Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file builds on the ADT/GraphTraits.h file to build a generic graph
     11 // post order iterator.  This should work over any graph type that has a
     12 // GraphTraits specialization.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_ADT_POSTORDERITERATOR_H
     17 #define LLVM_ADT_POSTORDERITERATOR_H
     18 
     19 #include "llvm/ADT/GraphTraits.h"
     20 #include "llvm/ADT/Optional.h"
     21 #include "llvm/ADT/SmallPtrSet.h"
     22 #include "llvm/ADT/iterator_range.h"
     23 #include <iterator>
     24 #include <set>
     25 #include <utility>
     26 #include <vector>
     27 
     28 namespace llvm {
     29 
     30 // The po_iterator_storage template provides access to the set of already
     31 // visited nodes during the po_iterator's depth-first traversal.
     32 //
     33 // The default implementation simply contains a set of visited nodes, while
     34 // the External=true version uses a reference to an external set.
     35 //
     36 // It is possible to prune the depth-first traversal in several ways:
     37 //
     38 // - When providing an external set that already contains some graph nodes,
     39 //   those nodes won't be visited again. This is useful for restarting a
     40 //   post-order traversal on a graph with nodes that aren't dominated by a
     41 //   single node.
     42 //
     43 // - By providing a custom SetType class, unwanted graph nodes can be excluded
     44 //   by having the insert() function return false. This could for example
     45 //   confine a CFG traversal to blocks in a specific loop.
     46 //
     47 // - Finally, by specializing the po_iterator_storage template itself, graph
     48 //   edges can be pruned by returning false in the insertEdge() function. This
     49 //   could be used to remove loop back-edges from the CFG seen by po_iterator.
     50 //
     51 // A specialized po_iterator_storage class can observe both the pre-order and
     52 // the post-order. The insertEdge() function is called in a pre-order, while
     53 // the finishPostorder() function is called just before the po_iterator moves
     54 // on to the next node.
     55 
     56 /// Default po_iterator_storage implementation with an internal set object.
     57 template<class SetType, bool External>
     58 class po_iterator_storage {
     59   SetType Visited;
     60 
     61 public:
     62   // Return true if edge destination should be visited.
     63   template <typename NodeRef>
     64   bool insertEdge(Optional<NodeRef> From, NodeRef To) {
     65     return Visited.insert(To).second;
     66   }
     67 
     68   // Called after all children of BB have been visited.
     69   template <typename NodeRef> void finishPostorder(NodeRef BB) {}
     70 };
     71 
     72 /// Specialization of po_iterator_storage that references an external set.
     73 template<class SetType>
     74 class po_iterator_storage<SetType, true> {
     75   SetType &Visited;
     76 
     77 public:
     78   po_iterator_storage(SetType &VSet) : Visited(VSet) {}
     79   po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
     80 
     81   // Return true if edge destination should be visited, called with From = 0 for
     82   // the root node.
     83   // Graph edges can be pruned by specializing this function.
     84   template <class NodeRef> bool insertEdge(Optional<NodeRef> From, NodeRef To) {
     85     return Visited.insert(To).second;
     86   }
     87 
     88   // Called after all children of BB have been visited.
     89   template <class NodeRef> void finishPostorder(NodeRef BB) {}
     90 };
     91 
     92 template <class GraphT,
     93           class SetType =
     94               SmallPtrSet<typename GraphTraits<GraphT>::NodeRef, 8>,
     95           bool ExtStorage = false, class GT = GraphTraits<GraphT>>
     96 class po_iterator
     97     : public std::iterator<std::forward_iterator_tag, typename GT::NodeRef>,
     98       public po_iterator_storage<SetType, ExtStorage> {
     99   using super = std::iterator<std::forward_iterator_tag, typename GT::NodeRef>;
    100   using NodeRef = typename GT::NodeRef;
    101   using ChildItTy = typename GT::ChildIteratorType;
    102 
    103   // VisitStack - Used to maintain the ordering.  Top = current block
    104   // First element is basic block pointer, second is the 'next child' to visit
    105   std::vector<std::pair<NodeRef, ChildItTy>> VisitStack;
    106 
    107   po_iterator(NodeRef BB) {
    108     this->insertEdge(Optional<NodeRef>(), BB);
    109     VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
    110     traverseChild();
    111   }
    112 
    113   po_iterator() = default; // End is when stack is empty.
    114 
    115   po_iterator(NodeRef BB, SetType &S)
    116       : po_iterator_storage<SetType, ExtStorage>(S) {
    117     if (this->insertEdge(Optional<NodeRef>(), BB)) {
    118       VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
    119       traverseChild();
    120     }
    121   }
    122 
    123   po_iterator(SetType &S)
    124       : po_iterator_storage<SetType, ExtStorage>(S) {
    125   } // End is when stack is empty.
    126 
    127   void traverseChild() {
    128     while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
    129       NodeRef BB = *VisitStack.back().second++;
    130       if (this->insertEdge(Optional<NodeRef>(VisitStack.back().first), BB)) {
    131         // If the block is not visited...
    132         VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
    133       }
    134     }
    135   }
    136 
    137 public:
    138   using pointer = typename super::pointer;
    139 
    140   // Provide static "constructors"...
    141   static po_iterator begin(GraphT G) {
    142     return po_iterator(GT::getEntryNode(G));
    143   }
    144   static po_iterator end(GraphT G) { return po_iterator(); }
    145 
    146   static po_iterator begin(GraphT G, SetType &S) {
    147     return po_iterator(GT::getEntryNode(G), S);
    148   }
    149   static po_iterator end(GraphT G, SetType &S) { return po_iterator(S); }
    150 
    151   bool operator==(const po_iterator &x) const {
    152     return VisitStack == x.VisitStack;
    153   }
    154   bool operator!=(const po_iterator &x) const { return !(*this == x); }
    155 
    156   const NodeRef &operator*() const { return VisitStack.back().first; }
    157 
    158   // This is a nonstandard operator-> that dereferences the pointer an extra
    159   // time... so that you can actually call methods ON the BasicBlock, because
    160   // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
    161   //
    162   NodeRef operator->() const { return **this; }
    163 
    164   po_iterator &operator++() { // Preincrement
    165     this->finishPostorder(VisitStack.back().first);
    166     VisitStack.pop_back();
    167     if (!VisitStack.empty())
    168       traverseChild();
    169     return *this;
    170   }
    171 
    172   po_iterator operator++(int) { // Postincrement
    173     po_iterator tmp = *this;
    174     ++*this;
    175     return tmp;
    176   }
    177 };
    178 
    179 // Provide global constructors that automatically figure out correct types...
    180 //
    181 template <class T>
    182 po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); }
    183 template <class T>
    184 po_iterator<T> po_end  (const T &G) { return po_iterator<T>::end(G); }
    185 
    186 template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
    187   return make_range(po_begin(G), po_end(G));
    188 }
    189 
    190 // Provide global definitions of external postorder iterators...
    191 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
    192 struct po_ext_iterator : public po_iterator<T, SetType, true> {
    193   po_ext_iterator(const po_iterator<T, SetType, true> &V) :
    194   po_iterator<T, SetType, true>(V) {}
    195 };
    196 
    197 template<class T, class SetType>
    198 po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
    199   return po_ext_iterator<T, SetType>::begin(G, S);
    200 }
    201 
    202 template<class T, class SetType>
    203 po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
    204   return po_ext_iterator<T, SetType>::end(G, S);
    205 }
    206 
    207 template <class T, class SetType>
    208 iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) {
    209   return make_range(po_ext_begin(G, S), po_ext_end(G, S));
    210 }
    211 
    212 // Provide global definitions of inverse post order iterators...
    213 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>,
    214           bool External = false>
    215 struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External> {
    216   ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
    217      po_iterator<Inverse<T>, SetType, External> (V) {}
    218 };
    219 
    220 template <class T>
    221 ipo_iterator<T> ipo_begin(const T &G) {
    222   return ipo_iterator<T>::begin(G);
    223 }
    224 
    225 template <class T>
    226 ipo_iterator<T> ipo_end(const T &G){
    227   return ipo_iterator<T>::end(G);
    228 }
    229 
    230 template <class T>
    231 iterator_range<ipo_iterator<T>> inverse_post_order(const T &G) {
    232   return make_range(ipo_begin(G), ipo_end(G));
    233 }
    234 
    235 // Provide global definitions of external inverse postorder iterators...
    236 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
    237 struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
    238   ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
    239     ipo_iterator<T, SetType, true>(V) {}
    240   ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
    241     ipo_iterator<T, SetType, true>(V) {}
    242 };
    243 
    244 template <class T, class SetType>
    245 ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) {
    246   return ipo_ext_iterator<T, SetType>::begin(G, S);
    247 }
    248 
    249 template <class T, class SetType>
    250 ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) {
    251   return ipo_ext_iterator<T, SetType>::end(G, S);
    252 }
    253 
    254 template <class T, class SetType>
    255 iterator_range<ipo_ext_iterator<T, SetType>>
    256 inverse_post_order_ext(const T &G, SetType &S) {
    257   return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
    258 }
    259 
    260 //===--------------------------------------------------------------------===//
    261 // Reverse Post Order CFG iterator code
    262 //===--------------------------------------------------------------------===//
    263 //
    264 // This is used to visit basic blocks in a method in reverse post order.  This
    265 // class is awkward to use because I don't know a good incremental algorithm to
    266 // computer RPO from a graph.  Because of this, the construction of the
    267 // ReversePostOrderTraversal object is expensive (it must walk the entire graph
    268 // with a postorder iterator to build the data structures).  The moral of this
    269 // story is: Don't create more ReversePostOrderTraversal classes than necessary.
    270 //
    271 // Because it does the traversal in its constructor, it won't invalidate when
    272 // BasicBlocks are removed, *but* it may contain erased blocks. Some places
    273 // rely on this behavior (i.e. GVN).
    274 //
    275 // This class should be used like this:
    276 // {
    277 //   ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
    278 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
    279 //      ...
    280 //   }
    281 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
    282 //      ...
    283 //   }
    284 // }
    285 //
    286 
    287 template<class GraphT, class GT = GraphTraits<GraphT>>
    288 class ReversePostOrderTraversal {
    289   using NodeRef = typename GT::NodeRef;
    290 
    291   std::vector<NodeRef> Blocks; // Block list in normal PO order
    292 
    293   void Initialize(NodeRef BB) {
    294     std::copy(po_begin(BB), po_end(BB), std::back_inserter(Blocks));
    295   }
    296 
    297 public:
    298   using rpo_iterator = typename std::vector<NodeRef>::reverse_iterator;
    299 
    300   ReversePostOrderTraversal(GraphT G) { Initialize(GT::getEntryNode(G)); }
    301 
    302   // Because we want a reverse post order, use reverse iterators from the vector
    303   rpo_iterator begin() { return Blocks.rbegin(); }
    304   rpo_iterator end() { return Blocks.rend(); }
    305 };
    306 
    307 } // end namespace llvm
    308 
    309 #endif // LLVM_ADT_POSTORDERITERATOR_H
    310