Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Generic implementation of equivalence classes through the use Tarjan's
     11 // efficient union-find algorithm.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ADT_EQUIVALENCECLASSES_H
     16 #define LLVM_ADT_EQUIVALENCECLASSES_H
     17 
     18 #include <cassert>
     19 #include <cstddef>
     20 #include <cstdint>
     21 #include <iterator>
     22 #include <set>
     23 
     24 namespace llvm {
     25 
     26 /// EquivalenceClasses - This represents a collection of equivalence classes and
     27 /// supports three efficient operations: insert an element into a class of its
     28 /// own, union two classes, and find the class for a given element.  In
     29 /// addition to these modification methods, it is possible to iterate over all
     30 /// of the equivalence classes and all of the elements in a class.
     31 ///
     32 /// This implementation is an efficient implementation that only stores one copy
     33 /// of the element being indexed per entry in the set, and allows any arbitrary
     34 /// type to be indexed (as long as it can be ordered with operator<).
     35 ///
     36 /// Here is a simple example using integers:
     37 ///
     38 /// \code
     39 ///  EquivalenceClasses<int> EC;
     40 ///  EC.unionSets(1, 2);                // insert 1, 2 into the same set
     41 ///  EC.insert(4); EC.insert(5);        // insert 4, 5 into own sets
     42 ///  EC.unionSets(5, 1);                // merge the set for 1 with 5's set.
     43 ///
     44 ///  for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end();
     45 ///       I != E; ++I) {           // Iterate over all of the equivalence sets.
     46 ///    if (!I->isLeader()) continue;   // Ignore non-leader sets.
     47 ///    for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I);
     48 ///         MI != EC.member_end(); ++MI)   // Loop over members in this set.
     49 ///      cerr << *MI << " ";  // Print member.
     50 ///    cerr << "\n";   // Finish set.
     51 ///  }
     52 /// \endcode
     53 ///
     54 /// This example prints:
     55 ///   4
     56 ///   5 1 2
     57 ///
     58 template <class ElemTy>
     59 class EquivalenceClasses {
     60   /// ECValue - The EquivalenceClasses data structure is just a set of these.
     61   /// Each of these represents a relation for a value.  First it stores the
     62   /// value itself, which provides the ordering that the set queries.  Next, it
     63   /// provides a "next pointer", which is used to enumerate all of the elements
     64   /// in the unioned set.  Finally, it defines either a "end of list pointer" or
     65   /// "leader pointer" depending on whether the value itself is a leader.  A
     66   /// "leader pointer" points to the node that is the leader for this element,
     67   /// if the node is not a leader.  A "end of list pointer" points to the last
     68   /// node in the list of members of this list.  Whether or not a node is a
     69   /// leader is determined by a bit stolen from one of the pointers.
     70   class ECValue {
     71     friend class EquivalenceClasses;
     72 
     73     mutable const ECValue *Leader, *Next;
     74     ElemTy Data;
     75 
     76     // ECValue ctor - Start out with EndOfList pointing to this node, Next is
     77     // Null, isLeader = true.
     78     ECValue(const ElemTy &Elt)
     79       : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {}
     80 
     81     const ECValue *getLeader() const {
     82       if (isLeader()) return this;
     83       if (Leader->isLeader()) return Leader;
     84       // Path compression.
     85       return Leader = Leader->getLeader();
     86     }
     87 
     88     const ECValue *getEndOfList() const {
     89       assert(isLeader() && "Cannot get the end of a list for a non-leader!");
     90       return Leader;
     91     }
     92 
     93     void setNext(const ECValue *NewNext) const {
     94       assert(getNext() == nullptr && "Already has a next pointer!");
     95       Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader());
     96     }
     97 
     98   public:
     99     ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1),
    100                                   Data(RHS.Data) {
    101       // Only support copying of singleton nodes.
    102       assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!");
    103     }
    104 
    105     bool operator<(const ECValue &UFN) const { return Data < UFN.Data; }
    106 
    107     bool isLeader() const { return (intptr_t)Next & 1; }
    108     const ElemTy &getData() const { return Data; }
    109 
    110     const ECValue *getNext() const {
    111       return (ECValue*)((intptr_t)Next & ~(intptr_t)1);
    112     }
    113 
    114     template<typename T>
    115     bool operator<(const T &Val) const { return Data < Val; }
    116   };
    117 
    118   /// TheMapping - This implicitly provides a mapping from ElemTy values to the
    119   /// ECValues, it just keeps the key as part of the value.
    120   std::set<ECValue> TheMapping;
    121 
    122 public:
    123   EquivalenceClasses() = default;
    124   EquivalenceClasses(const EquivalenceClasses &RHS) {
    125     operator=(RHS);
    126   }
    127 
    128   const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) {
    129     TheMapping.clear();
    130     for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
    131       if (I->isLeader()) {
    132         member_iterator MI = RHS.member_begin(I);
    133         member_iterator LeaderIt = member_begin(insert(*MI));
    134         for (++MI; MI != member_end(); ++MI)
    135           unionSets(LeaderIt, member_begin(insert(*MI)));
    136       }
    137     return *this;
    138   }
    139 
    140   //===--------------------------------------------------------------------===//
    141   // Inspection methods
    142   //
    143 
    144   /// iterator* - Provides a way to iterate over all values in the set.
    145   using iterator = typename std::set<ECValue>::const_iterator;
    146 
    147   iterator begin() const { return TheMapping.begin(); }
    148   iterator end() const { return TheMapping.end(); }
    149 
    150   bool empty() const { return TheMapping.empty(); }
    151 
    152   /// member_* Iterate over the members of an equivalence class.
    153   class member_iterator;
    154   member_iterator member_begin(iterator I) const {
    155     // Only leaders provide anything to iterate over.
    156     return member_iterator(I->isLeader() ? &*I : nullptr);
    157   }
    158   member_iterator member_end() const {
    159     return member_iterator(nullptr);
    160   }
    161 
    162   /// findValue - Return an iterator to the specified value.  If it does not
    163   /// exist, end() is returned.
    164   iterator findValue(const ElemTy &V) const {
    165     return TheMapping.find(V);
    166   }
    167 
    168   /// getLeaderValue - Return the leader for the specified value that is in the
    169   /// set.  It is an error to call this method for a value that is not yet in
    170   /// the set.  For that, call getOrInsertLeaderValue(V).
    171   const ElemTy &getLeaderValue(const ElemTy &V) const {
    172     member_iterator MI = findLeader(V);
    173     assert(MI != member_end() && "Value is not in the set!");
    174     return *MI;
    175   }
    176 
    177   /// getOrInsertLeaderValue - Return the leader for the specified value that is
    178   /// in the set.  If the member is not in the set, it is inserted, then
    179   /// returned.
    180   const ElemTy &getOrInsertLeaderValue(const ElemTy &V) {
    181     member_iterator MI = findLeader(insert(V));
    182     assert(MI != member_end() && "Value is not in the set!");
    183     return *MI;
    184   }
    185 
    186   /// getNumClasses - Return the number of equivalence classes in this set.
    187   /// Note that this is a linear time operation.
    188   unsigned getNumClasses() const {
    189     unsigned NC = 0;
    190     for (iterator I = begin(), E = end(); I != E; ++I)
    191       if (I->isLeader()) ++NC;
    192     return NC;
    193   }
    194 
    195   //===--------------------------------------------------------------------===//
    196   // Mutation methods
    197 
    198   /// insert - Insert a new value into the union/find set, ignoring the request
    199   /// if the value already exists.
    200   iterator insert(const ElemTy &Data) {
    201     return TheMapping.insert(ECValue(Data)).first;
    202   }
    203 
    204   /// findLeader - Given a value in the set, return a member iterator for the
    205   /// equivalence class it is in.  This does the path-compression part that
    206   /// makes union-find "union findy".  This returns an end iterator if the value
    207   /// is not in the equivalence class.
    208   member_iterator findLeader(iterator I) const {
    209     if (I == TheMapping.end()) return member_end();
    210     return member_iterator(I->getLeader());
    211   }
    212   member_iterator findLeader(const ElemTy &V) const {
    213     return findLeader(TheMapping.find(V));
    214   }
    215 
    216   /// union - Merge the two equivalence sets for the specified values, inserting
    217   /// them if they do not already exist in the equivalence set.
    218   member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) {
    219     iterator V1I = insert(V1), V2I = insert(V2);
    220     return unionSets(findLeader(V1I), findLeader(V2I));
    221   }
    222   member_iterator unionSets(member_iterator L1, member_iterator L2) {
    223     assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!");
    224     if (L1 == L2) return L1;   // Unifying the same two sets, noop.
    225 
    226     // Otherwise, this is a real union operation.  Set the end of the L1 list to
    227     // point to the L2 leader node.
    228     const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node;
    229     L1LV.getEndOfList()->setNext(&L2LV);
    230 
    231     // Update L1LV's end of list pointer.
    232     L1LV.Leader = L2LV.getEndOfList();
    233 
    234     // Clear L2's leader flag:
    235     L2LV.Next = L2LV.getNext();
    236 
    237     // L2's leader is now L1.
    238     L2LV.Leader = &L1LV;
    239     return L1;
    240   }
    241 
    242   class member_iterator : public std::iterator<std::forward_iterator_tag,
    243                                                const ElemTy, ptrdiff_t> {
    244     friend class EquivalenceClasses;
    245 
    246     using super = std::iterator<std::forward_iterator_tag,
    247                                 const ElemTy, ptrdiff_t>;
    248 
    249     const ECValue *Node;
    250 
    251   public:
    252     using size_type = size_t;
    253     using pointer = typename super::pointer;
    254     using reference = typename super::reference;
    255 
    256     explicit member_iterator() = default;
    257     explicit member_iterator(const ECValue *N) : Node(N) {}
    258 
    259     reference operator*() const {
    260       assert(Node != nullptr && "Dereferencing end()!");
    261       return Node->getData();
    262     }
    263     pointer operator->() const { return &operator*(); }
    264 
    265     member_iterator &operator++() {
    266       assert(Node != nullptr && "++'d off the end of the list!");
    267       Node = Node->getNext();
    268       return *this;
    269     }
    270 
    271     member_iterator operator++(int) {    // postincrement operators.
    272       member_iterator tmp = *this;
    273       ++*this;
    274       return tmp;
    275     }
    276 
    277     bool operator==(const member_iterator &RHS) const {
    278       return Node == RHS.Node;
    279     }
    280     bool operator!=(const member_iterator &RHS) const {
    281       return Node != RHS.Node;
    282     }
    283   };
    284 };
    285 
    286 } // end namespace llvm
    287 
    288 #endif // LLVM_ADT_EQUIVALENCECLASSES_H
    289