1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a coalescing interval map for small objects. 11 // 12 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the 13 // same value are represented in a compressed form. 14 // 15 // Iterators provide ordered access to the compressed intervals rather than the 16 // individual keys, and insert and erase operations use key intervals as well. 17 // 18 // Like SmallVector, IntervalMap will store the first N intervals in the map 19 // object itself without any allocations. When space is exhausted it switches to 20 // a B+-tree representation with very small overhead for small key and value 21 // objects. 22 // 23 // A Traits class specifies how keys are compared. It also allows IntervalMap to 24 // work with both closed and half-open intervals. 25 // 26 // Keys and values are not stored next to each other in a std::pair, so we don't 27 // provide such a value_type. Dereferencing iterators only returns the mapped 28 // value. The interval bounds are accessible through the start() and stop() 29 // iterator methods. 30 // 31 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each 32 // is the optimal size. For large objects use std::map instead. 33 // 34 //===----------------------------------------------------------------------===// 35 // 36 // Synopsis: 37 // 38 // template <typename KeyT, typename ValT, unsigned N, typename Traits> 39 // class IntervalMap { 40 // public: 41 // typedef KeyT key_type; 42 // typedef ValT mapped_type; 43 // typedef RecyclingAllocator<...> Allocator; 44 // class iterator; 45 // class const_iterator; 46 // 47 // explicit IntervalMap(Allocator&); 48 // ~IntervalMap(): 49 // 50 // bool empty() const; 51 // KeyT start() const; 52 // KeyT stop() const; 53 // ValT lookup(KeyT x, Value NotFound = Value()) const; 54 // 55 // const_iterator begin() const; 56 // const_iterator end() const; 57 // iterator begin(); 58 // iterator end(); 59 // const_iterator find(KeyT x) const; 60 // iterator find(KeyT x); 61 // 62 // void insert(KeyT a, KeyT b, ValT y); 63 // void clear(); 64 // }; 65 // 66 // template <typename KeyT, typename ValT, unsigned N, typename Traits> 67 // class IntervalMap::const_iterator : 68 // public std::iterator<std::bidirectional_iterator_tag, ValT> { 69 // public: 70 // bool operator==(const const_iterator &) const; 71 // bool operator!=(const const_iterator &) const; 72 // bool valid() const; 73 // 74 // const KeyT &start() const; 75 // const KeyT &stop() const; 76 // const ValT &value() const; 77 // const ValT &operator*() const; 78 // const ValT *operator->() const; 79 // 80 // const_iterator &operator++(); 81 // const_iterator &operator++(int); 82 // const_iterator &operator--(); 83 // const_iterator &operator--(int); 84 // void goToBegin(); 85 // void goToEnd(); 86 // void find(KeyT x); 87 // void advanceTo(KeyT x); 88 // }; 89 // 90 // template <typename KeyT, typename ValT, unsigned N, typename Traits> 91 // class IntervalMap::iterator : public const_iterator { 92 // public: 93 // void insert(KeyT a, KeyT b, Value y); 94 // void erase(); 95 // }; 96 // 97 //===----------------------------------------------------------------------===// 98 99 #ifndef LLVM_ADT_INTERVALMAP_H 100 #define LLVM_ADT_INTERVALMAP_H 101 102 #include "llvm/ADT/PointerIntPair.h" 103 #include "llvm/ADT/SmallVector.h" 104 #include "llvm/Support/AlignOf.h" 105 #include "llvm/Support/Allocator.h" 106 #include "llvm/Support/RecyclingAllocator.h" 107 #include <algorithm> 108 #include <cassert> 109 #include <cstdint> 110 #include <iterator> 111 #include <new> 112 #include <utility> 113 114 namespace llvm { 115 116 //===----------------------------------------------------------------------===// 117 //--- Key traits ---// 118 //===----------------------------------------------------------------------===// 119 // 120 // The IntervalMap works with closed or half-open intervals. 121 // Adjacent intervals that map to the same value are coalesced. 122 // 123 // The IntervalMapInfo traits class is used to determine if a key is contained 124 // in an interval, and if two intervals are adjacent so they can be coalesced. 125 // The provided implementation works for closed integer intervals, other keys 126 // probably need a specialized version. 127 // 128 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x). 129 // 130 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is 131 // allowed. This is so that stopLess(a, b) can be used to determine if two 132 // intervals overlap. 133 // 134 //===----------------------------------------------------------------------===// 135 136 template <typename T> 137 struct IntervalMapInfo { 138 /// startLess - Return true if x is not in [a;b]. 139 /// This is x < a both for closed intervals and for [a;b) half-open intervals. 140 static inline bool startLess(const T &x, const T &a) { 141 return x < a; 142 } 143 144 /// stopLess - Return true if x is not in [a;b]. 145 /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals. 146 static inline bool stopLess(const T &b, const T &x) { 147 return b < x; 148 } 149 150 /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce. 151 /// This is a+1 == b for closed intervals, a == b for half-open intervals. 152 static inline bool adjacent(const T &a, const T &b) { 153 return a+1 == b; 154 } 155 156 /// nonEmpty - Return true if [a;b] is non-empty. 157 /// This is a <= b for a closed interval, a < b for [a;b) half-open intervals. 158 static inline bool nonEmpty(const T &a, const T &b) { 159 return a <= b; 160 } 161 }; 162 163 template <typename T> 164 struct IntervalMapHalfOpenInfo { 165 /// startLess - Return true if x is not in [a;b). 166 static inline bool startLess(const T &x, const T &a) { 167 return x < a; 168 } 169 170 /// stopLess - Return true if x is not in [a;b). 171 static inline bool stopLess(const T &b, const T &x) { 172 return b <= x; 173 } 174 175 /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce. 176 static inline bool adjacent(const T &a, const T &b) { 177 return a == b; 178 } 179 180 /// nonEmpty - Return true if [a;b) is non-empty. 181 static inline bool nonEmpty(const T &a, const T &b) { 182 return a < b; 183 } 184 }; 185 186 /// IntervalMapImpl - Namespace used for IntervalMap implementation details. 187 /// It should be considered private to the implementation. 188 namespace IntervalMapImpl { 189 190 using IdxPair = std::pair<unsigned,unsigned>; 191 192 //===----------------------------------------------------------------------===// 193 //--- IntervalMapImpl::NodeBase ---// 194 //===----------------------------------------------------------------------===// 195 // 196 // Both leaf and branch nodes store vectors of pairs. 197 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT). 198 // 199 // Keys and values are stored in separate arrays to avoid padding caused by 200 // different object alignments. This also helps improve locality of reference 201 // when searching the keys. 202 // 203 // The nodes don't know how many elements they contain - that information is 204 // stored elsewhere. Omitting the size field prevents padding and allows a node 205 // to fill the allocated cache lines completely. 206 // 207 // These are typical key and value sizes, the node branching factor (N), and 208 // wasted space when nodes are sized to fit in three cache lines (192 bytes): 209 // 210 // T1 T2 N Waste Used by 211 // 4 4 24 0 Branch<4> (32-bit pointers) 212 // 8 4 16 0 Leaf<4,4>, Branch<4> 213 // 8 8 12 0 Leaf<4,8>, Branch<8> 214 // 16 4 9 12 Leaf<8,4> 215 // 16 8 8 0 Leaf<8,8> 216 // 217 //===----------------------------------------------------------------------===// 218 219 template <typename T1, typename T2, unsigned N> 220 class NodeBase { 221 public: 222 enum { Capacity = N }; 223 224 T1 first[N]; 225 T2 second[N]; 226 227 /// copy - Copy elements from another node. 228 /// @param Other Node elements are copied from. 229 /// @param i Beginning of the source range in other. 230 /// @param j Beginning of the destination range in this. 231 /// @param Count Number of elements to copy. 232 template <unsigned M> 233 void copy(const NodeBase<T1, T2, M> &Other, unsigned i, 234 unsigned j, unsigned Count) { 235 assert(i + Count <= M && "Invalid source range"); 236 assert(j + Count <= N && "Invalid dest range"); 237 for (unsigned e = i + Count; i != e; ++i, ++j) { 238 first[j] = Other.first[i]; 239 second[j] = Other.second[i]; 240 } 241 } 242 243 /// moveLeft - Move elements to the left. 244 /// @param i Beginning of the source range. 245 /// @param j Beginning of the destination range. 246 /// @param Count Number of elements to copy. 247 void moveLeft(unsigned i, unsigned j, unsigned Count) { 248 assert(j <= i && "Use moveRight shift elements right"); 249 copy(*this, i, j, Count); 250 } 251 252 /// moveRight - Move elements to the right. 253 /// @param i Beginning of the source range. 254 /// @param j Beginning of the destination range. 255 /// @param Count Number of elements to copy. 256 void moveRight(unsigned i, unsigned j, unsigned Count) { 257 assert(i <= j && "Use moveLeft shift elements left"); 258 assert(j + Count <= N && "Invalid range"); 259 while (Count--) { 260 first[j + Count] = first[i + Count]; 261 second[j + Count] = second[i + Count]; 262 } 263 } 264 265 /// erase - Erase elements [i;j). 266 /// @param i Beginning of the range to erase. 267 /// @param j End of the range. (Exclusive). 268 /// @param Size Number of elements in node. 269 void erase(unsigned i, unsigned j, unsigned Size) { 270 moveLeft(j, i, Size - j); 271 } 272 273 /// erase - Erase element at i. 274 /// @param i Index of element to erase. 275 /// @param Size Number of elements in node. 276 void erase(unsigned i, unsigned Size) { 277 erase(i, i+1, Size); 278 } 279 280 /// shift - Shift elements [i;size) 1 position to the right. 281 /// @param i Beginning of the range to move. 282 /// @param Size Number of elements in node. 283 void shift(unsigned i, unsigned Size) { 284 moveRight(i, i + 1, Size - i); 285 } 286 287 /// transferToLeftSib - Transfer elements to a left sibling node. 288 /// @param Size Number of elements in this. 289 /// @param Sib Left sibling node. 290 /// @param SSize Number of elements in sib. 291 /// @param Count Number of elements to transfer. 292 void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, 293 unsigned Count) { 294 Sib.copy(*this, 0, SSize, Count); 295 erase(0, Count, Size); 296 } 297 298 /// transferToRightSib - Transfer elements to a right sibling node. 299 /// @param Size Number of elements in this. 300 /// @param Sib Right sibling node. 301 /// @param SSize Number of elements in sib. 302 /// @param Count Number of elements to transfer. 303 void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize, 304 unsigned Count) { 305 Sib.moveRight(0, Count, SSize); 306 Sib.copy(*this, Size-Count, 0, Count); 307 } 308 309 /// adjustFromLeftSib - Adjust the number if elements in this node by moving 310 /// elements to or from a left sibling node. 311 /// @param Size Number of elements in this. 312 /// @param Sib Right sibling node. 313 /// @param SSize Number of elements in sib. 314 /// @param Add The number of elements to add to this node, possibly < 0. 315 /// @return Number of elements added to this node, possibly negative. 316 int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) { 317 if (Add > 0) { 318 // We want to grow, copy from sib. 319 unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size); 320 Sib.transferToRightSib(SSize, *this, Size, Count); 321 return Count; 322 } else { 323 // We want to shrink, copy to sib. 324 unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize); 325 transferToLeftSib(Size, Sib, SSize, Count); 326 return -Count; 327 } 328 } 329 }; 330 331 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes. 332 /// @param Node Array of pointers to sibling nodes. 333 /// @param Nodes Number of nodes. 334 /// @param CurSize Array of current node sizes, will be overwritten. 335 /// @param NewSize Array of desired node sizes. 336 template <typename NodeT> 337 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes, 338 unsigned CurSize[], const unsigned NewSize[]) { 339 // Move elements right. 340 for (int n = Nodes - 1; n; --n) { 341 if (CurSize[n] == NewSize[n]) 342 continue; 343 for (int m = n - 1; m != -1; --m) { 344 int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m], 345 NewSize[n] - CurSize[n]); 346 CurSize[m] -= d; 347 CurSize[n] += d; 348 // Keep going if the current node was exhausted. 349 if (CurSize[n] >= NewSize[n]) 350 break; 351 } 352 } 353 354 if (Nodes == 0) 355 return; 356 357 // Move elements left. 358 for (unsigned n = 0; n != Nodes - 1; ++n) { 359 if (CurSize[n] == NewSize[n]) 360 continue; 361 for (unsigned m = n + 1; m != Nodes; ++m) { 362 int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n], 363 CurSize[n] - NewSize[n]); 364 CurSize[m] += d; 365 CurSize[n] -= d; 366 // Keep going if the current node was exhausted. 367 if (CurSize[n] >= NewSize[n]) 368 break; 369 } 370 } 371 372 #ifndef NDEBUG 373 for (unsigned n = 0; n != Nodes; n++) 374 assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle"); 375 #endif 376 } 377 378 /// IntervalMapImpl::distribute - Compute a new distribution of node elements 379 /// after an overflow or underflow. Reserve space for a new element at Position, 380 /// and compute the node that will hold Position after redistributing node 381 /// elements. 382 /// 383 /// It is required that 384 /// 385 /// Elements == sum(CurSize), and 386 /// Elements + Grow <= Nodes * Capacity. 387 /// 388 /// NewSize[] will be filled in such that: 389 /// 390 /// sum(NewSize) == Elements, and 391 /// NewSize[i] <= Capacity. 392 /// 393 /// The returned index is the node where Position will go, so: 394 /// 395 /// sum(NewSize[0..idx-1]) <= Position 396 /// sum(NewSize[0..idx]) >= Position 397 /// 398 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when 399 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node 400 /// before the one holding the Position'th element where there is room for an 401 /// insertion. 402 /// 403 /// @param Nodes The number of nodes. 404 /// @param Elements Total elements in all nodes. 405 /// @param Capacity The capacity of each node. 406 /// @param CurSize Array[Nodes] of current node sizes, or NULL. 407 /// @param NewSize Array[Nodes] to receive the new node sizes. 408 /// @param Position Insert position. 409 /// @param Grow Reserve space for a new element at Position. 410 /// @return (node, offset) for Position. 411 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity, 412 const unsigned *CurSize, unsigned NewSize[], 413 unsigned Position, bool Grow); 414 415 //===----------------------------------------------------------------------===// 416 //--- IntervalMapImpl::NodeSizer ---// 417 //===----------------------------------------------------------------------===// 418 // 419 // Compute node sizes from key and value types. 420 // 421 // The branching factors are chosen to make nodes fit in three cache lines. 422 // This may not be possible if keys or values are very large. Such large objects 423 // are handled correctly, but a std::map would probably give better performance. 424 // 425 //===----------------------------------------------------------------------===// 426 427 enum { 428 // Cache line size. Most architectures have 32 or 64 byte cache lines. 429 // We use 64 bytes here because it provides good branching factors. 430 Log2CacheLine = 6, 431 CacheLineBytes = 1 << Log2CacheLine, 432 DesiredNodeBytes = 3 * CacheLineBytes 433 }; 434 435 template <typename KeyT, typename ValT> 436 struct NodeSizer { 437 enum { 438 // Compute the leaf node branching factor that makes a node fit in three 439 // cache lines. The branching factor must be at least 3, or some B+-tree 440 // balancing algorithms won't work. 441 // LeafSize can't be larger than CacheLineBytes. This is required by the 442 // PointerIntPair used by NodeRef. 443 DesiredLeafSize = DesiredNodeBytes / 444 static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)), 445 MinLeafSize = 3, 446 LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize 447 }; 448 449 using LeafBase = NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>; 450 451 enum { 452 // Now that we have the leaf branching factor, compute the actual allocation 453 // unit size by rounding up to a whole number of cache lines. 454 AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1), 455 456 // Determine the branching factor for branch nodes. 457 BranchSize = AllocBytes / 458 static_cast<unsigned>(sizeof(KeyT) + sizeof(void*)) 459 }; 460 461 /// Allocator - The recycling allocator used for both branch and leaf nodes. 462 /// This typedef is very likely to be identical for all IntervalMaps with 463 /// reasonably sized entries, so the same allocator can be shared among 464 /// different kinds of maps. 465 using Allocator = 466 RecyclingAllocator<BumpPtrAllocator, char, AllocBytes, CacheLineBytes>; 467 }; 468 469 //===----------------------------------------------------------------------===// 470 //--- IntervalMapImpl::NodeRef ---// 471 //===----------------------------------------------------------------------===// 472 // 473 // B+-tree nodes can be leaves or branches, so we need a polymorphic node 474 // pointer that can point to both kinds. 475 // 476 // All nodes are cache line aligned and the low 6 bits of a node pointer are 477 // always 0. These bits are used to store the number of elements in the 478 // referenced node. Besides saving space, placing node sizes in the parents 479 // allow tree balancing algorithms to run without faulting cache lines for nodes 480 // that may not need to be modified. 481 // 482 // A NodeRef doesn't know whether it references a leaf node or a branch node. 483 // It is the responsibility of the caller to use the correct types. 484 // 485 // Nodes are never supposed to be empty, and it is invalid to store a node size 486 // of 0 in a NodeRef. The valid range of sizes is 1-64. 487 // 488 //===----------------------------------------------------------------------===// 489 490 class NodeRef { 491 struct CacheAlignedPointerTraits { 492 static inline void *getAsVoidPointer(void *P) { return P; } 493 static inline void *getFromVoidPointer(void *P) { return P; } 494 enum { NumLowBitsAvailable = Log2CacheLine }; 495 }; 496 PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip; 497 498 public: 499 /// NodeRef - Create a null ref. 500 NodeRef() = default; 501 502 /// operator bool - Detect a null ref. 503 explicit operator bool() const { return pip.getOpaqueValue(); } 504 505 /// NodeRef - Create a reference to the node p with n elements. 506 template <typename NodeT> 507 NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) { 508 assert(n <= NodeT::Capacity && "Size too big for node"); 509 } 510 511 /// size - Return the number of elements in the referenced node. 512 unsigned size() const { return pip.getInt() + 1; } 513 514 /// setSize - Update the node size. 515 void setSize(unsigned n) { pip.setInt(n - 1); } 516 517 /// subtree - Access the i'th subtree reference in a branch node. 518 /// This depends on branch nodes storing the NodeRef array as their first 519 /// member. 520 NodeRef &subtree(unsigned i) const { 521 return reinterpret_cast<NodeRef*>(pip.getPointer())[i]; 522 } 523 524 /// get - Dereference as a NodeT reference. 525 template <typename NodeT> 526 NodeT &get() const { 527 return *reinterpret_cast<NodeT*>(pip.getPointer()); 528 } 529 530 bool operator==(const NodeRef &RHS) const { 531 if (pip == RHS.pip) 532 return true; 533 assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs"); 534 return false; 535 } 536 537 bool operator!=(const NodeRef &RHS) const { 538 return !operator==(RHS); 539 } 540 }; 541 542 //===----------------------------------------------------------------------===// 543 //--- IntervalMapImpl::LeafNode ---// 544 //===----------------------------------------------------------------------===// 545 // 546 // Leaf nodes store up to N disjoint intervals with corresponding values. 547 // 548 // The intervals are kept sorted and fully coalesced so there are no adjacent 549 // intervals mapping to the same value. 550 // 551 // These constraints are always satisfied: 552 // 553 // - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals. 554 // 555 // - Traits::stopLess(stop(i), start(i + 1) - Sorted. 556 // 557 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1)) 558 // - Fully coalesced. 559 // 560 //===----------------------------------------------------------------------===// 561 562 template <typename KeyT, typename ValT, unsigned N, typename Traits> 563 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> { 564 public: 565 const KeyT &start(unsigned i) const { return this->first[i].first; } 566 const KeyT &stop(unsigned i) const { return this->first[i].second; } 567 const ValT &value(unsigned i) const { return this->second[i]; } 568 569 KeyT &start(unsigned i) { return this->first[i].first; } 570 KeyT &stop(unsigned i) { return this->first[i].second; } 571 ValT &value(unsigned i) { return this->second[i]; } 572 573 /// findFrom - Find the first interval after i that may contain x. 574 /// @param i Starting index for the search. 575 /// @param Size Number of elements in node. 576 /// @param x Key to search for. 577 /// @return First index with !stopLess(key[i].stop, x), or size. 578 /// This is the first interval that can possibly contain x. 579 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const { 580 assert(i <= Size && Size <= N && "Bad indices"); 581 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && 582 "Index is past the needed point"); 583 while (i != Size && Traits::stopLess(stop(i), x)) ++i; 584 return i; 585 } 586 587 /// safeFind - Find an interval that is known to exist. This is the same as 588 /// findFrom except is it assumed that x is at least within range of the last 589 /// interval. 590 /// @param i Starting index for the search. 591 /// @param x Key to search for. 592 /// @return First index with !stopLess(key[i].stop, x), never size. 593 /// This is the first interval that can possibly contain x. 594 unsigned safeFind(unsigned i, KeyT x) const { 595 assert(i < N && "Bad index"); 596 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && 597 "Index is past the needed point"); 598 while (Traits::stopLess(stop(i), x)) ++i; 599 assert(i < N && "Unsafe intervals"); 600 return i; 601 } 602 603 /// safeLookup - Lookup mapped value for a safe key. 604 /// It is assumed that x is within range of the last entry. 605 /// @param x Key to search for. 606 /// @param NotFound Value to return if x is not in any interval. 607 /// @return The mapped value at x or NotFound. 608 ValT safeLookup(KeyT x, ValT NotFound) const { 609 unsigned i = safeFind(0, x); 610 return Traits::startLess(x, start(i)) ? NotFound : value(i); 611 } 612 613 unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y); 614 }; 615 616 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as 617 /// possible. This may cause the node to grow by 1, or it may cause the node 618 /// to shrink because of coalescing. 619 /// @param Pos Starting index = insertFrom(0, size, a) 620 /// @param Size Number of elements in node. 621 /// @param a Interval start. 622 /// @param b Interval stop. 623 /// @param y Value be mapped. 624 /// @return (insert position, new size), or (i, Capacity+1) on overflow. 625 template <typename KeyT, typename ValT, unsigned N, typename Traits> 626 unsigned LeafNode<KeyT, ValT, N, Traits>:: 627 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) { 628 unsigned i = Pos; 629 assert(i <= Size && Size <= N && "Invalid index"); 630 assert(!Traits::stopLess(b, a) && "Invalid interval"); 631 632 // Verify the findFrom invariant. 633 assert((i == 0 || Traits::stopLess(stop(i - 1), a))); 634 assert((i == Size || !Traits::stopLess(stop(i), a))); 635 assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert"); 636 637 // Coalesce with previous interval. 638 if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) { 639 Pos = i - 1; 640 // Also coalesce with next interval? 641 if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) { 642 stop(i - 1) = stop(i); 643 this->erase(i, Size); 644 return Size - 1; 645 } 646 stop(i - 1) = b; 647 return Size; 648 } 649 650 // Detect overflow. 651 if (i == N) 652 return N + 1; 653 654 // Add new interval at end. 655 if (i == Size) { 656 start(i) = a; 657 stop(i) = b; 658 value(i) = y; 659 return Size + 1; 660 } 661 662 // Try to coalesce with following interval. 663 if (value(i) == y && Traits::adjacent(b, start(i))) { 664 start(i) = a; 665 return Size; 666 } 667 668 // We must insert before i. Detect overflow. 669 if (Size == N) 670 return N + 1; 671 672 // Insert before i. 673 this->shift(i, Size); 674 start(i) = a; 675 stop(i) = b; 676 value(i) = y; 677 return Size + 1; 678 } 679 680 //===----------------------------------------------------------------------===// 681 //--- IntervalMapImpl::BranchNode ---// 682 //===----------------------------------------------------------------------===// 683 // 684 // A branch node stores references to 1--N subtrees all of the same height. 685 // 686 // The key array in a branch node holds the rightmost stop key of each subtree. 687 // It is redundant to store the last stop key since it can be found in the 688 // parent node, but doing so makes tree balancing a lot simpler. 689 // 690 // It is unusual for a branch node to only have one subtree, but it can happen 691 // in the root node if it is smaller than the normal nodes. 692 // 693 // When all of the leaf nodes from all the subtrees are concatenated, they must 694 // satisfy the same constraints as a single leaf node. They must be sorted, 695 // sane, and fully coalesced. 696 // 697 //===----------------------------------------------------------------------===// 698 699 template <typename KeyT, typename ValT, unsigned N, typename Traits> 700 class BranchNode : public NodeBase<NodeRef, KeyT, N> { 701 public: 702 const KeyT &stop(unsigned i) const { return this->second[i]; } 703 const NodeRef &subtree(unsigned i) const { return this->first[i]; } 704 705 KeyT &stop(unsigned i) { return this->second[i]; } 706 NodeRef &subtree(unsigned i) { return this->first[i]; } 707 708 /// findFrom - Find the first subtree after i that may contain x. 709 /// @param i Starting index for the search. 710 /// @param Size Number of elements in node. 711 /// @param x Key to search for. 712 /// @return First index with !stopLess(key[i], x), or size. 713 /// This is the first subtree that can possibly contain x. 714 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const { 715 assert(i <= Size && Size <= N && "Bad indices"); 716 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && 717 "Index to findFrom is past the needed point"); 718 while (i != Size && Traits::stopLess(stop(i), x)) ++i; 719 return i; 720 } 721 722 /// safeFind - Find a subtree that is known to exist. This is the same as 723 /// findFrom except is it assumed that x is in range. 724 /// @param i Starting index for the search. 725 /// @param x Key to search for. 726 /// @return First index with !stopLess(key[i], x), never size. 727 /// This is the first subtree that can possibly contain x. 728 unsigned safeFind(unsigned i, KeyT x) const { 729 assert(i < N && "Bad index"); 730 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) && 731 "Index is past the needed point"); 732 while (Traits::stopLess(stop(i), x)) ++i; 733 assert(i < N && "Unsafe intervals"); 734 return i; 735 } 736 737 /// safeLookup - Get the subtree containing x, Assuming that x is in range. 738 /// @param x Key to search for. 739 /// @return Subtree containing x 740 NodeRef safeLookup(KeyT x) const { 741 return subtree(safeFind(0, x)); 742 } 743 744 /// insert - Insert a new (subtree, stop) pair. 745 /// @param i Insert position, following entries will be shifted. 746 /// @param Size Number of elements in node. 747 /// @param Node Subtree to insert. 748 /// @param Stop Last key in subtree. 749 void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) { 750 assert(Size < N && "branch node overflow"); 751 assert(i <= Size && "Bad insert position"); 752 this->shift(i, Size); 753 subtree(i) = Node; 754 stop(i) = Stop; 755 } 756 }; 757 758 //===----------------------------------------------------------------------===// 759 //--- IntervalMapImpl::Path ---// 760 //===----------------------------------------------------------------------===// 761 // 762 // A Path is used by iterators to represent a position in a B+-tree, and the 763 // path to get there from the root. 764 // 765 // The Path class also contains the tree navigation code that doesn't have to 766 // be templatized. 767 // 768 //===----------------------------------------------------------------------===// 769 770 class Path { 771 /// Entry - Each step in the path is a node pointer and an offset into that 772 /// node. 773 struct Entry { 774 void *node; 775 unsigned size; 776 unsigned offset; 777 778 Entry(void *Node, unsigned Size, unsigned Offset) 779 : node(Node), size(Size), offset(Offset) {} 780 781 Entry(NodeRef Node, unsigned Offset) 782 : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {} 783 784 NodeRef &subtree(unsigned i) const { 785 return reinterpret_cast<NodeRef*>(node)[i]; 786 } 787 }; 788 789 /// path - The path entries, path[0] is the root node, path.back() is a leaf. 790 SmallVector<Entry, 4> path; 791 792 public: 793 // Node accessors. 794 template <typename NodeT> NodeT &node(unsigned Level) const { 795 return *reinterpret_cast<NodeT*>(path[Level].node); 796 } 797 unsigned size(unsigned Level) const { return path[Level].size; } 798 unsigned offset(unsigned Level) const { return path[Level].offset; } 799 unsigned &offset(unsigned Level) { return path[Level].offset; } 800 801 // Leaf accessors. 802 template <typename NodeT> NodeT &leaf() const { 803 return *reinterpret_cast<NodeT*>(path.back().node); 804 } 805 unsigned leafSize() const { return path.back().size; } 806 unsigned leafOffset() const { return path.back().offset; } 807 unsigned &leafOffset() { return path.back().offset; } 808 809 /// valid - Return true if path is at a valid node, not at end(). 810 bool valid() const { 811 return !path.empty() && path.front().offset < path.front().size; 812 } 813 814 /// height - Return the height of the tree corresponding to this path. 815 /// This matches map->height in a full path. 816 unsigned height() const { return path.size() - 1; } 817 818 /// subtree - Get the subtree referenced from Level. When the path is 819 /// consistent, node(Level + 1) == subtree(Level). 820 /// @param Level 0..height-1. The leaves have no subtrees. 821 NodeRef &subtree(unsigned Level) const { 822 return path[Level].subtree(path[Level].offset); 823 } 824 825 /// reset - Reset cached information about node(Level) from subtree(Level -1). 826 /// @param Level 1..height. THe node to update after parent node changed. 827 void reset(unsigned Level) { 828 path[Level] = Entry(subtree(Level - 1), offset(Level)); 829 } 830 831 /// push - Add entry to path. 832 /// @param Node Node to add, should be subtree(path.size()-1). 833 /// @param Offset Offset into Node. 834 void push(NodeRef Node, unsigned Offset) { 835 path.push_back(Entry(Node, Offset)); 836 } 837 838 /// pop - Remove the last path entry. 839 void pop() { 840 path.pop_back(); 841 } 842 843 /// setSize - Set the size of a node both in the path and in the tree. 844 /// @param Level 0..height. Note that setting the root size won't change 845 /// map->rootSize. 846 /// @param Size New node size. 847 void setSize(unsigned Level, unsigned Size) { 848 path[Level].size = Size; 849 if (Level) 850 subtree(Level - 1).setSize(Size); 851 } 852 853 /// setRoot - Clear the path and set a new root node. 854 /// @param Node New root node. 855 /// @param Size New root size. 856 /// @param Offset Offset into root node. 857 void setRoot(void *Node, unsigned Size, unsigned Offset) { 858 path.clear(); 859 path.push_back(Entry(Node, Size, Offset)); 860 } 861 862 /// replaceRoot - Replace the current root node with two new entries after the 863 /// tree height has increased. 864 /// @param Root The new root node. 865 /// @param Size Number of entries in the new root. 866 /// @param Offsets Offsets into the root and first branch nodes. 867 void replaceRoot(void *Root, unsigned Size, IdxPair Offsets); 868 869 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef. 870 /// @param Level Get the sibling to node(Level). 871 /// @return Left sibling, or NodeRef(). 872 NodeRef getLeftSibling(unsigned Level) const; 873 874 /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level 875 /// unaltered. 876 /// @param Level Move node(Level). 877 void moveLeft(unsigned Level); 878 879 /// fillLeft - Grow path to Height by taking leftmost branches. 880 /// @param Height The target height. 881 void fillLeft(unsigned Height) { 882 while (height() < Height) 883 push(subtree(height()), 0); 884 } 885 886 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef. 887 /// @param Level Get the sinbling to node(Level). 888 /// @return Left sibling, or NodeRef(). 889 NodeRef getRightSibling(unsigned Level) const; 890 891 /// moveRight - Move path to the left sibling at Level. Leave nodes below 892 /// Level unaltered. 893 /// @param Level Move node(Level). 894 void moveRight(unsigned Level); 895 896 /// atBegin - Return true if path is at begin(). 897 bool atBegin() const { 898 for (unsigned i = 0, e = path.size(); i != e; ++i) 899 if (path[i].offset != 0) 900 return false; 901 return true; 902 } 903 904 /// atLastEntry - Return true if the path is at the last entry of the node at 905 /// Level. 906 /// @param Level Node to examine. 907 bool atLastEntry(unsigned Level) const { 908 return path[Level].offset == path[Level].size - 1; 909 } 910 911 /// legalizeForInsert - Prepare the path for an insertion at Level. When the 912 /// path is at end(), node(Level) may not be a legal node. legalizeForInsert 913 /// ensures that node(Level) is real by moving back to the last node at Level, 914 /// and setting offset(Level) to size(Level) if required. 915 /// @param Level The level where an insertion is about to take place. 916 void legalizeForInsert(unsigned Level) { 917 if (valid()) 918 return; 919 moveLeft(Level); 920 ++path[Level].offset; 921 } 922 }; 923 924 } // end namespace IntervalMapImpl 925 926 //===----------------------------------------------------------------------===// 927 //--- IntervalMap ----// 928 //===----------------------------------------------------------------------===// 929 930 template <typename KeyT, typename ValT, 931 unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize, 932 typename Traits = IntervalMapInfo<KeyT>> 933 class IntervalMap { 934 using Sizer = IntervalMapImpl::NodeSizer<KeyT, ValT>; 935 using Leaf = IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits>; 936 using Branch = 937 IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>; 938 using RootLeaf = IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits>; 939 using IdxPair = IntervalMapImpl::IdxPair; 940 941 // The RootLeaf capacity is given as a template parameter. We must compute the 942 // corresponding RootBranch capacity. 943 enum { 944 DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) / 945 (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)), 946 RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1 947 }; 948 949 using RootBranch = 950 IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>; 951 952 // When branched, we store a global start key as well as the branch node. 953 struct RootBranchData { 954 KeyT start; 955 RootBranch node; 956 }; 957 958 public: 959 using Allocator = typename Sizer::Allocator; 960 using KeyType = KeyT; 961 using ValueType = ValT; 962 using KeyTraits = Traits; 963 964 private: 965 // The root data is either a RootLeaf or a RootBranchData instance. 966 AlignedCharArrayUnion<RootLeaf, RootBranchData> data; 967 968 // Tree height. 969 // 0: Leaves in root. 970 // 1: Root points to leaf. 971 // 2: root->branch->leaf ... 972 unsigned height; 973 974 // Number of entries in the root node. 975 unsigned rootSize; 976 977 // Allocator used for creating external nodes. 978 Allocator &allocator; 979 980 /// dataAs - Represent data as a node type without breaking aliasing rules. 981 template <typename T> 982 T &dataAs() const { 983 union { 984 const char *d; 985 T *t; 986 } u; 987 u.d = data.buffer; 988 return *u.t; 989 } 990 991 const RootLeaf &rootLeaf() const { 992 assert(!branched() && "Cannot acces leaf data in branched root"); 993 return dataAs<RootLeaf>(); 994 } 995 RootLeaf &rootLeaf() { 996 assert(!branched() && "Cannot acces leaf data in branched root"); 997 return dataAs<RootLeaf>(); 998 } 999 1000 RootBranchData &rootBranchData() const { 1001 assert(branched() && "Cannot access branch data in non-branched root"); 1002 return dataAs<RootBranchData>(); 1003 } 1004 RootBranchData &rootBranchData() { 1005 assert(branched() && "Cannot access branch data in non-branched root"); 1006 return dataAs<RootBranchData>(); 1007 } 1008 1009 const RootBranch &rootBranch() const { return rootBranchData().node; } 1010 RootBranch &rootBranch() { return rootBranchData().node; } 1011 KeyT rootBranchStart() const { return rootBranchData().start; } 1012 KeyT &rootBranchStart() { return rootBranchData().start; } 1013 1014 template <typename NodeT> NodeT *newNode() { 1015 return new(allocator.template Allocate<NodeT>()) NodeT(); 1016 } 1017 1018 template <typename NodeT> void deleteNode(NodeT *P) { 1019 P->~NodeT(); 1020 allocator.Deallocate(P); 1021 } 1022 1023 IdxPair branchRoot(unsigned Position); 1024 IdxPair splitRoot(unsigned Position); 1025 1026 void switchRootToBranch() { 1027 rootLeaf().~RootLeaf(); 1028 height = 1; 1029 new (&rootBranchData()) RootBranchData(); 1030 } 1031 1032 void switchRootToLeaf() { 1033 rootBranchData().~RootBranchData(); 1034 height = 0; 1035 new(&rootLeaf()) RootLeaf(); 1036 } 1037 1038 bool branched() const { return height > 0; } 1039 1040 ValT treeSafeLookup(KeyT x, ValT NotFound) const; 1041 void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, 1042 unsigned Level)); 1043 void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level); 1044 1045 public: 1046 explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) { 1047 assert((uintptr_t(data.buffer) & (alignof(RootLeaf) - 1)) == 0 && 1048 "Insufficient alignment"); 1049 new(&rootLeaf()) RootLeaf(); 1050 } 1051 1052 ~IntervalMap() { 1053 clear(); 1054 rootLeaf().~RootLeaf(); 1055 } 1056 1057 /// empty - Return true when no intervals are mapped. 1058 bool empty() const { 1059 return rootSize == 0; 1060 } 1061 1062 /// start - Return the smallest mapped key in a non-empty map. 1063 KeyT start() const { 1064 assert(!empty() && "Empty IntervalMap has no start"); 1065 return !branched() ? rootLeaf().start(0) : rootBranchStart(); 1066 } 1067 1068 /// stop - Return the largest mapped key in a non-empty map. 1069 KeyT stop() const { 1070 assert(!empty() && "Empty IntervalMap has no stop"); 1071 return !branched() ? rootLeaf().stop(rootSize - 1) : 1072 rootBranch().stop(rootSize - 1); 1073 } 1074 1075 /// lookup - Return the mapped value at x or NotFound. 1076 ValT lookup(KeyT x, ValT NotFound = ValT()) const { 1077 if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x)) 1078 return NotFound; 1079 return branched() ? treeSafeLookup(x, NotFound) : 1080 rootLeaf().safeLookup(x, NotFound); 1081 } 1082 1083 /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals. 1084 /// It is assumed that no key in the interval is mapped to another value, but 1085 /// overlapping intervals already mapped to y will be coalesced. 1086 void insert(KeyT a, KeyT b, ValT y) { 1087 if (branched() || rootSize == RootLeaf::Capacity) 1088 return find(a).insert(a, b, y); 1089 1090 // Easy insert into root leaf. 1091 unsigned p = rootLeaf().findFrom(0, rootSize, a); 1092 rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y); 1093 } 1094 1095 /// clear - Remove all entries. 1096 void clear(); 1097 1098 class const_iterator; 1099 class iterator; 1100 friend class const_iterator; 1101 friend class iterator; 1102 1103 const_iterator begin() const { 1104 const_iterator I(*this); 1105 I.goToBegin(); 1106 return I; 1107 } 1108 1109 iterator begin() { 1110 iterator I(*this); 1111 I.goToBegin(); 1112 return I; 1113 } 1114 1115 const_iterator end() const { 1116 const_iterator I(*this); 1117 I.goToEnd(); 1118 return I; 1119 } 1120 1121 iterator end() { 1122 iterator I(*this); 1123 I.goToEnd(); 1124 return I; 1125 } 1126 1127 /// find - Return an iterator pointing to the first interval ending at or 1128 /// after x, or end(). 1129 const_iterator find(KeyT x) const { 1130 const_iterator I(*this); 1131 I.find(x); 1132 return I; 1133 } 1134 1135 iterator find(KeyT x) { 1136 iterator I(*this); 1137 I.find(x); 1138 return I; 1139 } 1140 }; 1141 1142 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a 1143 /// branched root. 1144 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1145 ValT IntervalMap<KeyT, ValT, N, Traits>:: 1146 treeSafeLookup(KeyT x, ValT NotFound) const { 1147 assert(branched() && "treeLookup assumes a branched root"); 1148 1149 IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x); 1150 for (unsigned h = height-1; h; --h) 1151 NR = NR.get<Branch>().safeLookup(x); 1152 return NR.get<Leaf>().safeLookup(x, NotFound); 1153 } 1154 1155 // branchRoot - Switch from a leaf root to a branched root. 1156 // Return the new (root offset, node offset) corresponding to Position. 1157 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1158 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>:: 1159 branchRoot(unsigned Position) { 1160 using namespace IntervalMapImpl; 1161 // How many external leaf nodes to hold RootLeaf+1? 1162 const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1; 1163 1164 // Compute element distribution among new nodes. 1165 unsigned size[Nodes]; 1166 IdxPair NewOffset(0, Position); 1167 1168 // Is is very common for the root node to be smaller than external nodes. 1169 if (Nodes == 1) 1170 size[0] = rootSize; 1171 else 1172 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, size, 1173 Position, true); 1174 1175 // Allocate new nodes. 1176 unsigned pos = 0; 1177 NodeRef node[Nodes]; 1178 for (unsigned n = 0; n != Nodes; ++n) { 1179 Leaf *L = newNode<Leaf>(); 1180 L->copy(rootLeaf(), pos, 0, size[n]); 1181 node[n] = NodeRef(L, size[n]); 1182 pos += size[n]; 1183 } 1184 1185 // Destroy the old leaf node, construct branch node instead. 1186 switchRootToBranch(); 1187 for (unsigned n = 0; n != Nodes; ++n) { 1188 rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1); 1189 rootBranch().subtree(n) = node[n]; 1190 } 1191 rootBranchStart() = node[0].template get<Leaf>().start(0); 1192 rootSize = Nodes; 1193 return NewOffset; 1194 } 1195 1196 // splitRoot - Split the current BranchRoot into multiple Branch nodes. 1197 // Return the new (root offset, node offset) corresponding to Position. 1198 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1199 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>:: 1200 splitRoot(unsigned Position) { 1201 using namespace IntervalMapImpl; 1202 // How many external leaf nodes to hold RootBranch+1? 1203 const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1; 1204 1205 // Compute element distribution among new nodes. 1206 unsigned Size[Nodes]; 1207 IdxPair NewOffset(0, Position); 1208 1209 // Is is very common for the root node to be smaller than external nodes. 1210 if (Nodes == 1) 1211 Size[0] = rootSize; 1212 else 1213 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, Size, 1214 Position, true); 1215 1216 // Allocate new nodes. 1217 unsigned Pos = 0; 1218 NodeRef Node[Nodes]; 1219 for (unsigned n = 0; n != Nodes; ++n) { 1220 Branch *B = newNode<Branch>(); 1221 B->copy(rootBranch(), Pos, 0, Size[n]); 1222 Node[n] = NodeRef(B, Size[n]); 1223 Pos += Size[n]; 1224 } 1225 1226 for (unsigned n = 0; n != Nodes; ++n) { 1227 rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1); 1228 rootBranch().subtree(n) = Node[n]; 1229 } 1230 rootSize = Nodes; 1231 ++height; 1232 return NewOffset; 1233 } 1234 1235 /// visitNodes - Visit each external node. 1236 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1237 void IntervalMap<KeyT, ValT, N, Traits>:: 1238 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) { 1239 if (!branched()) 1240 return; 1241 SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs; 1242 1243 // Collect level 0 nodes from the root. 1244 for (unsigned i = 0; i != rootSize; ++i) 1245 Refs.push_back(rootBranch().subtree(i)); 1246 1247 // Visit all branch nodes. 1248 for (unsigned h = height - 1; h; --h) { 1249 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 1250 for (unsigned j = 0, s = Refs[i].size(); j != s; ++j) 1251 NextRefs.push_back(Refs[i].subtree(j)); 1252 (this->*f)(Refs[i], h); 1253 } 1254 Refs.clear(); 1255 Refs.swap(NextRefs); 1256 } 1257 1258 // Visit all leaf nodes. 1259 for (unsigned i = 0, e = Refs.size(); i != e; ++i) 1260 (this->*f)(Refs[i], 0); 1261 } 1262 1263 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1264 void IntervalMap<KeyT, ValT, N, Traits>:: 1265 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) { 1266 if (Level) 1267 deleteNode(&Node.get<Branch>()); 1268 else 1269 deleteNode(&Node.get<Leaf>()); 1270 } 1271 1272 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1273 void IntervalMap<KeyT, ValT, N, Traits>:: 1274 clear() { 1275 if (branched()) { 1276 visitNodes(&IntervalMap::deleteNode); 1277 switchRootToLeaf(); 1278 } 1279 rootSize = 0; 1280 } 1281 1282 //===----------------------------------------------------------------------===// 1283 //--- IntervalMap::const_iterator ----// 1284 //===----------------------------------------------------------------------===// 1285 1286 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1287 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator : 1288 public std::iterator<std::bidirectional_iterator_tag, ValT> { 1289 1290 protected: 1291 friend class IntervalMap; 1292 1293 // The map referred to. 1294 IntervalMap *map = nullptr; 1295 1296 // We store a full path from the root to the current position. 1297 // The path may be partially filled, but never between iterator calls. 1298 IntervalMapImpl::Path path; 1299 1300 explicit const_iterator(const IntervalMap &map) : 1301 map(const_cast<IntervalMap*>(&map)) {} 1302 1303 bool branched() const { 1304 assert(map && "Invalid iterator"); 1305 return map->branched(); 1306 } 1307 1308 void setRoot(unsigned Offset) { 1309 if (branched()) 1310 path.setRoot(&map->rootBranch(), map->rootSize, Offset); 1311 else 1312 path.setRoot(&map->rootLeaf(), map->rootSize, Offset); 1313 } 1314 1315 void pathFillFind(KeyT x); 1316 void treeFind(KeyT x); 1317 void treeAdvanceTo(KeyT x); 1318 1319 /// unsafeStart - Writable access to start() for iterator. 1320 KeyT &unsafeStart() const { 1321 assert(valid() && "Cannot access invalid iterator"); 1322 return branched() ? path.leaf<Leaf>().start(path.leafOffset()) : 1323 path.leaf<RootLeaf>().start(path.leafOffset()); 1324 } 1325 1326 /// unsafeStop - Writable access to stop() for iterator. 1327 KeyT &unsafeStop() const { 1328 assert(valid() && "Cannot access invalid iterator"); 1329 return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) : 1330 path.leaf<RootLeaf>().stop(path.leafOffset()); 1331 } 1332 1333 /// unsafeValue - Writable access to value() for iterator. 1334 ValT &unsafeValue() const { 1335 assert(valid() && "Cannot access invalid iterator"); 1336 return branched() ? path.leaf<Leaf>().value(path.leafOffset()) : 1337 path.leaf<RootLeaf>().value(path.leafOffset()); 1338 } 1339 1340 public: 1341 /// const_iterator - Create an iterator that isn't pointing anywhere. 1342 const_iterator() = default; 1343 1344 /// setMap - Change the map iterated over. This call must be followed by a 1345 /// call to goToBegin(), goToEnd(), or find() 1346 void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); } 1347 1348 /// valid - Return true if the current position is valid, false for end(). 1349 bool valid() const { return path.valid(); } 1350 1351 /// atBegin - Return true if the current position is the first map entry. 1352 bool atBegin() const { return path.atBegin(); } 1353 1354 /// start - Return the beginning of the current interval. 1355 const KeyT &start() const { return unsafeStart(); } 1356 1357 /// stop - Return the end of the current interval. 1358 const KeyT &stop() const { return unsafeStop(); } 1359 1360 /// value - Return the mapped value at the current interval. 1361 const ValT &value() const { return unsafeValue(); } 1362 1363 const ValT &operator*() const { return value(); } 1364 1365 bool operator==(const const_iterator &RHS) const { 1366 assert(map == RHS.map && "Cannot compare iterators from different maps"); 1367 if (!valid()) 1368 return !RHS.valid(); 1369 if (path.leafOffset() != RHS.path.leafOffset()) 1370 return false; 1371 return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>(); 1372 } 1373 1374 bool operator!=(const const_iterator &RHS) const { 1375 return !operator==(RHS); 1376 } 1377 1378 /// goToBegin - Move to the first interval in map. 1379 void goToBegin() { 1380 setRoot(0); 1381 if (branched()) 1382 path.fillLeft(map->height); 1383 } 1384 1385 /// goToEnd - Move beyond the last interval in map. 1386 void goToEnd() { 1387 setRoot(map->rootSize); 1388 } 1389 1390 /// preincrement - move to the next interval. 1391 const_iterator &operator++() { 1392 assert(valid() && "Cannot increment end()"); 1393 if (++path.leafOffset() == path.leafSize() && branched()) 1394 path.moveRight(map->height); 1395 return *this; 1396 } 1397 1398 /// postincrement - Dont do that! 1399 const_iterator operator++(int) { 1400 const_iterator tmp = *this; 1401 operator++(); 1402 return tmp; 1403 } 1404 1405 /// predecrement - move to the previous interval. 1406 const_iterator &operator--() { 1407 if (path.leafOffset() && (valid() || !branched())) 1408 --path.leafOffset(); 1409 else 1410 path.moveLeft(map->height); 1411 return *this; 1412 } 1413 1414 /// postdecrement - Dont do that! 1415 const_iterator operator--(int) { 1416 const_iterator tmp = *this; 1417 operator--(); 1418 return tmp; 1419 } 1420 1421 /// find - Move to the first interval with stop >= x, or end(). 1422 /// This is a full search from the root, the current position is ignored. 1423 void find(KeyT x) { 1424 if (branched()) 1425 treeFind(x); 1426 else 1427 setRoot(map->rootLeaf().findFrom(0, map->rootSize, x)); 1428 } 1429 1430 /// advanceTo - Move to the first interval with stop >= x, or end(). 1431 /// The search is started from the current position, and no earlier positions 1432 /// can be found. This is much faster than find() for small moves. 1433 void advanceTo(KeyT x) { 1434 if (!valid()) 1435 return; 1436 if (branched()) 1437 treeAdvanceTo(x); 1438 else 1439 path.leafOffset() = 1440 map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x); 1441 } 1442 }; 1443 1444 /// pathFillFind - Complete path by searching for x. 1445 /// @param x Key to search for. 1446 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1447 void IntervalMap<KeyT, ValT, N, Traits>:: 1448 const_iterator::pathFillFind(KeyT x) { 1449 IntervalMapImpl::NodeRef NR = path.subtree(path.height()); 1450 for (unsigned i = map->height - path.height() - 1; i; --i) { 1451 unsigned p = NR.get<Branch>().safeFind(0, x); 1452 path.push(NR, p); 1453 NR = NR.subtree(p); 1454 } 1455 path.push(NR, NR.get<Leaf>().safeFind(0, x)); 1456 } 1457 1458 /// treeFind - Find in a branched tree. 1459 /// @param x Key to search for. 1460 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1461 void IntervalMap<KeyT, ValT, N, Traits>:: 1462 const_iterator::treeFind(KeyT x) { 1463 setRoot(map->rootBranch().findFrom(0, map->rootSize, x)); 1464 if (valid()) 1465 pathFillFind(x); 1466 } 1467 1468 /// treeAdvanceTo - Find position after the current one. 1469 /// @param x Key to search for. 1470 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1471 void IntervalMap<KeyT, ValT, N, Traits>:: 1472 const_iterator::treeAdvanceTo(KeyT x) { 1473 // Can we stay on the same leaf node? 1474 if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) { 1475 path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x); 1476 return; 1477 } 1478 1479 // Drop the current leaf. 1480 path.pop(); 1481 1482 // Search towards the root for a usable subtree. 1483 if (path.height()) { 1484 for (unsigned l = path.height() - 1; l; --l) { 1485 if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) { 1486 // The branch node at l+1 is usable 1487 path.offset(l + 1) = 1488 path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x); 1489 return pathFillFind(x); 1490 } 1491 path.pop(); 1492 } 1493 // Is the level-1 Branch usable? 1494 if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) { 1495 path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x); 1496 return pathFillFind(x); 1497 } 1498 } 1499 1500 // We reached the root. 1501 setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x)); 1502 if (valid()) 1503 pathFillFind(x); 1504 } 1505 1506 //===----------------------------------------------------------------------===// 1507 //--- IntervalMap::iterator ----// 1508 //===----------------------------------------------------------------------===// 1509 1510 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1511 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator { 1512 friend class IntervalMap; 1513 1514 using IdxPair = IntervalMapImpl::IdxPair; 1515 1516 explicit iterator(IntervalMap &map) : const_iterator(map) {} 1517 1518 void setNodeStop(unsigned Level, KeyT Stop); 1519 bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop); 1520 template <typename NodeT> bool overflow(unsigned Level); 1521 void treeInsert(KeyT a, KeyT b, ValT y); 1522 void eraseNode(unsigned Level); 1523 void treeErase(bool UpdateRoot = true); 1524 bool canCoalesceLeft(KeyT Start, ValT x); 1525 bool canCoalesceRight(KeyT Stop, ValT x); 1526 1527 public: 1528 /// iterator - Create null iterator. 1529 iterator() = default; 1530 1531 /// setStart - Move the start of the current interval. 1532 /// This may cause coalescing with the previous interval. 1533 /// @param a New start key, must not overlap the previous interval. 1534 void setStart(KeyT a); 1535 1536 /// setStop - Move the end of the current interval. 1537 /// This may cause coalescing with the following interval. 1538 /// @param b New stop key, must not overlap the following interval. 1539 void setStop(KeyT b); 1540 1541 /// setValue - Change the mapped value of the current interval. 1542 /// This may cause coalescing with the previous and following intervals. 1543 /// @param x New value. 1544 void setValue(ValT x); 1545 1546 /// setStartUnchecked - Move the start of the current interval without 1547 /// checking for coalescing or overlaps. 1548 /// This should only be used when it is known that coalescing is not required. 1549 /// @param a New start key. 1550 void setStartUnchecked(KeyT a) { this->unsafeStart() = a; } 1551 1552 /// setStopUnchecked - Move the end of the current interval without checking 1553 /// for coalescing or overlaps. 1554 /// This should only be used when it is known that coalescing is not required. 1555 /// @param b New stop key. 1556 void setStopUnchecked(KeyT b) { 1557 this->unsafeStop() = b; 1558 // Update keys in branch nodes as well. 1559 if (this->path.atLastEntry(this->path.height())) 1560 setNodeStop(this->path.height(), b); 1561 } 1562 1563 /// setValueUnchecked - Change the mapped value of the current interval 1564 /// without checking for coalescing. 1565 /// @param x New value. 1566 void setValueUnchecked(ValT x) { this->unsafeValue() = x; } 1567 1568 /// insert - Insert mapping [a;b] -> y before the current position. 1569 void insert(KeyT a, KeyT b, ValT y); 1570 1571 /// erase - Erase the current interval. 1572 void erase(); 1573 1574 iterator &operator++() { 1575 const_iterator::operator++(); 1576 return *this; 1577 } 1578 1579 iterator operator++(int) { 1580 iterator tmp = *this; 1581 operator++(); 1582 return tmp; 1583 } 1584 1585 iterator &operator--() { 1586 const_iterator::operator--(); 1587 return *this; 1588 } 1589 1590 iterator operator--(int) { 1591 iterator tmp = *this; 1592 operator--(); 1593 return tmp; 1594 } 1595 }; 1596 1597 /// canCoalesceLeft - Can the current interval coalesce to the left after 1598 /// changing start or value? 1599 /// @param Start New start of current interval. 1600 /// @param Value New value for current interval. 1601 /// @return True when updating the current interval would enable coalescing. 1602 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1603 bool IntervalMap<KeyT, ValT, N, Traits>:: 1604 iterator::canCoalesceLeft(KeyT Start, ValT Value) { 1605 using namespace IntervalMapImpl; 1606 Path &P = this->path; 1607 if (!this->branched()) { 1608 unsigned i = P.leafOffset(); 1609 RootLeaf &Node = P.leaf<RootLeaf>(); 1610 return i && Node.value(i-1) == Value && 1611 Traits::adjacent(Node.stop(i-1), Start); 1612 } 1613 // Branched. 1614 if (unsigned i = P.leafOffset()) { 1615 Leaf &Node = P.leaf<Leaf>(); 1616 return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start); 1617 } else if (NodeRef NR = P.getLeftSibling(P.height())) { 1618 unsigned i = NR.size() - 1; 1619 Leaf &Node = NR.get<Leaf>(); 1620 return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start); 1621 } 1622 return false; 1623 } 1624 1625 /// canCoalesceRight - Can the current interval coalesce to the right after 1626 /// changing stop or value? 1627 /// @param Stop New stop of current interval. 1628 /// @param Value New value for current interval. 1629 /// @return True when updating the current interval would enable coalescing. 1630 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1631 bool IntervalMap<KeyT, ValT, N, Traits>:: 1632 iterator::canCoalesceRight(KeyT Stop, ValT Value) { 1633 using namespace IntervalMapImpl; 1634 Path &P = this->path; 1635 unsigned i = P.leafOffset() + 1; 1636 if (!this->branched()) { 1637 if (i >= P.leafSize()) 1638 return false; 1639 RootLeaf &Node = P.leaf<RootLeaf>(); 1640 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i)); 1641 } 1642 // Branched. 1643 if (i < P.leafSize()) { 1644 Leaf &Node = P.leaf<Leaf>(); 1645 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i)); 1646 } else if (NodeRef NR = P.getRightSibling(P.height())) { 1647 Leaf &Node = NR.get<Leaf>(); 1648 return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0)); 1649 } 1650 return false; 1651 } 1652 1653 /// setNodeStop - Update the stop key of the current node at level and above. 1654 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1655 void IntervalMap<KeyT, ValT, N, Traits>:: 1656 iterator::setNodeStop(unsigned Level, KeyT Stop) { 1657 // There are no references to the root node, so nothing to update. 1658 if (!Level) 1659 return; 1660 IntervalMapImpl::Path &P = this->path; 1661 // Update nodes pointing to the current node. 1662 while (--Level) { 1663 P.node<Branch>(Level).stop(P.offset(Level)) = Stop; 1664 if (!P.atLastEntry(Level)) 1665 return; 1666 } 1667 // Update root separately since it has a different layout. 1668 P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop; 1669 } 1670 1671 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1672 void IntervalMap<KeyT, ValT, N, Traits>:: 1673 iterator::setStart(KeyT a) { 1674 assert(Traits::nonEmpty(a, this->stop()) && "Cannot move start beyond stop"); 1675 KeyT &CurStart = this->unsafeStart(); 1676 if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) { 1677 CurStart = a; 1678 return; 1679 } 1680 // Coalesce with the interval to the left. 1681 --*this; 1682 a = this->start(); 1683 erase(); 1684 setStartUnchecked(a); 1685 } 1686 1687 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1688 void IntervalMap<KeyT, ValT, N, Traits>:: 1689 iterator::setStop(KeyT b) { 1690 assert(Traits::nonEmpty(this->start(), b) && "Cannot move stop beyond start"); 1691 if (Traits::startLess(b, this->stop()) || 1692 !canCoalesceRight(b, this->value())) { 1693 setStopUnchecked(b); 1694 return; 1695 } 1696 // Coalesce with interval to the right. 1697 KeyT a = this->start(); 1698 erase(); 1699 setStartUnchecked(a); 1700 } 1701 1702 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1703 void IntervalMap<KeyT, ValT, N, Traits>:: 1704 iterator::setValue(ValT x) { 1705 setValueUnchecked(x); 1706 if (canCoalesceRight(this->stop(), x)) { 1707 KeyT a = this->start(); 1708 erase(); 1709 setStartUnchecked(a); 1710 } 1711 if (canCoalesceLeft(this->start(), x)) { 1712 --*this; 1713 KeyT a = this->start(); 1714 erase(); 1715 setStartUnchecked(a); 1716 } 1717 } 1718 1719 /// insertNode - insert a node before the current path at level. 1720 /// Leave the current path pointing at the new node. 1721 /// @param Level path index of the node to be inserted. 1722 /// @param Node The node to be inserted. 1723 /// @param Stop The last index in the new node. 1724 /// @return True if the tree height was increased. 1725 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1726 bool IntervalMap<KeyT, ValT, N, Traits>:: 1727 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) { 1728 assert(Level && "Cannot insert next to the root"); 1729 bool SplitRoot = false; 1730 IntervalMap &IM = *this->map; 1731 IntervalMapImpl::Path &P = this->path; 1732 1733 if (Level == 1) { 1734 // Insert into the root branch node. 1735 if (IM.rootSize < RootBranch::Capacity) { 1736 IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop); 1737 P.setSize(0, ++IM.rootSize); 1738 P.reset(Level); 1739 return SplitRoot; 1740 } 1741 1742 // We need to split the root while keeping our position. 1743 SplitRoot = true; 1744 IdxPair Offset = IM.splitRoot(P.offset(0)); 1745 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset); 1746 1747 // Fall through to insert at the new higher level. 1748 ++Level; 1749 } 1750 1751 // When inserting before end(), make sure we have a valid path. 1752 P.legalizeForInsert(--Level); 1753 1754 // Insert into the branch node at Level-1. 1755 if (P.size(Level) == Branch::Capacity) { 1756 // Branch node is full, handle handle the overflow. 1757 assert(!SplitRoot && "Cannot overflow after splitting the root"); 1758 SplitRoot = overflow<Branch>(Level); 1759 Level += SplitRoot; 1760 } 1761 P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop); 1762 P.setSize(Level, P.size(Level) + 1); 1763 if (P.atLastEntry(Level)) 1764 setNodeStop(Level, Stop); 1765 P.reset(Level + 1); 1766 return SplitRoot; 1767 } 1768 1769 // insert 1770 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1771 void IntervalMap<KeyT, ValT, N, Traits>:: 1772 iterator::insert(KeyT a, KeyT b, ValT y) { 1773 if (this->branched()) 1774 return treeInsert(a, b, y); 1775 IntervalMap &IM = *this->map; 1776 IntervalMapImpl::Path &P = this->path; 1777 1778 // Try simple root leaf insert. 1779 unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y); 1780 1781 // Was the root node insert successful? 1782 if (Size <= RootLeaf::Capacity) { 1783 P.setSize(0, IM.rootSize = Size); 1784 return; 1785 } 1786 1787 // Root leaf node is full, we must branch. 1788 IdxPair Offset = IM.branchRoot(P.leafOffset()); 1789 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset); 1790 1791 // Now it fits in the new leaf. 1792 treeInsert(a, b, y); 1793 } 1794 1795 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1796 void IntervalMap<KeyT, ValT, N, Traits>:: 1797 iterator::treeInsert(KeyT a, KeyT b, ValT y) { 1798 using namespace IntervalMapImpl; 1799 Path &P = this->path; 1800 1801 if (!P.valid()) 1802 P.legalizeForInsert(this->map->height); 1803 1804 // Check if this insertion will extend the node to the left. 1805 if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) { 1806 // Node is growing to the left, will it affect a left sibling node? 1807 if (NodeRef Sib = P.getLeftSibling(P.height())) { 1808 Leaf &SibLeaf = Sib.get<Leaf>(); 1809 unsigned SibOfs = Sib.size() - 1; 1810 if (SibLeaf.value(SibOfs) == y && 1811 Traits::adjacent(SibLeaf.stop(SibOfs), a)) { 1812 // This insertion will coalesce with the last entry in SibLeaf. We can 1813 // handle it in two ways: 1814 // 1. Extend SibLeaf.stop to b and be done, or 1815 // 2. Extend a to SibLeaf, erase the SibLeaf entry and continue. 1816 // We prefer 1., but need 2 when coalescing to the right as well. 1817 Leaf &CurLeaf = P.leaf<Leaf>(); 1818 P.moveLeft(P.height()); 1819 if (Traits::stopLess(b, CurLeaf.start(0)) && 1820 (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) { 1821 // Easy, just extend SibLeaf and we're done. 1822 setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b); 1823 return; 1824 } else { 1825 // We have both left and right coalescing. Erase the old SibLeaf entry 1826 // and continue inserting the larger interval. 1827 a = SibLeaf.start(SibOfs); 1828 treeErase(/* UpdateRoot= */false); 1829 } 1830 } 1831 } else { 1832 // No left sibling means we are at begin(). Update cached bound. 1833 this->map->rootBranchStart() = a; 1834 } 1835 } 1836 1837 // When we are inserting at the end of a leaf node, we must update stops. 1838 unsigned Size = P.leafSize(); 1839 bool Grow = P.leafOffset() == Size; 1840 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y); 1841 1842 // Leaf insertion unsuccessful? Overflow and try again. 1843 if (Size > Leaf::Capacity) { 1844 overflow<Leaf>(P.height()); 1845 Grow = P.leafOffset() == P.leafSize(); 1846 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y); 1847 assert(Size <= Leaf::Capacity && "overflow() didn't make room"); 1848 } 1849 1850 // Inserted, update offset and leaf size. 1851 P.setSize(P.height(), Size); 1852 1853 // Insert was the last node entry, update stops. 1854 if (Grow) 1855 setNodeStop(P.height(), b); 1856 } 1857 1858 /// erase - erase the current interval and move to the next position. 1859 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1860 void IntervalMap<KeyT, ValT, N, Traits>:: 1861 iterator::erase() { 1862 IntervalMap &IM = *this->map; 1863 IntervalMapImpl::Path &P = this->path; 1864 assert(P.valid() && "Cannot erase end()"); 1865 if (this->branched()) 1866 return treeErase(); 1867 IM.rootLeaf().erase(P.leafOffset(), IM.rootSize); 1868 P.setSize(0, --IM.rootSize); 1869 } 1870 1871 /// treeErase - erase() for a branched tree. 1872 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1873 void IntervalMap<KeyT, ValT, N, Traits>:: 1874 iterator::treeErase(bool UpdateRoot) { 1875 IntervalMap &IM = *this->map; 1876 IntervalMapImpl::Path &P = this->path; 1877 Leaf &Node = P.leaf<Leaf>(); 1878 1879 // Nodes are not allowed to become empty. 1880 if (P.leafSize() == 1) { 1881 IM.deleteNode(&Node); 1882 eraseNode(IM.height); 1883 // Update rootBranchStart if we erased begin(). 1884 if (UpdateRoot && IM.branched() && P.valid() && P.atBegin()) 1885 IM.rootBranchStart() = P.leaf<Leaf>().start(0); 1886 return; 1887 } 1888 1889 // Erase current entry. 1890 Node.erase(P.leafOffset(), P.leafSize()); 1891 unsigned NewSize = P.leafSize() - 1; 1892 P.setSize(IM.height, NewSize); 1893 // When we erase the last entry, update stop and move to a legal position. 1894 if (P.leafOffset() == NewSize) { 1895 setNodeStop(IM.height, Node.stop(NewSize - 1)); 1896 P.moveRight(IM.height); 1897 } else if (UpdateRoot && P.atBegin()) 1898 IM.rootBranchStart() = P.leaf<Leaf>().start(0); 1899 } 1900 1901 /// eraseNode - Erase the current node at Level from its parent and move path to 1902 /// the first entry of the next sibling node. 1903 /// The node must be deallocated by the caller. 1904 /// @param Level 1..height, the root node cannot be erased. 1905 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1906 void IntervalMap<KeyT, ValT, N, Traits>:: 1907 iterator::eraseNode(unsigned Level) { 1908 assert(Level && "Cannot erase root node"); 1909 IntervalMap &IM = *this->map; 1910 IntervalMapImpl::Path &P = this->path; 1911 1912 if (--Level == 0) { 1913 IM.rootBranch().erase(P.offset(0), IM.rootSize); 1914 P.setSize(0, --IM.rootSize); 1915 // If this cleared the root, switch to height=0. 1916 if (IM.empty()) { 1917 IM.switchRootToLeaf(); 1918 this->setRoot(0); 1919 return; 1920 } 1921 } else { 1922 // Remove node ref from branch node at Level. 1923 Branch &Parent = P.node<Branch>(Level); 1924 if (P.size(Level) == 1) { 1925 // Branch node became empty, remove it recursively. 1926 IM.deleteNode(&Parent); 1927 eraseNode(Level); 1928 } else { 1929 // Branch node won't become empty. 1930 Parent.erase(P.offset(Level), P.size(Level)); 1931 unsigned NewSize = P.size(Level) - 1; 1932 P.setSize(Level, NewSize); 1933 // If we removed the last branch, update stop and move to a legal pos. 1934 if (P.offset(Level) == NewSize) { 1935 setNodeStop(Level, Parent.stop(NewSize - 1)); 1936 P.moveRight(Level); 1937 } 1938 } 1939 } 1940 // Update path cache for the new right sibling position. 1941 if (P.valid()) { 1942 P.reset(Level + 1); 1943 P.offset(Level + 1) = 0; 1944 } 1945 } 1946 1947 /// overflow - Distribute entries of the current node evenly among 1948 /// its siblings and ensure that the current node is not full. 1949 /// This may require allocating a new node. 1950 /// @tparam NodeT The type of node at Level (Leaf or Branch). 1951 /// @param Level path index of the overflowing node. 1952 /// @return True when the tree height was changed. 1953 template <typename KeyT, typename ValT, unsigned N, typename Traits> 1954 template <typename NodeT> 1955 bool IntervalMap<KeyT, ValT, N, Traits>:: 1956 iterator::overflow(unsigned Level) { 1957 using namespace IntervalMapImpl; 1958 Path &P = this->path; 1959 unsigned CurSize[4]; 1960 NodeT *Node[4]; 1961 unsigned Nodes = 0; 1962 unsigned Elements = 0; 1963 unsigned Offset = P.offset(Level); 1964 1965 // Do we have a left sibling? 1966 NodeRef LeftSib = P.getLeftSibling(Level); 1967 if (LeftSib) { 1968 Offset += Elements = CurSize[Nodes] = LeftSib.size(); 1969 Node[Nodes++] = &LeftSib.get<NodeT>(); 1970 } 1971 1972 // Current node. 1973 Elements += CurSize[Nodes] = P.size(Level); 1974 Node[Nodes++] = &P.node<NodeT>(Level); 1975 1976 // Do we have a right sibling? 1977 NodeRef RightSib = P.getRightSibling(Level); 1978 if (RightSib) { 1979 Elements += CurSize[Nodes] = RightSib.size(); 1980 Node[Nodes++] = &RightSib.get<NodeT>(); 1981 } 1982 1983 // Do we need to allocate a new node? 1984 unsigned NewNode = 0; 1985 if (Elements + 1 > Nodes * NodeT::Capacity) { 1986 // Insert NewNode at the penultimate position, or after a single node. 1987 NewNode = Nodes == 1 ? 1 : Nodes - 1; 1988 CurSize[Nodes] = CurSize[NewNode]; 1989 Node[Nodes] = Node[NewNode]; 1990 CurSize[NewNode] = 0; 1991 Node[NewNode] = this->map->template newNode<NodeT>(); 1992 ++Nodes; 1993 } 1994 1995 // Compute the new element distribution. 1996 unsigned NewSize[4]; 1997 IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity, 1998 CurSize, NewSize, Offset, true); 1999 adjustSiblingSizes(Node, Nodes, CurSize, NewSize); 2000 2001 // Move current location to the leftmost node. 2002 if (LeftSib) 2003 P.moveLeft(Level); 2004 2005 // Elements have been rearranged, now update node sizes and stops. 2006 bool SplitRoot = false; 2007 unsigned Pos = 0; 2008 while (true) { 2009 KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1); 2010 if (NewNode && Pos == NewNode) { 2011 SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop); 2012 Level += SplitRoot; 2013 } else { 2014 P.setSize(Level, NewSize[Pos]); 2015 setNodeStop(Level, Stop); 2016 } 2017 if (Pos + 1 == Nodes) 2018 break; 2019 P.moveRight(Level); 2020 ++Pos; 2021 } 2022 2023 // Where was I? Find NewOffset. 2024 while(Pos != NewOffset.first) { 2025 P.moveLeft(Level); 2026 --Pos; 2027 } 2028 P.offset(Level) = NewOffset.second; 2029 return SplitRoot; 2030 } 2031 2032 //===----------------------------------------------------------------------===// 2033 //--- IntervalMapOverlaps ----// 2034 //===----------------------------------------------------------------------===// 2035 2036 /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two 2037 /// IntervalMaps. The maps may be different, but the KeyT and Traits types 2038 /// should be the same. 2039 /// 2040 /// Typical uses: 2041 /// 2042 /// 1. Test for overlap: 2043 /// bool overlap = IntervalMapOverlaps(a, b).valid(); 2044 /// 2045 /// 2. Enumerate overlaps: 2046 /// for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... } 2047 /// 2048 template <typename MapA, typename MapB> 2049 class IntervalMapOverlaps { 2050 using KeyType = typename MapA::KeyType; 2051 using Traits = typename MapA::KeyTraits; 2052 2053 typename MapA::const_iterator posA; 2054 typename MapB::const_iterator posB; 2055 2056 /// advance - Move posA and posB forward until reaching an overlap, or until 2057 /// either meets end. 2058 /// Don't move the iterators if they are already overlapping. 2059 void advance() { 2060 if (!valid()) 2061 return; 2062 2063 if (Traits::stopLess(posA.stop(), posB.start())) { 2064 // A ends before B begins. Catch up. 2065 posA.advanceTo(posB.start()); 2066 if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start())) 2067 return; 2068 } else if (Traits::stopLess(posB.stop(), posA.start())) { 2069 // B ends before A begins. Catch up. 2070 posB.advanceTo(posA.start()); 2071 if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start())) 2072 return; 2073 } else 2074 // Already overlapping. 2075 return; 2076 2077 while (true) { 2078 // Make a.end > b.start. 2079 posA.advanceTo(posB.start()); 2080 if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start())) 2081 return; 2082 // Make b.end > a.start. 2083 posB.advanceTo(posA.start()); 2084 if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start())) 2085 return; 2086 } 2087 } 2088 2089 public: 2090 /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b. 2091 IntervalMapOverlaps(const MapA &a, const MapB &b) 2092 : posA(b.empty() ? a.end() : a.find(b.start())), 2093 posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); } 2094 2095 /// valid - Return true if iterator is at an overlap. 2096 bool valid() const { 2097 return posA.valid() && posB.valid(); 2098 } 2099 2100 /// a - access the left hand side in the overlap. 2101 const typename MapA::const_iterator &a() const { return posA; } 2102 2103 /// b - access the right hand side in the overlap. 2104 const typename MapB::const_iterator &b() const { return posB; } 2105 2106 /// start - Beginning of the overlapping interval. 2107 KeyType start() const { 2108 KeyType ak = a().start(); 2109 KeyType bk = b().start(); 2110 return Traits::startLess(ak, bk) ? bk : ak; 2111 } 2112 2113 /// stop - End of the overlapping interval. 2114 KeyType stop() const { 2115 KeyType ak = a().stop(); 2116 KeyType bk = b().stop(); 2117 return Traits::startLess(ak, bk) ? ak : bk; 2118 } 2119 2120 /// skipA - Move to the next overlap that doesn't involve a(). 2121 void skipA() { 2122 ++posA; 2123 advance(); 2124 } 2125 2126 /// skipB - Move to the next overlap that doesn't involve b(). 2127 void skipB() { 2128 ++posB; 2129 advance(); 2130 } 2131 2132 /// Preincrement - Move to the next overlap. 2133 IntervalMapOverlaps &operator++() { 2134 // Bump the iterator that ends first. The other one may have more overlaps. 2135 if (Traits::startLess(posB.stop(), posA.stop())) 2136 skipB(); 2137 else 2138 skipA(); 2139 return *this; 2140 } 2141 2142 /// advanceTo - Move to the first overlapping interval with 2143 /// stopLess(x, stop()). 2144 void advanceTo(KeyType x) { 2145 if (!valid()) 2146 return; 2147 // Make sure advanceTo sees monotonic keys. 2148 if (Traits::stopLess(posA.stop(), x)) 2149 posA.advanceTo(x); 2150 if (Traits::stopLess(posB.stop(), x)) 2151 posB.advanceTo(x); 2152 advance(); 2153 } 2154 }; 2155 2156 } // end namespace llvm 2157 2158 #endif // LLVM_ADT_INTERVALMAP_H 2159