Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the SmallVector class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_SMALLVECTOR_H
     15 #define LLVM_ADT_SMALLVECTOR_H
     16 
     17 #include "llvm/ADT/iterator_range.h"
     18 #include "llvm/Support/AlignOf.h"
     19 #include "llvm/Support/Compiler.h"
     20 #include "llvm/Support/MathExtras.h"
     21 #include "llvm/Support/type_traits.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include <algorithm>
     24 #include <cassert>
     25 #include <cstddef>
     26 #include <cstdlib>
     27 #include <cstring>
     28 #include <initializer_list>
     29 #include <iterator>
     30 #include <memory>
     31 #include <new>
     32 #include <type_traits>
     33 #include <utility>
     34 
     35 namespace llvm {
     36 
     37 /// This is all the non-templated stuff common to all SmallVectors.
     38 class SmallVectorBase {
     39 protected:
     40   void *BeginX, *EndX, *CapacityX;
     41 
     42 protected:
     43   SmallVectorBase(void *FirstEl, size_t Size)
     44     : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {}
     45 
     46   /// This is an implementation of the grow() method which only works
     47   /// on POD-like data types and is out of line to reduce code duplication.
     48   void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize);
     49 
     50 public:
     51   /// This returns size()*sizeof(T).
     52   size_t size_in_bytes() const {
     53     return size_t((char*)EndX - (char*)BeginX);
     54   }
     55 
     56   /// capacity_in_bytes - This returns capacity()*sizeof(T).
     57   size_t capacity_in_bytes() const {
     58     return size_t((char*)CapacityX - (char*)BeginX);
     59   }
     60 
     61   LLVM_NODISCARD bool empty() const { return BeginX == EndX; }
     62 };
     63 
     64 /// This is the part of SmallVectorTemplateBase which does not depend on whether
     65 /// the type T is a POD. The extra dummy template argument is used by ArrayRef
     66 /// to avoid unnecessarily requiring T to be complete.
     67 template <typename T, typename = void>
     68 class SmallVectorTemplateCommon : public SmallVectorBase {
     69 private:
     70   template <typename, unsigned> friend struct SmallVectorStorage;
     71 
     72   // Allocate raw space for N elements of type T.  If T has a ctor or dtor, we
     73   // don't want it to be automatically run, so we need to represent the space as
     74   // something else.  Use an array of char of sufficient alignment.
     75   using U = AlignedCharArrayUnion<T>;
     76   U FirstEl;
     77   // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
     78 
     79 protected:
     80   SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
     81 
     82   void grow_pod(size_t MinSizeInBytes, size_t TSize) {
     83     SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize);
     84   }
     85 
     86   /// Return true if this is a smallvector which has not had dynamic
     87   /// memory allocated for it.
     88   bool isSmall() const {
     89     return BeginX == static_cast<const void*>(&FirstEl);
     90   }
     91 
     92   /// Put this vector in a state of being small.
     93   void resetToSmall() {
     94     BeginX = EndX = CapacityX = &FirstEl;
     95   }
     96 
     97   void setEnd(T *P) { this->EndX = P; }
     98 
     99 public:
    100   using size_type = size_t;
    101   using difference_type = ptrdiff_t;
    102   using value_type = T;
    103   using iterator = T *;
    104   using const_iterator = const T *;
    105 
    106   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
    107   using reverse_iterator = std::reverse_iterator<iterator>;
    108 
    109   using reference = T &;
    110   using const_reference = const T &;
    111   using pointer = T *;
    112   using const_pointer = const T *;
    113 
    114   // forward iterator creation methods.
    115   LLVM_ATTRIBUTE_ALWAYS_INLINE
    116   iterator begin() { return (iterator)this->BeginX; }
    117   LLVM_ATTRIBUTE_ALWAYS_INLINE
    118   const_iterator begin() const { return (const_iterator)this->BeginX; }
    119   LLVM_ATTRIBUTE_ALWAYS_INLINE
    120   iterator end() { return (iterator)this->EndX; }
    121   LLVM_ATTRIBUTE_ALWAYS_INLINE
    122   const_iterator end() const { return (const_iterator)this->EndX; }
    123 
    124 protected:
    125   iterator capacity_ptr() { return (iterator)this->CapacityX; }
    126   const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
    127 
    128 public:
    129   // reverse iterator creation methods.
    130   reverse_iterator rbegin()            { return reverse_iterator(end()); }
    131   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
    132   reverse_iterator rend()              { return reverse_iterator(begin()); }
    133   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
    134 
    135   LLVM_ATTRIBUTE_ALWAYS_INLINE
    136   size_type size() const { return end()-begin(); }
    137   size_type max_size() const { return size_type(-1) / sizeof(T); }
    138 
    139   /// Return the total number of elements in the currently allocated buffer.
    140   size_t capacity() const { return capacity_ptr() - begin(); }
    141 
    142   /// Return a pointer to the vector's buffer, even if empty().
    143   pointer data() { return pointer(begin()); }
    144   /// Return a pointer to the vector's buffer, even if empty().
    145   const_pointer data() const { return const_pointer(begin()); }
    146 
    147   LLVM_ATTRIBUTE_ALWAYS_INLINE
    148   reference operator[](size_type idx) {
    149     assert(idx < size());
    150     return begin()[idx];
    151   }
    152   LLVM_ATTRIBUTE_ALWAYS_INLINE
    153   const_reference operator[](size_type idx) const {
    154     assert(idx < size());
    155     return begin()[idx];
    156   }
    157 
    158   reference front() {
    159     assert(!empty());
    160     return begin()[0];
    161   }
    162   const_reference front() const {
    163     assert(!empty());
    164     return begin()[0];
    165   }
    166 
    167   reference back() {
    168     assert(!empty());
    169     return end()[-1];
    170   }
    171   const_reference back() const {
    172     assert(!empty());
    173     return end()[-1];
    174   }
    175 };
    176 
    177 /// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
    178 /// implementations that are designed to work with non-POD-like T's.
    179 template <typename T, bool isPodLike>
    180 class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
    181 protected:
    182   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
    183 
    184   static void destroy_range(T *S, T *E) {
    185     while (S != E) {
    186       --E;
    187       E->~T();
    188     }
    189   }
    190 
    191   /// Move the range [I, E) into the uninitialized memory starting with "Dest",
    192   /// constructing elements as needed.
    193   template<typename It1, typename It2>
    194   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
    195     std::uninitialized_copy(std::make_move_iterator(I),
    196                             std::make_move_iterator(E), Dest);
    197   }
    198 
    199   /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
    200   /// constructing elements as needed.
    201   template<typename It1, typename It2>
    202   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    203     std::uninitialized_copy(I, E, Dest);
    204   }
    205 
    206   /// Grow the allocated memory (without initializing new elements), doubling
    207   /// the size of the allocated memory. Guarantees space for at least one more
    208   /// element, or MinSize more elements if specified.
    209   void grow(size_t MinSize = 0);
    210 
    211 public:
    212   void push_back(const T &Elt) {
    213     if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
    214       this->grow();
    215     ::new ((void*) this->end()) T(Elt);
    216     this->setEnd(this->end()+1);
    217   }
    218 
    219   void push_back(T &&Elt) {
    220     if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
    221       this->grow();
    222     ::new ((void*) this->end()) T(::std::move(Elt));
    223     this->setEnd(this->end()+1);
    224   }
    225 
    226   void pop_back() {
    227     this->setEnd(this->end()-1);
    228     this->end()->~T();
    229   }
    230 };
    231 
    232 // Define this out-of-line to dissuade the C++ compiler from inlining it.
    233 template <typename T, bool isPodLike>
    234 void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
    235   size_t CurCapacity = this->capacity();
    236   size_t CurSize = this->size();
    237   // Always grow, even from zero.
    238   size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2));
    239   if (NewCapacity < MinSize)
    240     NewCapacity = MinSize;
    241   T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
    242   if (NewElts == nullptr)
    243     report_bad_alloc_error("Allocation of SmallVector element failed.");
    244 
    245   // Move the elements over.
    246   this->uninitialized_move(this->begin(), this->end(), NewElts);
    247 
    248   // Destroy the original elements.
    249   destroy_range(this->begin(), this->end());
    250 
    251   // If this wasn't grown from the inline copy, deallocate the old space.
    252   if (!this->isSmall())
    253     free(this->begin());
    254 
    255   this->setEnd(NewElts+CurSize);
    256   this->BeginX = NewElts;
    257   this->CapacityX = this->begin()+NewCapacity;
    258 }
    259 
    260 
    261 /// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
    262 /// implementations that are designed to work with POD-like T's.
    263 template <typename T>
    264 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
    265 protected:
    266   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
    267 
    268   // No need to do a destroy loop for POD's.
    269   static void destroy_range(T *, T *) {}
    270 
    271   /// Move the range [I, E) onto the uninitialized memory
    272   /// starting with "Dest", constructing elements into it as needed.
    273   template<typename It1, typename It2>
    274   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
    275     // Just do a copy.
    276     uninitialized_copy(I, E, Dest);
    277   }
    278 
    279   /// Copy the range [I, E) onto the uninitialized memory
    280   /// starting with "Dest", constructing elements into it as needed.
    281   template<typename It1, typename It2>
    282   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    283     // Arbitrary iterator types; just use the basic implementation.
    284     std::uninitialized_copy(I, E, Dest);
    285   }
    286 
    287   /// Copy the range [I, E) onto the uninitialized memory
    288   /// starting with "Dest", constructing elements into it as needed.
    289   template <typename T1, typename T2>
    290   static void uninitialized_copy(
    291       T1 *I, T1 *E, T2 *Dest,
    292       typename std::enable_if<std::is_same<typename std::remove_const<T1>::type,
    293                                            T2>::value>::type * = nullptr) {
    294     // Use memcpy for PODs iterated by pointers (which includes SmallVector
    295     // iterators): std::uninitialized_copy optimizes to memmove, but we can
    296     // use memcpy here. Note that I and E are iterators and thus might be
    297     // invalid for memcpy if they are equal.
    298     if (I != E)
    299       memcpy(Dest, I, (E - I) * sizeof(T));
    300   }
    301 
    302   /// Double the size of the allocated memory, guaranteeing space for at
    303   /// least one more element or MinSize if specified.
    304   void grow(size_t MinSize = 0) {
    305     this->grow_pod(MinSize*sizeof(T), sizeof(T));
    306   }
    307 
    308 public:
    309   void push_back(const T &Elt) {
    310     if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
    311       this->grow();
    312     memcpy(this->end(), &Elt, sizeof(T));
    313     this->setEnd(this->end()+1);
    314   }
    315 
    316   void pop_back() {
    317     this->setEnd(this->end()-1);
    318   }
    319 };
    320 
    321 /// This class consists of common code factored out of the SmallVector class to
    322 /// reduce code duplication based on the SmallVector 'N' template parameter.
    323 template <typename T>
    324 class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
    325   using SuperClass = SmallVectorTemplateBase<T, isPodLike<T>::value>;
    326 
    327 public:
    328   using iterator = typename SuperClass::iterator;
    329   using const_iterator = typename SuperClass::const_iterator;
    330   using size_type = typename SuperClass::size_type;
    331 
    332 protected:
    333   // Default ctor - Initialize to empty.
    334   explicit SmallVectorImpl(unsigned N)
    335     : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
    336   }
    337 
    338 public:
    339   SmallVectorImpl(const SmallVectorImpl &) = delete;
    340 
    341   ~SmallVectorImpl() {
    342     // Destroy the constructed elements in the vector.
    343     this->destroy_range(this->begin(), this->end());
    344 
    345     // If this wasn't grown from the inline copy, deallocate the old space.
    346     if (!this->isSmall())
    347       free(this->begin());
    348   }
    349 
    350   void clear() {
    351     this->destroy_range(this->begin(), this->end());
    352     this->EndX = this->BeginX;
    353   }
    354 
    355   void resize(size_type N) {
    356     if (N < this->size()) {
    357       this->destroy_range(this->begin()+N, this->end());
    358       this->setEnd(this->begin()+N);
    359     } else if (N > this->size()) {
    360       if (this->capacity() < N)
    361         this->grow(N);
    362       for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
    363         new (&*I) T();
    364       this->setEnd(this->begin()+N);
    365     }
    366   }
    367 
    368   void resize(size_type N, const T &NV) {
    369     if (N < this->size()) {
    370       this->destroy_range(this->begin()+N, this->end());
    371       this->setEnd(this->begin()+N);
    372     } else if (N > this->size()) {
    373       if (this->capacity() < N)
    374         this->grow(N);
    375       std::uninitialized_fill(this->end(), this->begin()+N, NV);
    376       this->setEnd(this->begin()+N);
    377     }
    378   }
    379 
    380   void reserve(size_type N) {
    381     if (this->capacity() < N)
    382       this->grow(N);
    383   }
    384 
    385   LLVM_NODISCARD T pop_back_val() {
    386     T Result = ::std::move(this->back());
    387     this->pop_back();
    388     return Result;
    389   }
    390 
    391   void swap(SmallVectorImpl &RHS);
    392 
    393   /// Add the specified range to the end of the SmallVector.
    394   template <typename in_iter,
    395             typename = typename std::enable_if<std::is_convertible<
    396                 typename std::iterator_traits<in_iter>::iterator_category,
    397                 std::input_iterator_tag>::value>::type>
    398   void append(in_iter in_start, in_iter in_end) {
    399     size_type NumInputs = std::distance(in_start, in_end);
    400     // Grow allocated space if needed.
    401     if (NumInputs > size_type(this->capacity_ptr()-this->end()))
    402       this->grow(this->size()+NumInputs);
    403 
    404     // Copy the new elements over.
    405     this->uninitialized_copy(in_start, in_end, this->end());
    406     this->setEnd(this->end() + NumInputs);
    407   }
    408 
    409   /// Add the specified range to the end of the SmallVector.
    410   void append(size_type NumInputs, const T &Elt) {
    411     // Grow allocated space if needed.
    412     if (NumInputs > size_type(this->capacity_ptr()-this->end()))
    413       this->grow(this->size()+NumInputs);
    414 
    415     // Copy the new elements over.
    416     std::uninitialized_fill_n(this->end(), NumInputs, Elt);
    417     this->setEnd(this->end() + NumInputs);
    418   }
    419 
    420   void append(std::initializer_list<T> IL) {
    421     append(IL.begin(), IL.end());
    422   }
    423 
    424   // FIXME: Consider assigning over existing elements, rather than clearing &
    425   // re-initializing them - for all assign(...) variants.
    426 
    427   void assign(size_type NumElts, const T &Elt) {
    428     clear();
    429     if (this->capacity() < NumElts)
    430       this->grow(NumElts);
    431     this->setEnd(this->begin()+NumElts);
    432     std::uninitialized_fill(this->begin(), this->end(), Elt);
    433   }
    434 
    435   template <typename in_iter,
    436             typename = typename std::enable_if<std::is_convertible<
    437                 typename std::iterator_traits<in_iter>::iterator_category,
    438                 std::input_iterator_tag>::value>::type>
    439   void assign(in_iter in_start, in_iter in_end) {
    440     clear();
    441     append(in_start, in_end);
    442   }
    443 
    444   void assign(std::initializer_list<T> IL) {
    445     clear();
    446     append(IL);
    447   }
    448 
    449   iterator erase(const_iterator CI) {
    450     // Just cast away constness because this is a non-const member function.
    451     iterator I = const_cast<iterator>(CI);
    452 
    453     assert(I >= this->begin() && "Iterator to erase is out of bounds.");
    454     assert(I < this->end() && "Erasing at past-the-end iterator.");
    455 
    456     iterator N = I;
    457     // Shift all elts down one.
    458     std::move(I+1, this->end(), I);
    459     // Drop the last elt.
    460     this->pop_back();
    461     return(N);
    462   }
    463 
    464   iterator erase(const_iterator CS, const_iterator CE) {
    465     // Just cast away constness because this is a non-const member function.
    466     iterator S = const_cast<iterator>(CS);
    467     iterator E = const_cast<iterator>(CE);
    468 
    469     assert(S >= this->begin() && "Range to erase is out of bounds.");
    470     assert(S <= E && "Trying to erase invalid range.");
    471     assert(E <= this->end() && "Trying to erase past the end.");
    472 
    473     iterator N = S;
    474     // Shift all elts down.
    475     iterator I = std::move(E, this->end(), S);
    476     // Drop the last elts.
    477     this->destroy_range(I, this->end());
    478     this->setEnd(I);
    479     return(N);
    480   }
    481 
    482   iterator insert(iterator I, T &&Elt) {
    483     if (I == this->end()) {  // Important special case for empty vector.
    484       this->push_back(::std::move(Elt));
    485       return this->end()-1;
    486     }
    487 
    488     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    489     assert(I <= this->end() && "Inserting past the end of the vector.");
    490 
    491     if (this->EndX >= this->CapacityX) {
    492       size_t EltNo = I-this->begin();
    493       this->grow();
    494       I = this->begin()+EltNo;
    495     }
    496 
    497     ::new ((void*) this->end()) T(::std::move(this->back()));
    498     // Push everything else over.
    499     std::move_backward(I, this->end()-1, this->end());
    500     this->setEnd(this->end()+1);
    501 
    502     // If we just moved the element we're inserting, be sure to update
    503     // the reference.
    504     T *EltPtr = &Elt;
    505     if (I <= EltPtr && EltPtr < this->EndX)
    506       ++EltPtr;
    507 
    508     *I = ::std::move(*EltPtr);
    509     return I;
    510   }
    511 
    512   iterator insert(iterator I, const T &Elt) {
    513     if (I == this->end()) {  // Important special case for empty vector.
    514       this->push_back(Elt);
    515       return this->end()-1;
    516     }
    517 
    518     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    519     assert(I <= this->end() && "Inserting past the end of the vector.");
    520 
    521     if (this->EndX >= this->CapacityX) {
    522       size_t EltNo = I-this->begin();
    523       this->grow();
    524       I = this->begin()+EltNo;
    525     }
    526     ::new ((void*) this->end()) T(std::move(this->back()));
    527     // Push everything else over.
    528     std::move_backward(I, this->end()-1, this->end());
    529     this->setEnd(this->end()+1);
    530 
    531     // If we just moved the element we're inserting, be sure to update
    532     // the reference.
    533     const T *EltPtr = &Elt;
    534     if (I <= EltPtr && EltPtr < this->EndX)
    535       ++EltPtr;
    536 
    537     *I = *EltPtr;
    538     return I;
    539   }
    540 
    541   iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
    542     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    543     size_t InsertElt = I - this->begin();
    544 
    545     if (I == this->end()) {  // Important special case for empty vector.
    546       append(NumToInsert, Elt);
    547       return this->begin()+InsertElt;
    548     }
    549 
    550     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    551     assert(I <= this->end() && "Inserting past the end of the vector.");
    552 
    553     // Ensure there is enough space.
    554     reserve(this->size() + NumToInsert);
    555 
    556     // Uninvalidate the iterator.
    557     I = this->begin()+InsertElt;
    558 
    559     // If there are more elements between the insertion point and the end of the
    560     // range than there are being inserted, we can use a simple approach to
    561     // insertion.  Since we already reserved space, we know that this won't
    562     // reallocate the vector.
    563     if (size_t(this->end()-I) >= NumToInsert) {
    564       T *OldEnd = this->end();
    565       append(std::move_iterator<iterator>(this->end() - NumToInsert),
    566              std::move_iterator<iterator>(this->end()));
    567 
    568       // Copy the existing elements that get replaced.
    569       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
    570 
    571       std::fill_n(I, NumToInsert, Elt);
    572       return I;
    573     }
    574 
    575     // Otherwise, we're inserting more elements than exist already, and we're
    576     // not inserting at the end.
    577 
    578     // Move over the elements that we're about to overwrite.
    579     T *OldEnd = this->end();
    580     this->setEnd(this->end() + NumToInsert);
    581     size_t NumOverwritten = OldEnd-I;
    582     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
    583 
    584     // Replace the overwritten part.
    585     std::fill_n(I, NumOverwritten, Elt);
    586 
    587     // Insert the non-overwritten middle part.
    588     std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
    589     return I;
    590   }
    591 
    592   template <typename ItTy,
    593             typename = typename std::enable_if<std::is_convertible<
    594                 typename std::iterator_traits<ItTy>::iterator_category,
    595                 std::input_iterator_tag>::value>::type>
    596   iterator insert(iterator I, ItTy From, ItTy To) {
    597     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    598     size_t InsertElt = I - this->begin();
    599 
    600     if (I == this->end()) {  // Important special case for empty vector.
    601       append(From, To);
    602       return this->begin()+InsertElt;
    603     }
    604 
    605     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    606     assert(I <= this->end() && "Inserting past the end of the vector.");
    607 
    608     size_t NumToInsert = std::distance(From, To);
    609 
    610     // Ensure there is enough space.
    611     reserve(this->size() + NumToInsert);
    612 
    613     // Uninvalidate the iterator.
    614     I = this->begin()+InsertElt;
    615 
    616     // If there are more elements between the insertion point and the end of the
    617     // range than there are being inserted, we can use a simple approach to
    618     // insertion.  Since we already reserved space, we know that this won't
    619     // reallocate the vector.
    620     if (size_t(this->end()-I) >= NumToInsert) {
    621       T *OldEnd = this->end();
    622       append(std::move_iterator<iterator>(this->end() - NumToInsert),
    623              std::move_iterator<iterator>(this->end()));
    624 
    625       // Copy the existing elements that get replaced.
    626       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
    627 
    628       std::copy(From, To, I);
    629       return I;
    630     }
    631 
    632     // Otherwise, we're inserting more elements than exist already, and we're
    633     // not inserting at the end.
    634 
    635     // Move over the elements that we're about to overwrite.
    636     T *OldEnd = this->end();
    637     this->setEnd(this->end() + NumToInsert);
    638     size_t NumOverwritten = OldEnd-I;
    639     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
    640 
    641     // Replace the overwritten part.
    642     for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
    643       *J = *From;
    644       ++J; ++From;
    645     }
    646 
    647     // Insert the non-overwritten middle part.
    648     this->uninitialized_copy(From, To, OldEnd);
    649     return I;
    650   }
    651 
    652   void insert(iterator I, std::initializer_list<T> IL) {
    653     insert(I, IL.begin(), IL.end());
    654   }
    655 
    656   template <typename... ArgTypes> void emplace_back(ArgTypes &&... Args) {
    657     if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
    658       this->grow();
    659     ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
    660     this->setEnd(this->end() + 1);
    661   }
    662 
    663   SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
    664 
    665   SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
    666 
    667   bool operator==(const SmallVectorImpl &RHS) const {
    668     if (this->size() != RHS.size()) return false;
    669     return std::equal(this->begin(), this->end(), RHS.begin());
    670   }
    671   bool operator!=(const SmallVectorImpl &RHS) const {
    672     return !(*this == RHS);
    673   }
    674 
    675   bool operator<(const SmallVectorImpl &RHS) const {
    676     return std::lexicographical_compare(this->begin(), this->end(),
    677                                         RHS.begin(), RHS.end());
    678   }
    679 
    680   /// Set the array size to \p N, which the current array must have enough
    681   /// capacity for.
    682   ///
    683   /// This does not construct or destroy any elements in the vector.
    684   ///
    685   /// Clients can use this in conjunction with capacity() to write past the end
    686   /// of the buffer when they know that more elements are available, and only
    687   /// update the size later. This avoids the cost of value initializing elements
    688   /// which will only be overwritten.
    689   void set_size(size_type N) {
    690     assert(N <= this->capacity());
    691     this->setEnd(this->begin() + N);
    692   }
    693 };
    694 
    695 template <typename T>
    696 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
    697   if (this == &RHS) return;
    698 
    699   // We can only avoid copying elements if neither vector is small.
    700   if (!this->isSmall() && !RHS.isSmall()) {
    701     std::swap(this->BeginX, RHS.BeginX);
    702     std::swap(this->EndX, RHS.EndX);
    703     std::swap(this->CapacityX, RHS.CapacityX);
    704     return;
    705   }
    706   if (RHS.size() > this->capacity())
    707     this->grow(RHS.size());
    708   if (this->size() > RHS.capacity())
    709     RHS.grow(this->size());
    710 
    711   // Swap the shared elements.
    712   size_t NumShared = this->size();
    713   if (NumShared > RHS.size()) NumShared = RHS.size();
    714   for (size_type i = 0; i != NumShared; ++i)
    715     std::swap((*this)[i], RHS[i]);
    716 
    717   // Copy over the extra elts.
    718   if (this->size() > RHS.size()) {
    719     size_t EltDiff = this->size() - RHS.size();
    720     this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
    721     RHS.setEnd(RHS.end()+EltDiff);
    722     this->destroy_range(this->begin()+NumShared, this->end());
    723     this->setEnd(this->begin()+NumShared);
    724   } else if (RHS.size() > this->size()) {
    725     size_t EltDiff = RHS.size() - this->size();
    726     this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
    727     this->setEnd(this->end() + EltDiff);
    728     this->destroy_range(RHS.begin()+NumShared, RHS.end());
    729     RHS.setEnd(RHS.begin()+NumShared);
    730   }
    731 }
    732 
    733 template <typename T>
    734 SmallVectorImpl<T> &SmallVectorImpl<T>::
    735   operator=(const SmallVectorImpl<T> &RHS) {
    736   // Avoid self-assignment.
    737   if (this == &RHS) return *this;
    738 
    739   // If we already have sufficient space, assign the common elements, then
    740   // destroy any excess.
    741   size_t RHSSize = RHS.size();
    742   size_t CurSize = this->size();
    743   if (CurSize >= RHSSize) {
    744     // Assign common elements.
    745     iterator NewEnd;
    746     if (RHSSize)
    747       NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
    748     else
    749       NewEnd = this->begin();
    750 
    751     // Destroy excess elements.
    752     this->destroy_range(NewEnd, this->end());
    753 
    754     // Trim.
    755     this->setEnd(NewEnd);
    756     return *this;
    757   }
    758 
    759   // If we have to grow to have enough elements, destroy the current elements.
    760   // This allows us to avoid copying them during the grow.
    761   // FIXME: don't do this if they're efficiently moveable.
    762   if (this->capacity() < RHSSize) {
    763     // Destroy current elements.
    764     this->destroy_range(this->begin(), this->end());
    765     this->setEnd(this->begin());
    766     CurSize = 0;
    767     this->grow(RHSSize);
    768   } else if (CurSize) {
    769     // Otherwise, use assignment for the already-constructed elements.
    770     std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
    771   }
    772 
    773   // Copy construct the new elements in place.
    774   this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
    775                            this->begin()+CurSize);
    776 
    777   // Set end.
    778   this->setEnd(this->begin()+RHSSize);
    779   return *this;
    780 }
    781 
    782 template <typename T>
    783 SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
    784   // Avoid self-assignment.
    785   if (this == &RHS) return *this;
    786 
    787   // If the RHS isn't small, clear this vector and then steal its buffer.
    788   if (!RHS.isSmall()) {
    789     this->destroy_range(this->begin(), this->end());
    790     if (!this->isSmall()) free(this->begin());
    791     this->BeginX = RHS.BeginX;
    792     this->EndX = RHS.EndX;
    793     this->CapacityX = RHS.CapacityX;
    794     RHS.resetToSmall();
    795     return *this;
    796   }
    797 
    798   // If we already have sufficient space, assign the common elements, then
    799   // destroy any excess.
    800   size_t RHSSize = RHS.size();
    801   size_t CurSize = this->size();
    802   if (CurSize >= RHSSize) {
    803     // Assign common elements.
    804     iterator NewEnd = this->begin();
    805     if (RHSSize)
    806       NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
    807 
    808     // Destroy excess elements and trim the bounds.
    809     this->destroy_range(NewEnd, this->end());
    810     this->setEnd(NewEnd);
    811 
    812     // Clear the RHS.
    813     RHS.clear();
    814 
    815     return *this;
    816   }
    817 
    818   // If we have to grow to have enough elements, destroy the current elements.
    819   // This allows us to avoid copying them during the grow.
    820   // FIXME: this may not actually make any sense if we can efficiently move
    821   // elements.
    822   if (this->capacity() < RHSSize) {
    823     // Destroy current elements.
    824     this->destroy_range(this->begin(), this->end());
    825     this->setEnd(this->begin());
    826     CurSize = 0;
    827     this->grow(RHSSize);
    828   } else if (CurSize) {
    829     // Otherwise, use assignment for the already-constructed elements.
    830     std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
    831   }
    832 
    833   // Move-construct the new elements in place.
    834   this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
    835                            this->begin()+CurSize);
    836 
    837   // Set end.
    838   this->setEnd(this->begin()+RHSSize);
    839 
    840   RHS.clear();
    841   return *this;
    842 }
    843 
    844 /// Storage for the SmallVector elements which aren't contained in
    845 /// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1'
    846 /// element is in the base class. This is specialized for the N=1 and N=0 cases
    847 /// to avoid allocating unnecessary storage.
    848 template <typename T, unsigned N>
    849 struct SmallVectorStorage {
    850   typename SmallVectorTemplateCommon<T>::U InlineElts[N - 1];
    851 };
    852 template <typename T> struct SmallVectorStorage<T, 1> {};
    853 template <typename T> struct SmallVectorStorage<T, 0> {};
    854 
    855 /// This is a 'vector' (really, a variable-sized array), optimized
    856 /// for the case when the array is small.  It contains some number of elements
    857 /// in-place, which allows it to avoid heap allocation when the actual number of
    858 /// elements is below that threshold.  This allows normal "small" cases to be
    859 /// fast without losing generality for large inputs.
    860 ///
    861 /// Note that this does not attempt to be exception safe.
    862 ///
    863 template <typename T, unsigned N>
    864 class SmallVector : public SmallVectorImpl<T> {
    865   /// Inline space for elements which aren't stored in the base class.
    866   SmallVectorStorage<T, N> Storage;
    867 
    868 public:
    869   SmallVector() : SmallVectorImpl<T>(N) {}
    870 
    871   explicit SmallVector(size_t Size, const T &Value = T())
    872     : SmallVectorImpl<T>(N) {
    873     this->assign(Size, Value);
    874   }
    875 
    876   template <typename ItTy,
    877             typename = typename std::enable_if<std::is_convertible<
    878                 typename std::iterator_traits<ItTy>::iterator_category,
    879                 std::input_iterator_tag>::value>::type>
    880   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
    881     this->append(S, E);
    882   }
    883 
    884   template <typename RangeTy>
    885   explicit SmallVector(const iterator_range<RangeTy> &R)
    886       : SmallVectorImpl<T>(N) {
    887     this->append(R.begin(), R.end());
    888   }
    889 
    890   SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
    891     this->assign(IL);
    892   }
    893 
    894   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
    895     if (!RHS.empty())
    896       SmallVectorImpl<T>::operator=(RHS);
    897   }
    898 
    899   const SmallVector &operator=(const SmallVector &RHS) {
    900     SmallVectorImpl<T>::operator=(RHS);
    901     return *this;
    902   }
    903 
    904   SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
    905     if (!RHS.empty())
    906       SmallVectorImpl<T>::operator=(::std::move(RHS));
    907   }
    908 
    909   SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
    910     if (!RHS.empty())
    911       SmallVectorImpl<T>::operator=(::std::move(RHS));
    912   }
    913 
    914   const SmallVector &operator=(SmallVector &&RHS) {
    915     SmallVectorImpl<T>::operator=(::std::move(RHS));
    916     return *this;
    917   }
    918 
    919   const SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
    920     SmallVectorImpl<T>::operator=(::std::move(RHS));
    921     return *this;
    922   }
    923 
    924   const SmallVector &operator=(std::initializer_list<T> IL) {
    925     this->assign(IL);
    926     return *this;
    927   }
    928 };
    929 
    930 template<typename T, unsigned N>
    931 static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
    932   return X.capacity_in_bytes();
    933 }
    934 
    935 } // end namespace llvm
    936 
    937 namespace std {
    938 
    939   /// Implement std::swap in terms of SmallVector swap.
    940   template<typename T>
    941   inline void
    942   swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
    943     LHS.swap(RHS);
    944   }
    945 
    946   /// Implement std::swap in terms of SmallVector swap.
    947   template<typename T, unsigned N>
    948   inline void
    949   swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
    950     LHS.swap(RHS);
    951   }
    952 
    953 } // end namespace std
    954 
    955 #endif // LLVM_ADT_SMALLVECTOR_H
    956