapIterator;
     53 
     54 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
     55           typename BucketT>
     56 class DenseMapBase : public DebugEpochBase {
     57   template <typename T>
     58   using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;
     59 
     60 public:
     61   using size_type = unsigned;
     62   using key_type = KeyT;
     63   using mapped_type = ValueT;
     64   using value_type = BucketT;
     65 
     66   using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>;
     67   using const_iterator =
     68       DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>;
     69 
     70   inline iterator begin() {
     71     // When the map is empty, avoid the overhead of advancing/retreating past
     72     // empty buckets.
     73     if (empty())
     74       return end();
     75     if (shouldReverseIterate<KeyT>())
     76       return makeIterator(getBucketsEnd() - 1, getBuckets(), *this);
     77     return makeIterator(getBuckets(), getBucketsEnd(), *this);
     78   }
     79   inline iterator end() {
     80     return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
     81   }
     82   inline const_iterator begin() const {
     83     if (empty())
     84       return end();
     85     if (shouldReverseIterate<KeyT>())
     86       return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this);
     87     return makeConstIterator(getBuckets(), getBucketsEnd(), *this);
     88   }
     89   inline const_iterator end() const {
     90     return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
     91   }
     92 
     93   LLVM_NODISCARD bool empty() const {
     94     return getNumEntries() == 0;
     95   }
     96   unsigned size() const { return getNumEntries(); }
     97 
     98   /// Grow the densemap so that it can contain at least \p NumEntries items
     99   /// before resizing again.
    100   void reserve(size_type NumEntries) {
    101     auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
    102     incrementEpoch();
    103     if (NumBuckets > getNumBuckets())
    104       grow(NumBuckets);
    105   }
    106 
    107   void clear() {
    108     incrementEpoch();
    109     if (getNumEntries() == 0 && getNumTombstones() == 0) return;
    110 
    111     // If the capacity of the array is huge, and the # elements used is small,
    112     // shrink the array.
    113     if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
    114       shrink_and_clear();
    115       return;
    116     }
    117 
    118     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
    119     if (isPodLike<KeyT>::value && isPodLike<ValueT>::value) {
    120       // Use a simpler loop when these are trivial types.
    121       for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
    122         P->getFirst() = EmptyKey;
    123     } else {
    124       unsigned NumEntries = getNumEntries();
    125       for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
    126         if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
    127           if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
    128             P->getSecond().~ValueT();
    129             --NumEntries;
    130           }
    131           P->getFirst() = EmptyKey;
    132         }
    133       }
    134       assert(NumEntries == 0 && "Node count imbalance!");
    135     }
    136     setNumEntries(0);
    137     setNumTombstones(0);
    138   }
    139 
    140   /// Return 1 if the specified key is in the map, 0 otherwise.
    141   size_type count(const_arg_type_t<KeyT> Val) const {
    142     const BucketT *TheBucket;
    143     return LookupBucketFor(Val, TheBucket) ? 1 : 0;
    144   }
    145 
    146   iterator find(const_arg_type_t<KeyT> Val) {
    147     BucketT *TheBucket;
    148     if (LookupBucketFor(Val, TheBucket))
    149       return makeIterator(TheBucket, getBucketsEnd(), *this, true);
    150     return end();
    151   }
    152   const_iterator find(const_arg_type_t<KeyT> Val) const {
    153     const BucketT *TheBucket;
    154     if (LookupBucketFor(Val, TheBucket))
    155       return makeConstIterator(TheBucket, getBucketsEnd(), *this, true);
    156     return end();
    157   }
    158 
    159   /// Alternate version of find() which allows a different, and possibly
    160   /// less expensive, key type.
    161   /// The DenseMapInfo is responsible for supplying methods
    162   /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
    163   /// type used.
    164   template<class LookupKeyT>
    165   iterator find_as(const LookupKeyT &Val) {
    166     BucketT *TheBucket;
    167     if (LookupBucketFor(Val, TheBucket))
    168       return makeIterator(TheBucket, getBucketsEnd(), *this, true);
    169     return end();
    170   }
    171   template<class LookupKeyT>
    172   const_iterator find_as(const LookupKeyT &Val) const {
    173     const BucketT *TheBucket;
    174     if (LookupBucketFor(Val, TheBucket))
    175       return makeConstIterator(TheBucket, getBucketsEnd(), *this, true);
    176     return end();
    177   }
    178 
    179   /// lookup - Return the entry for the specified key, or a default
    180   /// constructed value if no such entry exists.
    181   ValueT lookup(const_arg_type_t<KeyT> Val) const {
    182     const BucketT *TheBucket;
    183     if (LookupBucketFor(Val, TheBucket))
    184       return TheBucket->getSecond();
    185     return ValueT();
    186   }
    187 
    188   // Inserts key,value pair into the map if the key isn't already in the map.
    189   // If the key is already in the map, it returns false and doesn't update the
    190   // value.
    191   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
    192     return try_emplace(KV.first, KV.second);
    193   }
    194 
    195   // Inserts key,value pair into the map if the key isn't already in the map.
    196   // If the key is already in the map, it returns false and doesn't update the
    197   // value.
    198   std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
    199     return try_emplace(std::move(KV.first), std::move(KV.second));
    200   }
    201 
    202   // Inserts key,value pair into the map if the key isn't already in the map.
    203   // The value is constructed in-place if the key is not in the map, otherwise
    204   // it is not moved.
    205   template <typename... Ts>
    206   std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
    207     BucketT *TheBucket;
    208     if (LookupBucketFor(Key, TheBucket))
    209       return std::make_pair(
    210                makeIterator(TheBucket, getBucketsEnd(), *this, true),
    211                false); // Already in map.
    212 
    213     // Otherwise, insert the new element.
    214     TheBucket =
    215         InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
    216     return std::make_pair(
    217              makeIterator(TheBucket, getBucketsEnd(), *this, true),
    218              true);
    219   }
    220 
    221   // Inserts key,value pair into the map if the key isn't already in the map.
    222   // The value is constructed in-place if the key is not in the map, otherwise
    223   // it is not moved.
    224   template <typename... Ts>
    225   std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
    226     BucketT *TheBucket;
    227     if (LookupBucketFor(Key, TheBucket))
    228       return std::make_pair(
    229                makeIterator(TheBucket, getBucketsEnd(), *this, true),
    230                false); // Already in map.
    231 
    232     // Otherwise, insert the new element.
    233     TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
    234     return std::make_pair(
    235              makeIterator(TheBucket, getBucketsEnd(), *this, true),
    236              true);
    237   }
    238 
    239   /// Alternate version of insert() which allows a different, and possibly
    240   /// less expensive, key type.
    241   /// The DenseMapInfo is responsible for supplying methods
    242   /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
    243   /// type used.
    244   template <typename LookupKeyT>
    245   std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
    246                                       const LookupKeyT &Val) {
    247     BucketT *TheBucket;
    248     if (LookupBucketFor(Val, TheBucket))
    249       return std::make_pair(
    250                makeIterator(TheBucket, getBucketsEnd(), *this, true),
    251                false); // Already in map.
    252 
    253     // Otherwise, insert the new element.
    254     TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
    255                                            std::move(KV.second), Val);
    256     return std::make_pair(
    257              makeIterator(TheBucket, getBucketsEnd(), *this, true),
    258              true);
    259   }
    260 
    261   /// insert - Range insertion of pairs.
    262   template<typename InputIt>
    263   void insert(InputIt I, InputIt E) {
    264     for (; I != E; ++I)
    265       insert(*I);
    266   }
    267 
    268   bool erase(const KeyT &Val) {
    269     BucketT *TheBucket;
    270     if (!LookupBucketFor(Val, TheBucket))
    271       return false; // not in map.
    272 
    273     TheBucket->getSecond().~ValueT();
    274     TheBucket->getFirst() = getTombstoneKey();
    275     decrementNumEntries();
    276     incrementNumTombstones();
    277     return true;
    278   }
    279   void erase(iterator I) {
    280     BucketT *TheBucket = &*I;
    281     TheBucket->getSecond().~ValueT();
    282     TheBucket->getFirst() = getTombstoneKey();
    283     decrementNumEntries();
    284     incrementNumTombstones();
    285   }
    286 
    287   value_type& FindAndConstruct(const KeyT &Key) {
    288     BucketT *TheBucket;
    289     if (LookupBucketFor(Key, TheBucket))
    290       return *TheBucket;
    291 
    292     return *InsertIntoBucket(TheBucket, Key);
    293   }
    294 
    295   ValueT &operator[](const KeyT &Key) {
    296     return FindAndConstruct(Key).second;
    297   }
    298 
    299   value_type& FindAndConstruct(KeyT &&Key) {
    300     BucketT *TheBucket;
    301     if (LookupBucketFor(Key, TheBucket))
    302       return *TheBucket;
    303 
    304     return *InsertIntoBucket(TheBucket, std::move(Key));
    305   }
    306 
    307   ValueT &operator[](KeyT &&Key) {
    308     return FindAndConstruct(std::move(Key)).second;
    309   }
    310 
    311   /// isPointerIntoBucketsArray - Return true if the specified pointer points
    312   /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
    313   /// value in the DenseMap).
    314   bool isPointerIntoBucketsArray(const void *Ptr) const {
    315     return Ptr >= getBuckets() && Ptr < getBucketsEnd();
    316   }
    317 
    318   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
    319   /// array.  In conjunction with the previous method, this can be used to
    320   /// determine whether an insertion caused the DenseMap to reallocate.
    321   const void *getPointerIntoBucketsArray() const { return getBuckets(); }
    322 
    323 protected:
    324   DenseMapBase() = default;
    325 
    326   void destroyAll() {
    327     if (getNumBuckets() == 0) // Nothing to do.
    328       return;
    329 
    330     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
    331     for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
    332       if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
    333           !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
    334         P->getSecond().~ValueT();
    335       P->getFirst().~KeyT();
    336     }
    337   }
    338 
    339   void initEmpty() {
    340     setNumEntries(0);
    341     setNumTombstones(0);
    342 
    343     assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
    344            "# initial buckets must be a power of two!");
    345     const KeyT EmptyKey = getEmptyKey();
    346     for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
    347       ::new (&B->getFirst()) KeyT(EmptyKey);
    348   }
    349 
    350   /// Returns the number of buckets to allocate to ensure that the DenseMap can
    351   /// accommodate \p NumEntries without need to grow().
    352   unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
    353     // Ensure that "NumEntries * 4 < NumBuckets * 3"
    354     if (NumEntries == 0)
    355       return 0;
    356     // +1 is required because of the strict equality.
    357     // For example if NumEntries is 48, we need to return 401.
    358     return NextPowerOf2(NumEntries * 4 / 3 + 1);
    359   }
    360 
    361   void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
    362     initEmpty();
    363 
    364     // Insert all the old elements.
    365     const KeyT EmptyKey = getEmptyKey();
    366     const KeyT TombstoneKey = getTombstoneKey();
    367     for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
    368       if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
    369           !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
    370         // Insert the key/value into the new table.
    371         BucketT *DestBucket;
    372         bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
    373         (void)FoundVal; // silence warning.
    374         assert(!FoundVal && "Key already in new map?");
    375         DestBucket->getFirst() = std::move(B->getFirst());
    376         ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
    377         incrementNumEntries();
    378 
    379         // Free the value.
    380         B->getSecond().~ValueT();
    381       }
    382       B->getFirst().~KeyT();
    383     }
    384   }
    385 
    386   template <typename OtherBaseT>
    387   void copyFrom(
    388       const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
    389     assert(&other != this);
    390     assert(getNumBuckets() == other.getNumBuckets());
    391 
    392     setNumEntries(other.getNumEntries());
    393     setNumTombstones(other.getNumTombstones());
    394 
    395     if (isPodLike<KeyT>::value && isPodLike<ValueT>::value)
    396       memcpy(getBuckets(), other.getBuckets(),
    397              getNumBuckets() * sizeof(BucketT));
    398     else
    399       for (size_t i = 0; i < getNumBuckets(); ++i) {
    400         ::new (&getBuckets()[i].getFirst())
    401             KeyT(other.getBuckets()[i].getFirst());
    402         if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
    403             !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
    404           ::new (&getBuckets()[i].getSecond())
    405               ValueT(other.getBuckets()[i].getSecond());
    406       }
    407   }
    408 
    409   static unsigned getHashValue(const KeyT &Val) {
    410     return KeyInfoT::getHashValue(Val);
    411   }
    412 
    413   template<typename LookupKeyT>
    414   static unsigned getHashValue(const LookupKeyT &Val) {
    415     return KeyInfoT::getHashValue(Val);
    416   }
    417 
    418   static const KeyT getEmptyKey() {
    419     static_assert(std::is_base_of<DenseMapBase, DerivedT>::value,
    420                   "Must pass the derived type to this template!");
    421     return KeyInfoT::getEmptyKey();
    422   }
    423 
    424   static const KeyT getTombstoneKey() {
    425     return KeyInfoT::getTombstoneKey();
    426   }
    427 
    428 private:
    429   iterator makeIterator(BucketT *P, BucketT *E,
    430                         DebugEpochBase &Epoch,
    431                         bool NoAdvance=false) {
    432     if (shouldReverseIterate<KeyT>()) {
    433       BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
    434       return iterator(B, E, Epoch, NoAdvance);
    435     }
    436     return iterator(P, E, Epoch, NoAdvance);
    437   }
    438 
    439   const_iterator makeConstIterator(const BucketT *P, const BucketT *E,
    440                                    const DebugEpochBase &Epoch,
    441                                    const bool NoAdvance=false) const {
    442     if (shouldReverseIterate<KeyT>()) {
    443       const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
    444       return const_iterator(B, E, Epoch, NoAdvance);
    445     }
    446     return const_iterator(P, E, Epoch, NoAdvance);
    447   }
    448 
    449   unsigned getNumEntries() const {
    450     return static_cast<const DerivedT *>(this)->getNumEntries();
    451   }
    452 
    453   void setNumEntries(unsigned Num) {
    454     static_cast<DerivedT *>(this)->setNumEntries(Num);
    455   }
    456 
    457   void incrementNumEntries() {
    458     setNumEntries(getNumEntries() + 1);
    459   }
    460 
    461   void decrementNumEntries() {
    462     setNumEntries(getNumEntries() - 1);
    463   }
    464 
    465   unsigned getNumTombstones() const {
    466     return static_cast<const DerivedT *>(this)->getNumTombstones();
    467   }
    468 
    469   void setNumTombstones(unsigned Num) {
    470     static_cast<DerivedT *>(this)->setNumTombstones(Num);
    471   }
    472 
    473   void incrementNumTombstones() {
    474     setNumTombstones(getNumTombstones() + 1);
    475   }
    476 
    477   void decrementNumTombstones() {
    478     setNumTombstones(getNumTombstones() - 1);
    479   }
    480 
    481   const BucketT *getBuckets() const {
    482     return static_cast<const DerivedT *>(this)->getBuckets();
    483   }
    484 
    485   BucketT *getBuckets() {
    486     return static_cast<DerivedT *>(this)->getBuckets();
    487   }
    488 
    489   unsigned getNumBuckets() const {
    490     return static_cast<const DerivedT *>(this)->getNumBuckets();
    491   }
    492 
    493   BucketT *getBucketsEnd() {
    494     return getBuckets() + getNumBuckets();
    495   }
    496 
    497   const BucketT *getBucketsEnd() const {
    498     return getBuckets() + getNumBuckets();
    499   }
    500 
    501   void grow(unsigned AtLeast) {
    502     static_cast<DerivedT *>(this)->grow(AtLeast);
    503   }
    504 
    505   void shrink_and_clear() {
    506     static_cast<DerivedT *>(this)->shrink_and_clear();
    507   }
    508 
    509   template <typename KeyArg, typename... ValueArgs>
    510   BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
    511                             ValueArgs &&... Values) {
    512     TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
    513 
    514     TheBucket->getFirst() = std::forward<KeyArg>(Key);
    515     ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
    516     return TheBucket;
    517   }
    518 
    519   template <typename LookupKeyT>
    520   BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
    521                                       ValueT &&Value, LookupKeyT &Lookup) {
    522     TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
    523 
    524     TheBucket->getFirst() = std::move(Key);
    525     ::new (&TheBucket->getSecond()) ValueT(std::move(Value));
    526     return TheBucket;
    527   }
    528 
    529   template <typename LookupKeyT>
    530   BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
    531                                 BucketT *TheBucket) {
    532     incrementEpoch();
    533 
    534     // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
    535     // the buckets are empty (meaning that many are filled with tombstones),
    536     // grow the table.
    537     //
    538     // The later case is tricky.  For example, if we had one empty bucket with
    539     // tons of tombstones, failing lookups (e.g. for insertion) would have to
    540     // probe almost the entire table until it found the empty bucket.  If the
    541     // table completely filled with tombstones, no lookup would ever succeed,
    542     // causing infinite loops in lookup.
    543     unsigned NewNumEntries = getNumEntries() + 1;
    544     unsigned NumBuckets = getNumBuckets();
    545     if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
    546       this->grow(NumBuckets * 2);
    547       LookupBucketFor(Lookup, TheBucket);
    548       NumBuckets = getNumBuckets();
    549     } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
    550                              NumBuckets/8)) {
    551       this->grow(NumBuckets);
    552       LookupBucketFor(Lookup, TheBucket);
    553     }
    554     assert(TheBucket);
    555 
    556     // Only update the state after we've grown our bucket space appropriately
    557     // so that when growing buckets we have self-consistent entry count.
    558     incrementNumEntries();
    559 
    560     // If we are writing over a tombstone, remember this.
    561     const KeyT EmptyKey = getEmptyKey();
    562     if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
    563       decrementNumTombstones();
    564 
    565     return TheBucket;
    566   }
    567 
    568   /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
    569   /// FoundBucket.  If the bucket contains the key and a value, this returns
    570   /// true, otherwise it returns a bucket with an empty marker or tombstone and
    571   /// returns false.
    572   template<typename LookupKeyT>
    573   bool LookupBucketFor(const LookupKeyT &Val,
    574                        const BucketT *&FoundBucket) const {
    575     const BucketT *BucketsPtr = getBuckets();
    576     const unsigned NumBuckets = getNumBuckets();
    577 
    578     if (NumBuckets == 0) {
    579       FoundBucket = nullptr;
    580       return false;
    581     }
    582 
    583     // FoundTombstone - Keep track of whether we find a tombstone while probing.
    584     const BucketT *FoundTombstone = nullptr;
    585     const KeyT EmptyKey = getEmptyKey();
    586     const KeyT TombstoneKey = getTombstoneKey();
    587     assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
    588            !KeyInfoT::isEqual(Val, TombstoneKey) &&
    589            "Empty/Tombstone value shouldn't be inserted into map!");
    590 
    591     unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
    592     unsigned ProbeAmt = 1;
    593     while (true) {
    594       const BucketT *ThisBucket = BucketsPtr + BucketNo;
    595       // Found Val's bucket?  If so, return it.
    596       if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
    597         FoundBucket = ThisBucket;
    598         return true;
    599       }
    600 
    601       // If we found an empty bucket, the key doesn't exist in the set.
    602       // Insert it and return the default value.
    603       if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
    604         // If we've already seen a tombstone while probing, fill it in instead
    605         // of the empty bucket we eventually probed to.
    606         FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
    607         return false;
    608       }
    609 
    610       // If this is a tombstone, remember it.  If Val ends up not in the map, we
    611       // prefer to return it than something that would require more probing.
    612       if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
    613           !FoundTombstone)
    614         FoundTombstone = ThisBucket;  // Remember the first tombstone found.
    615 
    616       // Otherwise, it's a hash collision or a tombstone, continue quadratic
    617       // probing.
    618       BucketNo += ProbeAmt++;
    619       BucketNo &= (NumBuckets-1);
    620     }
    621   }
    622 
    623   template <typename LookupKeyT>
    624   bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
    625     const BucketT *ConstFoundBucket;
    626     bool Result = const_cast<const DenseMapBase *>(this)
    627       ->LookupBucketFor(Val, ConstFoundBucket);
    628     FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
    629     return Result;
    630   }
    631 
    632 public:
    633   /// Return the approximate size (in bytes) of the actual map.
    634   /// This is just the raw memory used by DenseMap.
    635   /// If entries are pointers to objects, the size of the referenced objects
    636   /// are not included.
    637   size_t getMemorySize() const {
    638     return getNumBuckets() * sizeof(BucketT);
    639   }
    640 };
    641 
    642 template <typename KeyT, typename ValueT,
    643           typename KeyInfoT = DenseMapInfo<KeyT>,
    644           typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
    645 class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
    646                                      KeyT, ValueT, KeyInfoT, BucketT> {
    647   friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
    648 
    649   // Lift some types from the dependent base class into this class for
    650   // simplicity of referring to them.
    651   using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
    652 
    653   BucketT *Buckets;
    654   unsigned NumEntries;
    655   unsigned NumTombstones;
    656   unsigned NumBuckets;
    657 
    658 public:
    659   /// Create a DenseMap wth an optional \p InitialReserve that guarantee that
    660   /// this number of elements can be inserted in the map without grow()
    661   explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }
    662 
    663   DenseMap(const DenseMap &other) : BaseT() {
    664     init(0);
    665     copyFrom(other);
    666   }
    667 
    668   DenseMap(DenseMap &&other) : BaseT() {
    669     init(0);
    670     swap(other);
    671   }
    672 
    673   template<typename InputIt>
    674   DenseMap(const InputIt &I, const InputIt &E) {
    675     init(std::distance(I, E));
    676     this->insert(I, E);
    677   }
    678 
    679   ~DenseMap() {
    680     this->destroyAll();
    681     operator delete(Buckets);
    682   }
    683 
    684   void swap(DenseMap& RHS) {
    685     this->incrementEpoch();
    686     RHS.incrementEpoch();
    687     std::swap(Buckets, RHS.Buckets);
    688     std::swap(NumEntries, RHS.NumEntries);
    689     std::swap(NumTombstones, RHS.NumTombstones);
    690     std::swap(NumBuckets, RHS.NumBuckets);
    691   }
    692 
    693   DenseMap& operator=(const DenseMap& other) {
    694     if (&other != this)
    695       copyFrom(other);
    696     return *this;
    697   }
    698 
    699   DenseMap& operator=(DenseMap &&other) {
    700     this->destroyAll();
    701     operator delete(Buckets);
    702     init(0);
    703     swap(other);
    704     return *this;
    705   }
    706 
    707   void copyFrom(const DenseMap& other) {
    708     this->destroyAll();
    709     operator delete(Buckets);
    710     if (allocateBuckets(other.NumBuckets)) {
    711       this->BaseT::copyFrom(other);
    712     } else {
    713       NumEntries = 0;
    714       NumTombstones = 0;
    715     }
    716   }
    717 
    718   void init(unsigned InitNumEntries) {
    719     auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
    720     if (allocateBuckets(InitBuckets)) {
    721       this->BaseT::initEmpty();
    722     } else {
    723       NumEntries = 0;
    724       NumTombstones = 0;
    725     }
    726   }
    727 
    728   void grow(unsigned AtLeast) {
    729     unsigned OldNumBuckets = NumBuckets;
    730     BucketT *OldBuckets = Buckets;
    731 
    732     allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
    733     assert(Buckets);
    734     if (!OldBuckets) {
    735       this->BaseT::initEmpty();
    736       return;
    737     }
    738 
    739     this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
    740 
    741     // Free the old table.
    742     operator delete(OldBuckets);
    743   }
    744 
    745   void shrink_and_clear() {
    746     unsigned OldNumEntries = NumEntries;
    747     this->destroyAll();
    748 
    749     // Reduce the number of buckets.
    750     unsigned NewNumBuckets = 0;
    751     if (OldNumEntries)
    752       NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
    753     if (NewNumBuckets == NumBuckets) {
    754       this->BaseT::initEmpty();
    755       return;
    756     }
    757 
    758     operator delete(Buckets);
    759     init(NewNumBuckets);
    760   }
    761 
    762 private:
    763   unsigned getNumEntries() const {
    764     return NumEntries;
    765   }
    766 
    767   void setNumEntries(unsigned Num) {
    768     NumEntries = Num;
    769   }
    770 
    771   unsigned getNumTombstones() const {
    772     return NumTombstones;
    773   }
    774 
    775   void setNumTombstones(unsigned Num) {
    776     NumTombstones = Num;
    777   }
    778 
    779   BucketT *getBuckets() const {
    780     return Buckets;
    781   }
    782 
    783   unsigned getNumBuckets() const {
    784     return NumBuckets;
    785   }
    786 
    787   bool allocateBuckets(unsigned Num) {
    788     NumBuckets = Num;
    789     if (NumBuckets == 0) {
    790       Buckets = nullptr;
    791       return false;
    792     }
    793 
    794     Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
    795     return true;
    796   }
    797 };
    798 
    799 template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
    800           typename KeyInfoT = DenseMapInfo<KeyT>,
    801           typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
    802 class SmallDenseMap
    803     : public DenseMapBase<
    804           SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
    805           ValueT, KeyInfoT, BucketT> {
    806   friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
    807 
    808   // Lift some types from the dependent base class into this class for
    809   // simplicity of referring to them.
    810   using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
    811 
    812   static_assert(isPowerOf2_64(InlineBuckets),
    813                 "InlineBuckets must be a power of 2.");
    814 
    815   unsigned Small : 1;
    816   unsigned NumEntries : 31;
    817   unsigned NumTombstones;
    818 
    819   struct LargeRep {
    820     BucketT *Buckets;
    821     unsigned NumBuckets;
    822   };
    823 
    824   /// A "union" of an inline bucket array and the struct representing
    825   /// a large bucket. This union will be discriminated by the 'Small' bit.
    826   AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
    827 
    828 public:
    829   explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
    830     init(NumInitBuckets);
    831   }
    832 
    833   SmallDenseMap(const SmallDenseMap &other) : BaseT() {
    834     init(0);
    835     copyFrom(other);
    836   }
    837 
    838   SmallDenseMap(SmallDenseMap &&other) : BaseT() {
    839     init(0);
    840     swap(other);
    841   }
    842 
    843   template<typename InputIt>
    844   SmallDenseMap(const InputIt &I, const InputIt &E) {
    845     init(NextPowerOf2(std::distance(I, E)));
    846     this->insert(I, E);
    847   }
    848 
    849   ~SmallDenseMap() {
    850     this->destroyAll();
    851     deallocateBuckets();
    852   }
    853 
    854   void swap(SmallDenseMap& RHS) {
    855     unsigned TmpNumEntries = RHS.NumEntries;
    856     RHS.NumEntries = NumEntries;
    857     NumEntries = TmpNumEntries;
    858     std::swap(NumTombstones, RHS.NumTombstones);
    859 
    860     const KeyT EmptyKey = this->getEmptyKey();
    861     const KeyT TombstoneKey = this->getTombstoneKey();
    862     if (Small && RHS.Small) {
    863       // If we're swapping inline bucket arrays, we have to cope with some of
    864       // the tricky bits of DenseMap's storage system: the buckets are not
    865       // fully initialized. Thus we swap every key, but we may have
    866       // a one-directional move of the value.
    867       for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
    868         BucketT *LHSB = &getInlineBuckets()[i],
    869                 *RHSB = &RHS.getInlineBuckets()[i];
    870         bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
    871                             !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
    872         bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
    873                             !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
    874         if (hasLHSValue && hasRHSValue) {
    875           // Swap together if we can...
    876           std::swap(*LHSB, *RHSB);
    877           continue;
    878         }
    879         // Swap separately and handle any assymetry.
    880         std::swap(LHSB->getFirst(), RHSB->getFirst());
    881         if (hasLHSValue) {
    882           ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
    883           LHSB->getSecond().~ValueT();
    884         } else if (hasRHSValue) {
    885           ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
    886           RHSB->getSecond().~ValueT();
    887         }
    888       }
    889       return;
    890     }
    891     if (!Small && !RHS.Small) {
    892       std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
    893       std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
    894       return;
    895     }
    896 
    897     SmallDenseMap &SmallSide = Small ? *this : RHS;
    898     SmallDenseMap &LargeSide = Small ? RHS : *this;
    899 
    900     // First stash the large side's rep and move the small side across.
    901     LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
    902     LargeSide.getLargeRep()->~LargeRep();
    903     LargeSide.Small = true;
    904     // This is similar to the standard move-from-old-buckets, but the bucket
    905     // count hasn't actually rotated in this case. So we have to carefully
    906     // move construct the keys and values into their new locations, but there
    907     // is no need to re-hash things.
    908     for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
    909       BucketT *NewB = &LargeSide.getInlineBuckets()[i],
    910               *OldB = &SmallSide.getInlineBuckets()[i];
    911       ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
    912       OldB->getFirst().~KeyT();
    913       if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
    914           !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
    915         ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
    916         OldB->getSecond().~ValueT();
    917       }
    918     }
    919 
    920     // The hard part of moving the small buckets across is done, just move
    921     // the TmpRep into its new home.
    922     SmallSide.Small = false;
    923     new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
    924   }
    925 
    926   SmallDenseMap& operator=(const SmallDenseMap& other) {
    927     if (&other != this)
    928       copyFrom(other);
    929     return *this;
    930   }
    931 
    932   SmallDenseMap& operator=(SmallDenseMap &&other) {
    933     this->destroyAll();
    934     deallocateBuckets();
    935     init(0);
    936     swap(other);
    937     return *this;
    938   }
    939 
    940   void copyFrom(const SmallDenseMap& other) {
    941     this->destroyAll();
    942     deallocateBuckets();
    943     Small = true;
    944     if (other.getNumBuckets() > InlineBuckets) {
    945       Small = false;
    946       new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
    947     }
    948     this->BaseT::copyFrom(other);
    949   }
    950 
    951   void init(unsigned InitBuckets) {
    952     Small = true;
    953     if (InitBuckets > InlineBuckets) {
    954       Small = false;
    955       new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
    956     }
    957     this->BaseT::initEmpty();
    958   }
    959 
    960   void grow(unsigned AtLeast) {
    961     if (AtLeast >= InlineBuckets)
    962       AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
    963 
    964     if (Small) {
    965       if (AtLeast < InlineBuckets)
    966         return; // Nothing to do.
    967 
    968       // First move the inline buckets into a temporary storage.
    969       AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
    970       BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
    971       BucketT *TmpEnd = TmpBegin;
    972 
    973       // Loop over the buckets, moving non-empty, non-tombstones into the
    974       // temporary storage. Have the loop move the TmpEnd forward as it goes.
    975       const KeyT EmptyKey = this->getEmptyKey();
    976       const KeyT TombstoneKey = this->getTombstoneKey();
    977       for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
    978         if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
    979             !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
    980           assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
    981                  "Too many inline buckets!");
    982           ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
    983           ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
    984           ++TmpEnd;
    985           P->getSecond().~ValueT();
    986         }
    987         P->getFirst().~KeyT();
    988       }
    989 
    990       // Now make this map use the large rep, and move all the entries back
    991       // into it.
    992       Small = false;
    993       new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
    994       this->moveFromOldBuckets(TmpBegin, TmpEnd);
    995       return;
    996     }
    997 
    998     LargeRep OldRep = std::move(*getLargeRep());
    999     getLargeRep()->~LargeRep();
   1000     if (AtLeast <= InlineBuckets) {
   1001       Small = true;
   1002     } else {
   1003       new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
   1004     }
   1005 
   1006     this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
   1007 
   1008     // Free the old table.
   1009     operator delete(OldRep.Buckets);
   1010   }
   1011 
   1012   void shrink_and_clear() {
   1013     unsigned OldSize = this->size();
   1014     this->destroyAll();
   1015 
   1016     // Reduce the number of buckets.
   1017     unsigned NewNumBuckets = 0;
   1018     if (OldSize) {
   1019       NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
   1020       if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
   1021         NewNumBuckets = 64;
   1022     }
   1023     if ((Small && NewNumBuckets <= InlineBuckets) ||
   1024         (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
   1025       this->BaseT::initEmpty();
   1026       return;
   1027     }
   1028 
   1029     deallocateBuckets();
   1030     init(NewNumBuckets);
   1031   }
   1032 
   1033 private:
   1034   unsigned getNumEntries() const {
   1035     return NumEntries;
   1036   }
   1037 
   1038   void setNumEntries(unsigned Num) {
   1039     // NumEntries is hardcoded to be 31 bits wide.
   1040     assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
   1041     NumEntries = Num;
   1042   }
   1043 
   1044   unsigned getNumTombstones() const {
   1045     return NumTombstones;
   1046   }
   1047 
   1048   void setNumTombstones(unsigned Num) {
   1049     NumTombstones = Num;
   1050   }
   1051 
   1052   const BucketT *getInlineBuckets() const {
   1053     assert(Small);
   1054     // Note that this cast does not violate aliasing rules as we assert that
   1055     // the memory's dynamic type is the small, inline bucket buffer, and the
   1056     // 'storage.buffer' static type is 'char *'.
   1057     return reinterpret_cast<const BucketT *>(storage.buffer);
   1058   }
   1059 
   1060   BucketT *getInlineBuckets() {
   1061     return const_cast<BucketT *>(
   1062       const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
   1063   }
   1064 
   1065   const LargeRep *getLargeRep() const {
   1066     assert(!Small);
   1067     // Note, same rule about aliasing as with getInlineBuckets.
   1068     return reinterpret_cast<const LargeRep *>(storage.buffer);
   1069   }
   1070 
   1071   LargeRep *getLargeRep() {
   1072     return const_cast<LargeRep *>(
   1073       const_cast<const SmallDenseMap *>(this)->getLargeRep());
   1074   }
   1075 
   1076   const BucketT *getBuckets() const {
   1077     return Small ? getInlineBuckets() : getLargeRep()->Buckets;
   1078   }
   1079 
   1080   BucketT *getBuckets() {
   1081     return const_cast<BucketT *>(
   1082       const_cast<const SmallDenseMap *>(this)->getBuckets());
   1083   }
   1084 
   1085   unsigned getNumBuckets() const {
   1086     return Small ? InlineBuckets : getLargeRep()->NumBuckets;
   1087   }
   1088 
   1089   void deallocateBuckets() {
   1090     if (Small)
   1091       return;
   1092 
   1093     operator delete(getLargeRep()->Buckets);
   1094     getLargeRep()->~LargeRep();
   1095   }
   1096 
   1097   LargeRep allocateBuckets(unsigned Num) {
   1098     assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
   1099     LargeRep Rep = {
   1100       static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
   1101     };
   1102     return Rep;
   1103   }
   1104 };
   1105 
   1106 template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
   1107           bool IsConst>
   1108 class DenseMapIterator : DebugEpochBase::HandleBase {
   1109   friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
   1110   friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
   1111 
   1112   using ConstIterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
   1113 
   1114 public:
   1115   using difference_type = ptrdiff_t;
   1116   using value_type =
   1117       typename std::conditional<IsConst, const Bucket, Bucket>::type;
   1118   using pointer = value_type *;
   1119   using reference = value_type &;
   1120   using iterator_category = std::forward_iterator_tag;
   1121 
   1122 private:
   1123   pointer Ptr = nullptr;
   1124   pointer End = nullptr;
   1125 
   1126 public:
   1127   DenseMapIterator() = default;
   1128 
   1129   DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
   1130                    bool NoAdvance = false)
   1131       : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
   1132     assert(isHandleInSync() && "invalid construction!");
   1133 
   1134     if (NoAdvance) return;
   1135     if (shouldReverseIterate<KeyT>()) {
   1136       RetreatPastEmptyBuckets();
   1137       return;
   1138     }
   1139     AdvancePastEmptyBuckets();
   1140   }
   1141 
   1142   // Converting ctor from non-const iterators to const iterators. SFINAE'd out
   1143   // for const iterator destinations so it doesn't end up as a user defined copy
   1144   // constructor.
   1145   template <bool IsConstSrc,
   1146             typename = typename std::enable_if<!IsConstSrc && IsConst>::type>
   1147   DenseMapIterator(
   1148       const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
   1149       : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
   1150 
   1151   reference operator*() const {
   1152     assert(isHandleInSync() && "invalid iterator access!");
   1153     if (shouldReverseIterate<KeyT>())
   1154       return Ptr[-1];
   1155     return *Ptr;
   1156   }
   1157   pointer operator->() const {
   1158     assert(isHandleInSync() && "invalid iterator access!");
   1159     if (shouldReverseIterate<KeyT>())
   1160       return &(Ptr[-1]);
   1161     return Ptr;
   1162   }
   1163 
   1164   bool operator==(const ConstIterator &RHS) const {
   1165     assert((!Ptr || isHandleInSync()) && "handle not in sync!");
   1166     assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
   1167     assert(getEpochAddress() == RHS.getEpochAddress() &&
   1168            "comparing incomparable iterators!");
   1169     return Ptr == RHS.Ptr;
   1170   }
   1171   bool operator!=(const ConstIterator &RHS) const {
   1172     assert((!Ptr || isHandleInSync()) && "handle not in sync!");
   1173     assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
   1174     assert(getEpochAddress() == RHS.getEpochAddress() &&
   1175            "comparing incomparable iterators!");
   1176     return Ptr != RHS.Ptr;
   1177   }
   1178 
   1179   inline DenseMapIterator& operator++() {  // Preincrement
   1180     assert(isHandleInSync() && "invalid iterator access!");
   1181     if (shouldReverseIterate<KeyT>()) {
   1182       --Ptr;
   1183       RetreatPastEmptyBuckets();
   1184       return *this;
   1185     }
   1186     ++Ptr;
   1187     AdvancePastEmptyBuckets();
   1188     return *this;
   1189   }
   1190   DenseMapIterator operator++(int) {  // Postincrement
   1191     assert(isHandleInSync() && "invalid iterator access!");
   1192     DenseMapIterator tmp = *this; ++*this; return tmp;
   1193   }
   1194 
   1195 private:
   1196   void AdvancePastEmptyBuckets() {
   1197     assert(Ptr <= End);
   1198     const KeyT Empty = KeyInfoT::getEmptyKey();
   1199     const KeyT Tombstone = KeyInfoT::getTombstoneKey();
   1200 
   1201     while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
   1202                           KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
   1203       ++Ptr;
   1204   }
   1205 
   1206   void RetreatPastEmptyBuckets() {
   1207     assert(Ptr >= End);
   1208     const KeyT Empty = KeyInfoT::getEmptyKey();
   1209     const KeyT Tombstone = KeyInfoT::getTombstoneKey();
   1210 
   1211     while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) ||
   1212                           KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone)))
   1213       --Ptr;
   1214   }
   1215 };
   1216 
   1217 template<typename KeyT, typename ValueT, typename KeyInfoT>
   1218 static inline size_t
   1219 capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
   1220   return X.getMemorySize();
   1221 }
   1222 
   1223 } // end namespace llvm
   1224 
   1225 #endif // LLVM_ADT_DENSEMAP_H
   1226