Home | History | Annotate | Download | only in IR
      1 //===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Represent a range of possible values that may occur when the program is run
     11 // for an integral value.  This keeps track of a lower and upper bound for the
     12 // constant, which MAY wrap around the end of the numeric range.  To do this, it
     13 // keeps track of a [lower, upper) bound, which specifies an interval just like
     14 // STL iterators.  When used with boolean values, the following are important
     15 // ranges: :
     16 //
     17 //  [F, F) = {}     = Empty set
     18 //  [T, F) = {T}
     19 //  [F, T) = {F}
     20 //  [T, T) = {F, T} = Full set
     21 //
     22 // The other integral ranges use min/max values for special range values. For
     23 // example, for 8-bit types, it uses:
     24 // [0, 0)     = {}       = Empty set
     25 // [255, 255) = {0..255} = Full Set
     26 //
     27 // Note that ConstantRange can be used to represent either signed or
     28 // unsigned ranges.
     29 //
     30 //===----------------------------------------------------------------------===//
     31 
     32 #ifndef LLVM_IR_CONSTANTRANGE_H
     33 #define LLVM_IR_CONSTANTRANGE_H
     34 
     35 #include "llvm/ADT/APInt.h"
     36 #include "llvm/IR/InstrTypes.h"
     37 #include "llvm/IR/Instruction.h"
     38 #include "llvm/Support/Compiler.h"
     39 #include <cstdint>
     40 
     41 namespace llvm {
     42 
     43 class MDNode;
     44 class raw_ostream;
     45 
     46 /// This class represents a range of values.
     47 class LLVM_NODISCARD ConstantRange {
     48   APInt Lower, Upper;
     49 
     50 public:
     51   /// Initialize a full (the default) or empty set for the specified bit width.
     52   explicit ConstantRange(uint32_t BitWidth, bool isFullSet = true);
     53 
     54   /// Initialize a range to hold the single specified value.
     55   ConstantRange(APInt Value);
     56 
     57   /// @brief Initialize a range of values explicitly. This will assert out if
     58   /// Lower==Upper and Lower != Min or Max value for its type. It will also
     59   /// assert out if the two APInt's are not the same bit width.
     60   ConstantRange(APInt Lower, APInt Upper);
     61 
     62   /// Produce the smallest range such that all values that may satisfy the given
     63   /// predicate with any value contained within Other is contained in the
     64   /// returned range.  Formally, this returns a superset of
     65   /// 'union over all y in Other . { x : icmp op x y is true }'.  If the exact
     66   /// answer is not representable as a ConstantRange, the return value will be a
     67   /// proper superset of the above.
     68   ///
     69   /// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
     70   static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
     71                                              const ConstantRange &Other);
     72 
     73   /// Produce the largest range such that all values in the returned range
     74   /// satisfy the given predicate with all values contained within Other.
     75   /// Formally, this returns a subset of
     76   /// 'intersection over all y in Other . { x : icmp op x y is true }'.  If the
     77   /// exact answer is not representable as a ConstantRange, the return value
     78   /// will be a proper subset of the above.
     79   ///
     80   /// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
     81   static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
     82                                                 const ConstantRange &Other);
     83 
     84   /// Produce the exact range such that all values in the returned range satisfy
     85   /// the given predicate with any value contained within Other. Formally, this
     86   /// returns the exact answer when the superset of 'union over all y in Other
     87   /// is exactly same as the subset of intersection over all y in Other.
     88   /// { x : icmp op x y is true}'.
     89   ///
     90   /// Example: Pred = ult and Other = i8 3 returns [0, 3)
     91   static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
     92                                            const APInt &Other);
     93 
     94   /// Return the largest range containing all X such that "X BinOpC Y" is
     95   /// guaranteed not to wrap (overflow) for all Y in Other.
     96   ///
     97   /// NB! The returned set does *not* contain **all** possible values of X for
     98   /// which "X BinOpC Y" does not wrap -- some viable values of X may be
     99   /// missing, so you cannot use this to constrain X's range.  E.g. in the
    100   /// fourth example, "(-2) + 1" is both nsw and nuw (so the "X" could be -2),
    101   /// but (-2) is not in the set returned.
    102   ///
    103   /// Examples:
    104   ///  typedef OverflowingBinaryOperator OBO;
    105   ///  #define MGNR makeGuaranteedNoWrapRegion
    106   ///  MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
    107   ///  MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
    108   ///  MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
    109   ///  MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap | OBO::NoSignedWrap)
    110   ///    == [0,INT_MAX)
    111   ///  MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
    112   ///  MGNR(Sub, [i8 1, 2), OBO::NoSignedWrap) == [-127, 128)
    113   ///  MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap) == [1, 0)
    114   ///  MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap | OBO::NoSignedWrap)
    115   ///    == [1,INT_MAX)
    116   static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
    117                                                   const ConstantRange &Other,
    118                                                   unsigned NoWrapKind);
    119 
    120   /// Set up \p Pred and \p RHS such that
    121   /// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.  Return true if
    122   /// successful.
    123   bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;
    124 
    125   /// Return the lower value for this range.
    126   const APInt &getLower() const { return Lower; }
    127 
    128   /// Return the upper value for this range.
    129   const APInt &getUpper() const { return Upper; }
    130 
    131   /// Get the bit width of this ConstantRange.
    132   uint32_t getBitWidth() const { return Lower.getBitWidth(); }
    133 
    134   /// Return true if this set contains all of the elements possible
    135   /// for this data-type.
    136   bool isFullSet() const;
    137 
    138   /// Return true if this set contains no members.
    139   bool isEmptySet() const;
    140 
    141   /// Return true if this set wraps around the top of the range.
    142   /// For example: [100, 8).
    143   bool isWrappedSet() const;
    144 
    145   /// Return true if this set wraps around the INT_MIN of
    146   /// its bitwidth. For example: i8 [120, 140).
    147   bool isSignWrappedSet() const;
    148 
    149   /// Return true if the specified value is in the set.
    150   bool contains(const APInt &Val) const;
    151 
    152   /// Return true if the other range is a subset of this one.
    153   bool contains(const ConstantRange &CR) const;
    154 
    155   /// If this set contains a single element, return it, otherwise return null.
    156   const APInt *getSingleElement() const {
    157     if (Upper == Lower + 1)
    158       return &Lower;
    159     return nullptr;
    160   }
    161 
    162   /// If this set contains all but a single element, return it, otherwise return
    163   /// null.
    164   const APInt *getSingleMissingElement() const {
    165     if (Lower == Upper + 1)
    166       return &Upper;
    167     return nullptr;
    168   }
    169 
    170   /// Return true if this set contains exactly one member.
    171   bool isSingleElement() const { return getSingleElement() != nullptr; }
    172 
    173   /// Return the number of elements in this set.
    174   APInt getSetSize() const;
    175 
    176   /// Compare set size of this range with the range CR.
    177   bool isSizeStrictlySmallerThan(const ConstantRange &CR) const;
    178 
    179   // Compare set size of this range with Value.
    180   bool isSizeLargerThan(uint64_t MaxSize) const;
    181 
    182   /// Return the largest unsigned value contained in the ConstantRange.
    183   APInt getUnsignedMax() const;
    184 
    185   /// Return the smallest unsigned value contained in the ConstantRange.
    186   APInt getUnsignedMin() const;
    187 
    188   /// Return the largest signed value contained in the ConstantRange.
    189   APInt getSignedMax() const;
    190 
    191   /// Return the smallest signed value contained in the ConstantRange.
    192   APInt getSignedMin() const;
    193 
    194   /// Return true if this range is equal to another range.
    195   bool operator==(const ConstantRange &CR) const {
    196     return Lower == CR.Lower && Upper == CR.Upper;
    197   }
    198   bool operator!=(const ConstantRange &CR) const {
    199     return !operator==(CR);
    200   }
    201 
    202   /// Subtract the specified constant from the endpoints of this constant range.
    203   ConstantRange subtract(const APInt &CI) const;
    204 
    205   /// Subtract the specified range from this range (aka relative complement of
    206   /// the sets).
    207   ConstantRange difference(const ConstantRange &CR) const;
    208 
    209   /// Return the range that results from the intersection of
    210   /// this range with another range.  The resultant range is guaranteed to
    211   /// include all elements contained in both input ranges, and to have the
    212   /// smallest possible set size that does so.  Because there may be two
    213   /// intersections with the same set size, A.intersectWith(B) might not
    214   /// be equal to B.intersectWith(A).
    215   ConstantRange intersectWith(const ConstantRange &CR) const;
    216 
    217   /// Return the range that results from the union of this range
    218   /// with another range.  The resultant range is guaranteed to include the
    219   /// elements of both sets, but may contain more.  For example, [3, 9) union
    220   /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
    221   /// in either set before.
    222   ConstantRange unionWith(const ConstantRange &CR) const;
    223 
    224   /// Return a new range representing the possible values resulting
    225   /// from an application of the specified cast operator to this range. \p
    226   /// BitWidth is the target bitwidth of the cast.  For casts which don't
    227   /// change bitwidth, it must be the same as the source bitwidth.  For casts
    228   /// which do change bitwidth, the bitwidth must be consistent with the
    229   /// requested cast and source bitwidth.
    230   ConstantRange castOp(Instruction::CastOps CastOp,
    231                        uint32_t BitWidth) const;
    232 
    233   /// Return a new range in the specified integer type, which must
    234   /// be strictly larger than the current type.  The returned range will
    235   /// correspond to the possible range of values if the source range had been
    236   /// zero extended to BitWidth.
    237   ConstantRange zeroExtend(uint32_t BitWidth) const;
    238 
    239   /// Return a new range in the specified integer type, which must
    240   /// be strictly larger than the current type.  The returned range will
    241   /// correspond to the possible range of values if the source range had been
    242   /// sign extended to BitWidth.
    243   ConstantRange signExtend(uint32_t BitWidth) const;
    244 
    245   /// Return a new range in the specified integer type, which must be
    246   /// strictly smaller than the current type.  The returned range will
    247   /// correspond to the possible range of values if the source range had been
    248   /// truncated to the specified type.
    249   ConstantRange truncate(uint32_t BitWidth) const;
    250 
    251   /// Make this range have the bit width given by \p BitWidth. The
    252   /// value is zero extended, truncated, or left alone to make it that width.
    253   ConstantRange zextOrTrunc(uint32_t BitWidth) const;
    254 
    255   /// Make this range have the bit width given by \p BitWidth. The
    256   /// value is sign extended, truncated, or left alone to make it that width.
    257   ConstantRange sextOrTrunc(uint32_t BitWidth) const;
    258 
    259   /// Return a new range representing the possible values resulting
    260   /// from an application of the specified binary operator to an left hand side
    261   /// of this range and a right hand side of \p Other.
    262   ConstantRange binaryOp(Instruction::BinaryOps BinOp,
    263                          const ConstantRange &Other) const;
    264 
    265   /// Return a new range representing the possible values resulting
    266   /// from an addition of a value in this range and a value in \p Other.
    267   ConstantRange add(const ConstantRange &Other) const;
    268 
    269   /// Return a new range representing the possible values resulting from a
    270   /// known NSW addition of a value in this range and \p Other constant.
    271   ConstantRange addWithNoSignedWrap(const APInt &Other) const;
    272 
    273   /// Return a new range representing the possible values resulting
    274   /// from a subtraction of a value in this range and a value in \p Other.
    275   ConstantRange sub(const ConstantRange &Other) const;
    276 
    277   /// Return a new range representing the possible values resulting
    278   /// from a multiplication of a value in this range and a value in \p Other,
    279   /// treating both this and \p Other as unsigned ranges.
    280   ConstantRange multiply(const ConstantRange &Other) const;
    281 
    282   /// Return a new range representing the possible values resulting
    283   /// from a signed maximum of a value in this range and a value in \p Other.
    284   ConstantRange smax(const ConstantRange &Other) const;
    285 
    286   /// Return a new range representing the possible values resulting
    287   /// from an unsigned maximum of a value in this range and a value in \p Other.
    288   ConstantRange umax(const ConstantRange &Other) const;
    289 
    290   /// Return a new range representing the possible values resulting
    291   /// from a signed minimum of a value in this range and a value in \p Other.
    292   ConstantRange smin(const ConstantRange &Other) const;
    293 
    294   /// Return a new range representing the possible values resulting
    295   /// from an unsigned minimum of a value in this range and a value in \p Other.
    296   ConstantRange umin(const ConstantRange &Other) const;
    297 
    298   /// Return a new range representing the possible values resulting
    299   /// from an unsigned division of a value in this range and a value in
    300   /// \p Other.
    301   ConstantRange udiv(const ConstantRange &Other) const;
    302 
    303   /// Return a new range representing the possible values resulting
    304   /// from a binary-and of a value in this range by a value in \p Other.
    305   ConstantRange binaryAnd(const ConstantRange &Other) const;
    306 
    307   /// Return a new range representing the possible values resulting
    308   /// from a binary-or of a value in this range by a value in \p Other.
    309   ConstantRange binaryOr(const ConstantRange &Other) const;
    310 
    311   /// Return a new range representing the possible values resulting
    312   /// from a left shift of a value in this range by a value in \p Other.
    313   /// TODO: This isn't fully implemented yet.
    314   ConstantRange shl(const ConstantRange &Other) const;
    315 
    316   /// Return a new range representing the possible values resulting from a
    317   /// logical right shift of a value in this range and a value in \p Other.
    318   ConstantRange lshr(const ConstantRange &Other) const;
    319 
    320   /// Return a new range that is the logical not of the current set.
    321   ConstantRange inverse() const;
    322 
    323   /// Print out the bounds to a stream.
    324   void print(raw_ostream &OS) const;
    325 
    326   /// Allow printing from a debugger easily.
    327   void dump() const;
    328 };
    329 
    330 inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
    331   CR.print(OS);
    332   return OS;
    333 }
    334 
    335 /// Parse out a conservative ConstantRange from !range metadata.
    336 ///
    337 /// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20).
    338 ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD);
    339 
    340 } // end namespace llvm
    341 
    342 #endif // LLVM_IR_CONSTANTRANGE_H
    343