Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a coalescing interval map for small objects.
     11 //
     12 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the
     13 // same value are represented in a compressed form.
     14 //
     15 // Iterators provide ordered access to the compressed intervals rather than the
     16 // individual keys, and insert and erase operations use key intervals as well.
     17 //
     18 // Like SmallVector, IntervalMap will store the first N intervals in the map
     19 // object itself without any allocations. When space is exhausted it switches to
     20 // a B+-tree representation with very small overhead for small key and value
     21 // objects.
     22 //
     23 // A Traits class specifies how keys are compared. It also allows IntervalMap to
     24 // work with both closed and half-open intervals.
     25 //
     26 // Keys and values are not stored next to each other in a std::pair, so we don't
     27 // provide such a value_type. Dereferencing iterators only returns the mapped
     28 // value. The interval bounds are accessible through the start() and stop()
     29 // iterator methods.
     30 //
     31 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
     32 // is the optimal size. For large objects use std::map instead.
     33 //
     34 //===----------------------------------------------------------------------===//
     35 //
     36 // Synopsis:
     37 //
     38 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
     39 // class IntervalMap {
     40 // public:
     41 //   typedef KeyT key_type;
     42 //   typedef ValT mapped_type;
     43 //   typedef RecyclingAllocator<...> Allocator;
     44 //   class iterator;
     45 //   class const_iterator;
     46 //
     47 //   explicit IntervalMap(Allocator&);
     48 //   ~IntervalMap():
     49 //
     50 //   bool empty() const;
     51 //   KeyT start() const;
     52 //   KeyT stop() const;
     53 //   ValT lookup(KeyT x, Value NotFound = Value()) const;
     54 //
     55 //   const_iterator begin() const;
     56 //   const_iterator end() const;
     57 //   iterator begin();
     58 //   iterator end();
     59 //   const_iterator find(KeyT x) const;
     60 //   iterator find(KeyT x);
     61 //
     62 //   void insert(KeyT a, KeyT b, ValT y);
     63 //   void clear();
     64 // };
     65 //
     66 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
     67 // class IntervalMap::const_iterator :
     68 //   public std::iterator<std::bidirectional_iterator_tag, ValT> {
     69 // public:
     70 //   bool operator==(const const_iterator &) const;
     71 //   bool operator!=(const const_iterator &) const;
     72 //   bool valid() const;
     73 //
     74 //   const KeyT &start() const;
     75 //   const KeyT &stop() const;
     76 //   const ValT &value() const;
     77 //   const ValT &operator*() const;
     78 //   const ValT *operator->() const;
     79 //
     80 //   const_iterator &operator++();
     81 //   const_iterator &operator++(int);
     82 //   const_iterator &operator--();
     83 //   const_iterator &operator--(int);
     84 //   void goToBegin();
     85 //   void goToEnd();
     86 //   void find(KeyT x);
     87 //   void advanceTo(KeyT x);
     88 // };
     89 //
     90 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
     91 // class IntervalMap::iterator : public const_iterator {
     92 // public:
     93 //   void insert(KeyT a, KeyT b, Value y);
     94 //   void erase();
     95 // };
     96 //
     97 //===----------------------------------------------------------------------===//
     98 
     99 #ifndef LLVM_ADT_INTERVALMAP_H
    100 #define LLVM_ADT_INTERVALMAP_H
    101 
    102 #include "llvm/ADT/PointerIntPair.h"
    103 #include "llvm/ADT/SmallVector.h"
    104 #include "llvm/Support/AlignOf.h"
    105 #include "llvm/Support/Allocator.h"
    106 #include "llvm/Support/RecyclingAllocator.h"
    107 #include <algorithm>
    108 #include <cassert>
    109 #include <cstdint>
    110 #include <iterator>
    111 #include <new>
    112 #include <utility>
    113 
    114 namespace llvm {
    115 
    116 //===----------------------------------------------------------------------===//
    117 //---                              Key traits                              ---//
    118 //===----------------------------------------------------------------------===//
    119 //
    120 // The IntervalMap works with closed or half-open intervals.
    121 // Adjacent intervals that map to the same value are coalesced.
    122 //
    123 // The IntervalMapInfo traits class is used to determine if a key is contained
    124 // in an interval, and if two intervals are adjacent so they can be coalesced.
    125 // The provided implementation works for closed integer intervals, other keys
    126 // probably need a specialized version.
    127 //
    128 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
    129 //
    130 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is
    131 // allowed. This is so that stopLess(a, b) can be used to determine if two
    132 // intervals overlap.
    133 //
    134 //===----------------------------------------------------------------------===//
    135 
    136 template <typename T>
    137 struct IntervalMapInfo {
    138   /// startLess - Return true if x is not in [a;b].
    139   /// This is x < a both for closed intervals and for [a;b) half-open intervals.
    140   static inline bool startLess(const T &x, const T &a) {
    141     return x < a;
    142   }
    143 
    144   /// stopLess - Return true if x is not in [a;b].
    145   /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
    146   static inline bool stopLess(const T &b, const T &x) {
    147     return b < x;
    148   }
    149 
    150   /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
    151   /// This is a+1 == b for closed intervals, a == b for half-open intervals.
    152   static inline bool adjacent(const T &a, const T &b) {
    153     return a+1 == b;
    154   }
    155 
    156   /// nonEmpty - Return true if [a;b] is non-empty.
    157   /// This is a <= b for a closed interval, a < b for [a;b) half-open intervals.
    158   static inline bool nonEmpty(const T &a, const T &b) {
    159     return a <= b;
    160   }
    161 };
    162 
    163 template <typename T>
    164 struct IntervalMapHalfOpenInfo {
    165   /// startLess - Return true if x is not in [a;b).
    166   static inline bool startLess(const T &x, const T &a) {
    167     return x < a;
    168   }
    169 
    170   /// stopLess - Return true if x is not in [a;b).
    171   static inline bool stopLess(const T &b, const T &x) {
    172     return b <= x;
    173   }
    174 
    175   /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
    176   static inline bool adjacent(const T &a, const T &b) {
    177     return a == b;
    178   }
    179 
    180   /// nonEmpty - Return true if [a;b) is non-empty.
    181   static inline bool nonEmpty(const T &a, const T &b) {
    182     return a < b;
    183   }
    184 };
    185 
    186 /// IntervalMapImpl - Namespace used for IntervalMap implementation details.
    187 /// It should be considered private to the implementation.
    188 namespace IntervalMapImpl {
    189 
    190 using IdxPair = std::pair<unsigned,unsigned>;
    191 
    192 //===----------------------------------------------------------------------===//
    193 //---                    IntervalMapImpl::NodeBase                         ---//
    194 //===----------------------------------------------------------------------===//
    195 //
    196 // Both leaf and branch nodes store vectors of pairs.
    197 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
    198 //
    199 // Keys and values are stored in separate arrays to avoid padding caused by
    200 // different object alignments. This also helps improve locality of reference
    201 // when searching the keys.
    202 //
    203 // The nodes don't know how many elements they contain - that information is
    204 // stored elsewhere. Omitting the size field prevents padding and allows a node
    205 // to fill the allocated cache lines completely.
    206 //
    207 // These are typical key and value sizes, the node branching factor (N), and
    208 // wasted space when nodes are sized to fit in three cache lines (192 bytes):
    209 //
    210 //   T1  T2   N Waste  Used by
    211 //    4   4  24   0    Branch<4> (32-bit pointers)
    212 //    8   4  16   0    Leaf<4,4>, Branch<4>
    213 //    8   8  12   0    Leaf<4,8>, Branch<8>
    214 //   16   4   9  12    Leaf<8,4>
    215 //   16   8   8   0    Leaf<8,8>
    216 //
    217 //===----------------------------------------------------------------------===//
    218 
    219 template <typename T1, typename T2, unsigned N>
    220 class NodeBase {
    221 public:
    222   enum { Capacity = N };
    223 
    224   T1 first[N];
    225   T2 second[N];
    226 
    227   /// copy - Copy elements from another node.
    228   /// @param Other Node elements are copied from.
    229   /// @param i     Beginning of the source range in other.
    230   /// @param j     Beginning of the destination range in this.
    231   /// @param Count Number of elements to copy.
    232   template <unsigned M>
    233   void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
    234             unsigned j, unsigned Count) {
    235     assert(i + Count <= M && "Invalid source range");
    236     assert(j + Count <= N && "Invalid dest range");
    237     for (unsigned e = i + Count; i != e; ++i, ++j) {
    238       first[j]  = Other.first[i];
    239       second[j] = Other.second[i];
    240     }
    241   }
    242 
    243   /// moveLeft - Move elements to the left.
    244   /// @param i     Beginning of the source range.
    245   /// @param j     Beginning of the destination range.
    246   /// @param Count Number of elements to copy.
    247   void moveLeft(unsigned i, unsigned j, unsigned Count) {
    248     assert(j <= i && "Use moveRight shift elements right");
    249     copy(*this, i, j, Count);
    250   }
    251 
    252   /// moveRight - Move elements to the right.
    253   /// @param i     Beginning of the source range.
    254   /// @param j     Beginning of the destination range.
    255   /// @param Count Number of elements to copy.
    256   void moveRight(unsigned i, unsigned j, unsigned Count) {
    257     assert(i <= j && "Use moveLeft shift elements left");
    258     assert(j + Count <= N && "Invalid range");
    259     while (Count--) {
    260       first[j + Count]  = first[i + Count];
    261       second[j + Count] = second[i + Count];
    262     }
    263   }
    264 
    265   /// erase - Erase elements [i;j).
    266   /// @param i    Beginning of the range to erase.
    267   /// @param j    End of the range. (Exclusive).
    268   /// @param Size Number of elements in node.
    269   void erase(unsigned i, unsigned j, unsigned Size) {
    270     moveLeft(j, i, Size - j);
    271   }
    272 
    273   /// erase - Erase element at i.
    274   /// @param i    Index of element to erase.
    275   /// @param Size Number of elements in node.
    276   void erase(unsigned i, unsigned Size) {
    277     erase(i, i+1, Size);
    278   }
    279 
    280   /// shift - Shift elements [i;size) 1 position to the right.
    281   /// @param i    Beginning of the range to move.
    282   /// @param Size Number of elements in node.
    283   void shift(unsigned i, unsigned Size) {
    284     moveRight(i, i + 1, Size - i);
    285   }
    286 
    287   /// transferToLeftSib - Transfer elements to a left sibling node.
    288   /// @param Size  Number of elements in this.
    289   /// @param Sib   Left sibling node.
    290   /// @param SSize Number of elements in sib.
    291   /// @param Count Number of elements to transfer.
    292   void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
    293                          unsigned Count) {
    294     Sib.copy(*this, 0, SSize, Count);
    295     erase(0, Count, Size);
    296   }
    297 
    298   /// transferToRightSib - Transfer elements to a right sibling node.
    299   /// @param Size  Number of elements in this.
    300   /// @param Sib   Right sibling node.
    301   /// @param SSize Number of elements in sib.
    302   /// @param Count Number of elements to transfer.
    303   void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
    304                           unsigned Count) {
    305     Sib.moveRight(0, Count, SSize);
    306     Sib.copy(*this, Size-Count, 0, Count);
    307   }
    308 
    309   /// adjustFromLeftSib - Adjust the number if elements in this node by moving
    310   /// elements to or from a left sibling node.
    311   /// @param Size  Number of elements in this.
    312   /// @param Sib   Right sibling node.
    313   /// @param SSize Number of elements in sib.
    314   /// @param Add   The number of elements to add to this node, possibly < 0.
    315   /// @return      Number of elements added to this node, possibly negative.
    316   int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
    317     if (Add > 0) {
    318       // We want to grow, copy from sib.
    319       unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
    320       Sib.transferToRightSib(SSize, *this, Size, Count);
    321       return Count;
    322     } else {
    323       // We want to shrink, copy to sib.
    324       unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
    325       transferToLeftSib(Size, Sib, SSize, Count);
    326       return -Count;
    327     }
    328   }
    329 };
    330 
    331 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
    332 /// @param Node  Array of pointers to sibling nodes.
    333 /// @param Nodes Number of nodes.
    334 /// @param CurSize Array of current node sizes, will be overwritten.
    335 /// @param NewSize Array of desired node sizes.
    336 template <typename NodeT>
    337 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
    338                         unsigned CurSize[], const unsigned NewSize[]) {
    339   // Move elements right.
    340   for (int n = Nodes - 1; n; --n) {
    341     if (CurSize[n] == NewSize[n])
    342       continue;
    343     for (int m = n - 1; m != -1; --m) {
    344       int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
    345                                          NewSize[n] - CurSize[n]);
    346       CurSize[m] -= d;
    347       CurSize[n] += d;
    348       // Keep going if the current node was exhausted.
    349       if (CurSize[n] >= NewSize[n])
    350           break;
    351     }
    352   }
    353 
    354   if (Nodes == 0)
    355     return;
    356 
    357   // Move elements left.
    358   for (unsigned n = 0; n != Nodes - 1; ++n) {
    359     if (CurSize[n] == NewSize[n])
    360       continue;
    361     for (unsigned m = n + 1; m != Nodes; ++m) {
    362       int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
    363                                         CurSize[n] -  NewSize[n]);
    364       CurSize[m] += d;
    365       CurSize[n] -= d;
    366       // Keep going if the current node was exhausted.
    367       if (CurSize[n] >= NewSize[n])
    368           break;
    369     }
    370   }
    371 
    372 #ifndef NDEBUG
    373   for (unsigned n = 0; n != Nodes; n++)
    374     assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
    375 #endif
    376 }
    377 
    378 /// IntervalMapImpl::distribute - Compute a new distribution of node elements
    379 /// after an overflow or underflow. Reserve space for a new element at Position,
    380 /// and compute the node that will hold Position after redistributing node
    381 /// elements.
    382 ///
    383 /// It is required that
    384 ///
    385 ///   Elements == sum(CurSize), and
    386 ///   Elements + Grow <= Nodes * Capacity.
    387 ///
    388 /// NewSize[] will be filled in such that:
    389 ///
    390 ///   sum(NewSize) == Elements, and
    391 ///   NewSize[i] <= Capacity.
    392 ///
    393 /// The returned index is the node where Position will go, so:
    394 ///
    395 ///   sum(NewSize[0..idx-1]) <= Position
    396 ///   sum(NewSize[0..idx])   >= Position
    397 ///
    398 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
    399 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
    400 /// before the one holding the Position'th element where there is room for an
    401 /// insertion.
    402 ///
    403 /// @param Nodes    The number of nodes.
    404 /// @param Elements Total elements in all nodes.
    405 /// @param Capacity The capacity of each node.
    406 /// @param CurSize  Array[Nodes] of current node sizes, or NULL.
    407 /// @param NewSize  Array[Nodes] to receive the new node sizes.
    408 /// @param Position Insert position.
    409 /// @param Grow     Reserve space for a new element at Position.
    410 /// @return         (node, offset) for Position.
    411 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
    412                    const unsigned *CurSize, unsigned NewSize[],
    413                    unsigned Position, bool Grow);
    414 
    415 //===----------------------------------------------------------------------===//
    416 //---                   IntervalMapImpl::NodeSizer                         ---//
    417 //===----------------------------------------------------------------------===//
    418 //
    419 // Compute node sizes from key and value types.
    420 //
    421 // The branching factors are chosen to make nodes fit in three cache lines.
    422 // This may not be possible if keys or values are very large. Such large objects
    423 // are handled correctly, but a std::map would probably give better performance.
    424 //
    425 //===----------------------------------------------------------------------===//
    426 
    427 enum {
    428   // Cache line size. Most architectures have 32 or 64 byte cache lines.
    429   // We use 64 bytes here because it provides good branching factors.
    430   Log2CacheLine = 6,
    431   CacheLineBytes = 1 << Log2CacheLine,
    432   DesiredNodeBytes = 3 * CacheLineBytes
    433 };
    434 
    435 template <typename KeyT, typename ValT>
    436 struct NodeSizer {
    437   enum {
    438     // Compute the leaf node branching factor that makes a node fit in three
    439     // cache lines. The branching factor must be at least 3, or some B+-tree
    440     // balancing algorithms won't work.
    441     // LeafSize can't be larger than CacheLineBytes. This is required by the
    442     // PointerIntPair used by NodeRef.
    443     DesiredLeafSize = DesiredNodeBytes /
    444       static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
    445     MinLeafSize = 3,
    446     LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
    447   };
    448 
    449   using LeafBase = NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>;
    450 
    451   enum {
    452     // Now that we have the leaf branching factor, compute the actual allocation
    453     // unit size by rounding up to a whole number of cache lines.
    454     AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
    455 
    456     // Determine the branching factor for branch nodes.
    457     BranchSize = AllocBytes /
    458       static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
    459   };
    460 
    461   /// Allocator - The recycling allocator used for both branch and leaf nodes.
    462   /// This typedef is very likely to be identical for all IntervalMaps with
    463   /// reasonably sized entries, so the same allocator can be shared among
    464   /// different kinds of maps.
    465   using Allocator =
    466       RecyclingAllocator<BumpPtrAllocator, char, AllocBytes, CacheLineBytes>;
    467 };
    468 
    469 //===----------------------------------------------------------------------===//
    470 //---                     IntervalMapImpl::NodeRef                         ---//
    471 //===----------------------------------------------------------------------===//
    472 //
    473 // B+-tree nodes can be leaves or branches, so we need a polymorphic node
    474 // pointer that can point to both kinds.
    475 //
    476 // All nodes are cache line aligned and the low 6 bits of a node pointer are
    477 // always 0. These bits are used to store the number of elements in the
    478 // referenced node. Besides saving space, placing node sizes in the parents
    479 // allow tree balancing algorithms to run without faulting cache lines for nodes
    480 // that may not need to be modified.
    481 //
    482 // A NodeRef doesn't know whether it references a leaf node or a branch node.
    483 // It is the responsibility of the caller to use the correct types.
    484 //
    485 // Nodes are never supposed to be empty, and it is invalid to store a node size
    486 // of 0 in a NodeRef. The valid range of sizes is 1-64.
    487 //
    488 //===----------------------------------------------------------------------===//
    489 
    490 class NodeRef {
    491   struct CacheAlignedPointerTraits {
    492     static inline void *getAsVoidPointer(void *P) { return P; }
    493     static inline void *getFromVoidPointer(void *P) { return P; }
    494     enum { NumLowBitsAvailable = Log2CacheLine };
    495   };
    496   PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
    497 
    498 public:
    499   /// NodeRef - Create a null ref.
    500   NodeRef() = default;
    501 
    502   /// operator bool - Detect a null ref.
    503   explicit operator bool() const { return pip.getOpaqueValue(); }
    504 
    505   /// NodeRef - Create a reference to the node p with n elements.
    506   template <typename NodeT>
    507   NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
    508     assert(n <= NodeT::Capacity && "Size too big for node");
    509   }
    510 
    511   /// size - Return the number of elements in the referenced node.
    512   unsigned size() const { return pip.getInt() + 1; }
    513 
    514   /// setSize - Update the node size.
    515   void setSize(unsigned n) { pip.setInt(n - 1); }
    516 
    517   /// subtree - Access the i'th subtree reference in a branch node.
    518   /// This depends on branch nodes storing the NodeRef array as their first
    519   /// member.
    520   NodeRef &subtree(unsigned i) const {
    521     return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
    522   }
    523 
    524   /// get - Dereference as a NodeT reference.
    525   template <typename NodeT>
    526   NodeT &get() const {
    527     return *reinterpret_cast<NodeT*>(pip.getPointer());
    528   }
    529 
    530   bool operator==(const NodeRef &RHS) const {
    531     if (pip == RHS.pip)
    532       return true;
    533     assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
    534     return false;
    535   }
    536 
    537   bool operator!=(const NodeRef &RHS) const {
    538     return !operator==(RHS);
    539   }
    540 };
    541 
    542 //===----------------------------------------------------------------------===//
    543 //---                      IntervalMapImpl::LeafNode                       ---//
    544 //===----------------------------------------------------------------------===//
    545 //
    546 // Leaf nodes store up to N disjoint intervals with corresponding values.
    547 //
    548 // The intervals are kept sorted and fully coalesced so there are no adjacent
    549 // intervals mapping to the same value.
    550 //
    551 // These constraints are always satisfied:
    552 //
    553 // - Traits::stopLess(start(i), stop(i))    - Non-empty, sane intervals.
    554 //
    555 // - Traits::stopLess(stop(i), start(i + 1) - Sorted.
    556 //
    557 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
    558 //                                          - Fully coalesced.
    559 //
    560 //===----------------------------------------------------------------------===//
    561 
    562 template <typename KeyT, typename ValT, unsigned N, typename Traits>
    563 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
    564 public:
    565   const KeyT &start(unsigned i) const { return this->first[i].first; }
    566   const KeyT &stop(unsigned i) const { return this->first[i].second; }
    567   const ValT &value(unsigned i) const { return this->second[i]; }
    568 
    569   KeyT &start(unsigned i) { return this->first[i].first; }
    570   KeyT &stop(unsigned i) { return this->first[i].second; }
    571   ValT &value(unsigned i) { return this->second[i]; }
    572 
    573   /// findFrom - Find the first interval after i that may contain x.
    574   /// @param i    Starting index for the search.
    575   /// @param Size Number of elements in node.
    576   /// @param x    Key to search for.
    577   /// @return     First index with !stopLess(key[i].stop, x), or size.
    578   ///             This is the first interval that can possibly contain x.
    579   unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
    580     assert(i <= Size && Size <= N && "Bad indices");
    581     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
    582            "Index is past the needed point");
    583     while (i != Size && Traits::stopLess(stop(i), x)) ++i;
    584     return i;
    585   }
    586 
    587   /// safeFind - Find an interval that is known to exist. This is the same as
    588   /// findFrom except is it assumed that x is at least within range of the last
    589   /// interval.
    590   /// @param i Starting index for the search.
    591   /// @param x Key to search for.
    592   /// @return  First index with !stopLess(key[i].stop, x), never size.
    593   ///          This is the first interval that can possibly contain x.
    594   unsigned safeFind(unsigned i, KeyT x) const {
    595     assert(i < N && "Bad index");
    596     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
    597            "Index is past the needed point");
    598     while (Traits::stopLess(stop(i), x)) ++i;
    599     assert(i < N && "Unsafe intervals");
    600     return i;
    601   }
    602 
    603   /// safeLookup - Lookup mapped value for a safe key.
    604   /// It is assumed that x is within range of the last entry.
    605   /// @param x        Key to search for.
    606   /// @param NotFound Value to return if x is not in any interval.
    607   /// @return         The mapped value at x or NotFound.
    608   ValT safeLookup(KeyT x, ValT NotFound) const {
    609     unsigned i = safeFind(0, x);
    610     return Traits::startLess(x, start(i)) ? NotFound : value(i);
    611   }
    612 
    613   unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
    614 };
    615 
    616 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
    617 /// possible. This may cause the node to grow by 1, or it may cause the node
    618 /// to shrink because of coalescing.
    619 /// @param Pos  Starting index = insertFrom(0, size, a)
    620 /// @param Size Number of elements in node.
    621 /// @param a    Interval start.
    622 /// @param b    Interval stop.
    623 /// @param y    Value be mapped.
    624 /// @return     (insert position, new size), or (i, Capacity+1) on overflow.
    625 template <typename KeyT, typename ValT, unsigned N, typename Traits>
    626 unsigned LeafNode<KeyT, ValT, N, Traits>::
    627 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
    628   unsigned i = Pos;
    629   assert(i <= Size && Size <= N && "Invalid index");
    630   assert(!Traits::stopLess(b, a) && "Invalid interval");
    631 
    632   // Verify the findFrom invariant.
    633   assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
    634   assert((i == Size || !Traits::stopLess(stop(i), a)));
    635   assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
    636 
    637   // Coalesce with previous interval.
    638   if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
    639     Pos = i - 1;
    640     // Also coalesce with next interval?
    641     if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
    642       stop(i - 1) = stop(i);
    643       this->erase(i, Size);
    644       return Size - 1;
    645     }
    646     stop(i - 1) = b;
    647     return Size;
    648   }
    649 
    650   // Detect overflow.
    651   if (i == N)
    652     return N + 1;
    653 
    654   // Add new interval at end.
    655   if (i == Size) {
    656     start(i) = a;
    657     stop(i) = b;
    658     value(i) = y;
    659     return Size + 1;
    660   }
    661 
    662   // Try to coalesce with following interval.
    663   if (value(i) == y && Traits::adjacent(b, start(i))) {
    664     start(i) = a;
    665     return Size;
    666   }
    667 
    668   // We must insert before i. Detect overflow.
    669   if (Size == N)
    670     return N + 1;
    671 
    672   // Insert before i.
    673   this->shift(i, Size);
    674   start(i) = a;
    675   stop(i) = b;
    676   value(i) = y;
    677   return Size + 1;
    678 }
    679 
    680 //===----------------------------------------------------------------------===//
    681 //---                   IntervalMapImpl::BranchNode                        ---//
    682 //===----------------------------------------------------------------------===//
    683 //
    684 // A branch node stores references to 1--N subtrees all of the same height.
    685 //
    686 // The key array in a branch node holds the rightmost stop key of each subtree.
    687 // It is redundant to store the last stop key since it can be found in the
    688 // parent node, but doing so makes tree balancing a lot simpler.
    689 //
    690 // It is unusual for a branch node to only have one subtree, but it can happen
    691 // in the root node if it is smaller than the normal nodes.
    692 //
    693 // When all of the leaf nodes from all the subtrees are concatenated, they must
    694 // satisfy the same constraints as a single leaf node. They must be sorted,
    695 // sane, and fully coalesced.
    696 //
    697 //===----------------------------------------------------------------------===//
    698 
    699 template <typename KeyT, typename ValT, unsigned N, typename Traits>
    700 class BranchNode : public NodeBase<NodeRef, KeyT, N> {
    701 public:
    702   const KeyT &stop(unsigned i) const { return this->second[i]; }
    703   const NodeRef &subtree(unsigned i) const { return this->first[i]; }
    704 
    705   KeyT &stop(unsigned i) { return this->second[i]; }
    706   NodeRef &subtree(unsigned i) { return this->first[i]; }
    707 
    708   /// findFrom - Find the first subtree after i that may contain x.
    709   /// @param i    Starting index for the search.
    710   /// @param Size Number of elements in node.
    711   /// @param x    Key to search for.
    712   /// @return     First index with !stopLess(key[i], x), or size.
    713   ///             This is the first subtree that can possibly contain x.
    714   unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
    715     assert(i <= Size && Size <= N && "Bad indices");
    716     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
    717            "Index to findFrom is past the needed point");
    718     while (i != Size && Traits::stopLess(stop(i), x)) ++i;
    719     return i;
    720   }
    721 
    722   /// safeFind - Find a subtree that is known to exist. This is the same as
    723   /// findFrom except is it assumed that x is in range.
    724   /// @param i Starting index for the search.
    725   /// @param x Key to search for.
    726   /// @return  First index with !stopLess(key[i], x), never size.
    727   ///          This is the first subtree that can possibly contain x.
    728   unsigned safeFind(unsigned i, KeyT x) const {
    729     assert(i < N && "Bad index");
    730     assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
    731            "Index is past the needed point");
    732     while (Traits::stopLess(stop(i), x)) ++i;
    733     assert(i < N && "Unsafe intervals");
    734     return i;
    735   }
    736 
    737   /// safeLookup - Get the subtree containing x, Assuming that x is in range.
    738   /// @param x Key to search for.
    739   /// @return  Subtree containing x
    740   NodeRef safeLookup(KeyT x) const {
    741     return subtree(safeFind(0, x));
    742   }
    743 
    744   /// insert - Insert a new (subtree, stop) pair.
    745   /// @param i    Insert position, following entries will be shifted.
    746   /// @param Size Number of elements in node.
    747   /// @param Node Subtree to insert.
    748   /// @param Stop Last key in subtree.
    749   void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
    750     assert(Size < N && "branch node overflow");
    751     assert(i <= Size && "Bad insert position");
    752     this->shift(i, Size);
    753     subtree(i) = Node;
    754     stop(i) = Stop;
    755   }
    756 };
    757 
    758 //===----------------------------------------------------------------------===//
    759 //---                         IntervalMapImpl::Path                        ---//
    760 //===----------------------------------------------------------------------===//
    761 //
    762 // A Path is used by iterators to represent a position in a B+-tree, and the
    763 // path to get there from the root.
    764 //
    765 // The Path class also contains the tree navigation code that doesn't have to
    766 // be templatized.
    767 //
    768 //===----------------------------------------------------------------------===//
    769 
    770 class Path {
    771   /// Entry - Each step in the path is a node pointer and an offset into that
    772   /// node.
    773   struct Entry {
    774     void *node;
    775     unsigned size;
    776     unsigned offset;
    777 
    778     Entry(void *Node, unsigned Size, unsigned Offset)
    779       : node(Node), size(Size), offset(Offset) {}
    780 
    781     Entry(NodeRef Node, unsigned Offset)
    782       : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
    783 
    784     NodeRef &subtree(unsigned i) const {
    785       return reinterpret_cast<NodeRef*>(node)[i];
    786     }
    787   };
    788 
    789   /// path - The path entries, path[0] is the root node, path.back() is a leaf.
    790   SmallVector<Entry, 4> path;
    791 
    792 public:
    793   // Node accessors.
    794   template <typename NodeT> NodeT &node(unsigned Level) const {
    795     return *reinterpret_cast<NodeT*>(path[Level].node);
    796   }
    797   unsigned size(unsigned Level) const { return path[Level].size; }
    798   unsigned offset(unsigned Level) const { return path[Level].offset; }
    799   unsigned &offset(unsigned Level) { return path[Level].offset; }
    800 
    801   // Leaf accessors.
    802   template <typename NodeT> NodeT &leaf() const {
    803     return *reinterpret_cast<NodeT*>(path.back().node);
    804   }
    805   unsigned leafSize() const { return path.back().size; }
    806   unsigned leafOffset() const { return path.back().offset; }
    807   unsigned &leafOffset() { return path.back().offset; }
    808 
    809   /// valid - Return true if path is at a valid node, not at end().
    810   bool valid() const {
    811     return !path.empty() && path.front().offset < path.front().size;
    812   }
    813 
    814   /// height - Return the height of the tree corresponding to this path.
    815   /// This matches map->height in a full path.
    816   unsigned height() const { return path.size() - 1; }
    817 
    818   /// subtree - Get the subtree referenced from Level. When the path is
    819   /// consistent, node(Level + 1) == subtree(Level).
    820   /// @param Level 0..height-1. The leaves have no subtrees.
    821   NodeRef &subtree(unsigned Level) const {
    822     return path[Level].subtree(path[Level].offset);
    823   }
    824 
    825   /// reset - Reset cached information about node(Level) from subtree(Level -1).
    826   /// @param Level 1..height. THe node to update after parent node changed.
    827   void reset(unsigned Level) {
    828     path[Level] = Entry(subtree(Level - 1), offset(Level));
    829   }
    830 
    831   /// push - Add entry to path.
    832   /// @param Node Node to add, should be subtree(path.size()-1).
    833   /// @param Offset Offset into Node.
    834   void push(NodeRef Node, unsigned Offset) {
    835     path.push_back(Entry(Node, Offset));
    836   }
    837 
    838   /// pop - Remove the last path entry.
    839   void pop() {
    840     path.pop_back();
    841   }
    842 
    843   /// setSize - Set the size of a node both in the path and in the tree.
    844   /// @param Level 0..height. Note that setting the root size won't change
    845   ///              map->rootSize.
    846   /// @param Size New node size.
    847   void setSize(unsigned Level, unsigned Size) {
    848     path[Level].size = Size;
    849     if (Level)
    850       subtree(Level - 1).setSize(Size);
    851   }
    852 
    853   /// setRoot - Clear the path and set a new root node.
    854   /// @param Node New root node.
    855   /// @param Size New root size.
    856   /// @param Offset Offset into root node.
    857   void setRoot(void *Node, unsigned Size, unsigned Offset) {
    858     path.clear();
    859     path.push_back(Entry(Node, Size, Offset));
    860   }
    861 
    862   /// replaceRoot - Replace the current root node with two new entries after the
    863   /// tree height has increased.
    864   /// @param Root The new root node.
    865   /// @param Size Number of entries in the new root.
    866   /// @param Offsets Offsets into the root and first branch nodes.
    867   void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
    868 
    869   /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
    870   /// @param Level Get the sibling to node(Level).
    871   /// @return Left sibling, or NodeRef().
    872   NodeRef getLeftSibling(unsigned Level) const;
    873 
    874   /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
    875   /// unaltered.
    876   /// @param Level Move node(Level).
    877   void moveLeft(unsigned Level);
    878 
    879   /// fillLeft - Grow path to Height by taking leftmost branches.
    880   /// @param Height The target height.
    881   void fillLeft(unsigned Height) {
    882     while (height() < Height)
    883       push(subtree(height()), 0);
    884   }
    885 
    886   /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
    887   /// @param Level Get the sinbling to node(Level).
    888   /// @return Left sibling, or NodeRef().
    889   NodeRef getRightSibling(unsigned Level) const;
    890 
    891   /// moveRight - Move path to the left sibling at Level. Leave nodes below
    892   /// Level unaltered.
    893   /// @param Level Move node(Level).
    894   void moveRight(unsigned Level);
    895 
    896   /// atBegin - Return true if path is at begin().
    897   bool atBegin() const {
    898     for (unsigned i = 0, e = path.size(); i != e; ++i)
    899       if (path[i].offset != 0)
    900         return false;
    901     return true;
    902   }
    903 
    904   /// atLastEntry - Return true if the path is at the last entry of the node at
    905   /// Level.
    906   /// @param Level Node to examine.
    907   bool atLastEntry(unsigned Level) const {
    908     return path[Level].offset == path[Level].size - 1;
    909   }
    910 
    911   /// legalizeForInsert - Prepare the path for an insertion at Level. When the
    912   /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
    913   /// ensures that node(Level) is real by moving back to the last node at Level,
    914   /// and setting offset(Level) to size(Level) if required.
    915   /// @param Level The level where an insertion is about to take place.
    916   void legalizeForInsert(unsigned Level) {
    917     if (valid())
    918       return;
    919     moveLeft(Level);
    920     ++path[Level].offset;
    921   }
    922 };
    923 
    924 } // end namespace IntervalMapImpl
    925 
    926 //===----------------------------------------------------------------------===//
    927 //---                          IntervalMap                                ----//
    928 //===----------------------------------------------------------------------===//
    929 
    930 template <typename KeyT, typename ValT,
    931           unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
    932           typename Traits = IntervalMapInfo<KeyT>>
    933 class IntervalMap {
    934   using Sizer = IntervalMapImpl::NodeSizer<KeyT, ValT>;
    935   using Leaf = IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits>;
    936   using Branch =
    937       IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>;
    938   using RootLeaf = IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits>;
    939   using IdxPair = IntervalMapImpl::IdxPair;
    940 
    941   // The RootLeaf capacity is given as a template parameter. We must compute the
    942   // corresponding RootBranch capacity.
    943   enum {
    944     DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
    945       (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
    946     RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
    947   };
    948 
    949   using RootBranch =
    950       IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>;
    951 
    952   // When branched, we store a global start key as well as the branch node.
    953   struct RootBranchData {
    954     KeyT start;
    955     RootBranch node;
    956   };
    957 
    958 public:
    959   using Allocator = typename Sizer::Allocator;
    960   using KeyType = KeyT;
    961   using ValueType = ValT;
    962   using KeyTraits = Traits;
    963 
    964 private:
    965   // The root data is either a RootLeaf or a RootBranchData instance.
    966   AlignedCharArrayUnion<RootLeaf, RootBranchData> data;
    967 
    968   // Tree height.
    969   // 0: Leaves in root.
    970   // 1: Root points to leaf.
    971   // 2: root->branch->leaf ...
    972   unsigned height;
    973 
    974   // Number of entries in the root node.
    975   unsigned rootSize;
    976 
    977   // Allocator used for creating external nodes.
    978   Allocator &allocator;
    979 
    980   /// dataAs - Represent data as a node type without breaking aliasing rules.
    981   template <typename T>
    982   T &dataAs() const {
    983     union {
    984       const char *d;
    985       T *t;
    986     } u;
    987     u.d = data.buffer;
    988     return *u.t;
    989   }
    990 
    991   const RootLeaf &rootLeaf() const {
    992     assert(!branched() && "Cannot acces leaf data in branched root");
    993     return dataAs<RootLeaf>();
    994   }
    995   RootLeaf &rootLeaf() {
    996     assert(!branched() && "Cannot acces leaf data in branched root");
    997     return dataAs<RootLeaf>();
    998   }
    999 
   1000   RootBranchData &rootBranchData() const {
   1001     assert(branched() && "Cannot access branch data in non-branched root");
   1002     return dataAs<RootBranchData>();
   1003   }
   1004   RootBranchData &rootBranchData() {
   1005     assert(branched() && "Cannot access branch data in non-branched root");
   1006     return dataAs<RootBranchData>();
   1007   }
   1008 
   1009   const RootBranch &rootBranch() const { return rootBranchData().node; }
   1010   RootBranch &rootBranch()             { return rootBranchData().node; }
   1011   KeyT rootBranchStart() const { return rootBranchData().start; }
   1012   KeyT &rootBranchStart()      { return rootBranchData().start; }
   1013 
   1014   template <typename NodeT> NodeT *newNode() {
   1015     return new(allocator.template Allocate<NodeT>()) NodeT();
   1016   }
   1017 
   1018   template <typename NodeT> void deleteNode(NodeT *P) {
   1019     P->~NodeT();
   1020     allocator.Deallocate(P);
   1021   }
   1022 
   1023   IdxPair branchRoot(unsigned Position);
   1024   IdxPair splitRoot(unsigned Position);
   1025 
   1026   void switchRootToBranch() {
   1027     rootLeaf().~RootLeaf();
   1028     height = 1;
   1029     new (&rootBranchData()) RootBranchData();
   1030   }
   1031 
   1032   void switchRootToLeaf() {
   1033     rootBranchData().~RootBranchData();
   1034     height = 0;
   1035     new(&rootLeaf()) RootLeaf();
   1036   }
   1037 
   1038   bool branched() const { return height > 0; }
   1039 
   1040   ValT treeSafeLookup(KeyT x, ValT NotFound) const;
   1041   void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
   1042                   unsigned Level));
   1043   void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
   1044 
   1045 public:
   1046   explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
   1047     assert((uintptr_t(data.buffer) & (alignof(RootLeaf) - 1)) == 0 &&
   1048            "Insufficient alignment");
   1049     new(&rootLeaf()) RootLeaf();
   1050   }
   1051 
   1052   ~IntervalMap() {
   1053     clear();
   1054     rootLeaf().~RootLeaf();
   1055   }
   1056 
   1057   /// empty -  Return true when no intervals are mapped.
   1058   bool empty() const {
   1059     return rootSize == 0;
   1060   }
   1061 
   1062   /// start - Return the smallest mapped key in a non-empty map.
   1063   KeyT start() const {
   1064     assert(!empty() && "Empty IntervalMap has no start");
   1065     return !branched() ? rootLeaf().start(0) : rootBranchStart();
   1066   }
   1067 
   1068   /// stop - Return the largest mapped key in a non-empty map.
   1069   KeyT stop() const {
   1070     assert(!empty() && "Empty IntervalMap has no stop");
   1071     return !branched() ? rootLeaf().stop(rootSize - 1) :
   1072                          rootBranch().stop(rootSize - 1);
   1073   }
   1074 
   1075   /// lookup - Return the mapped value at x or NotFound.
   1076   ValT lookup(KeyT x, ValT NotFound = ValT()) const {
   1077     if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
   1078       return NotFound;
   1079     return branched() ? treeSafeLookup(x, NotFound) :
   1080                         rootLeaf().safeLookup(x, NotFound);
   1081   }
   1082 
   1083   /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
   1084   /// It is assumed that no key in the interval is mapped to another value, but
   1085   /// overlapping intervals already mapped to y will be coalesced.
   1086   void insert(KeyT a, KeyT b, ValT y) {
   1087     if (branched() || rootSize == RootLeaf::Capacity)
   1088       return find(a).insert(a, b, y);
   1089 
   1090     // Easy insert into root leaf.
   1091     unsigned p = rootLeaf().findFrom(0, rootSize, a);
   1092     rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
   1093   }
   1094 
   1095   /// clear - Remove all entries.
   1096   void clear();
   1097 
   1098   class const_iterator;
   1099   class iterator;
   1100   friend class const_iterator;
   1101   friend class iterator;
   1102 
   1103   const_iterator begin() const {
   1104     const_iterator I(*this);
   1105     I.goToBegin();
   1106     return I;
   1107   }
   1108 
   1109   iterator begin() {
   1110     iterator I(*this);
   1111     I.goToBegin();
   1112     return I;
   1113   }
   1114 
   1115   const_iterator end() const {
   1116     const_iterator I(*this);
   1117     I.goToEnd();
   1118     return I;
   1119   }
   1120 
   1121   iterator end() {
   1122     iterator I(*this);
   1123     I.goToEnd();
   1124     return I;
   1125   }
   1126 
   1127   /// find - Return an iterator pointing to the first interval ending at or
   1128   /// after x, or end().
   1129   const_iterator find(KeyT x) const {
   1130     const_iterator I(*this);
   1131     I.find(x);
   1132     return I;
   1133   }
   1134 
   1135   iterator find(KeyT x) {
   1136     iterator I(*this);
   1137     I.find(x);
   1138     return I;
   1139   }
   1140 };
   1141 
   1142 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
   1143 /// branched root.
   1144 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1145 ValT IntervalMap<KeyT, ValT, N, Traits>::
   1146 treeSafeLookup(KeyT x, ValT NotFound) const {
   1147   assert(branched() && "treeLookup assumes a branched root");
   1148 
   1149   IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
   1150   for (unsigned h = height-1; h; --h)
   1151     NR = NR.get<Branch>().safeLookup(x);
   1152   return NR.get<Leaf>().safeLookup(x, NotFound);
   1153 }
   1154 
   1155 // branchRoot - Switch from a leaf root to a branched root.
   1156 // Return the new (root offset, node offset) corresponding to Position.
   1157 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1158 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
   1159 branchRoot(unsigned Position) {
   1160   using namespace IntervalMapImpl;
   1161   // How many external leaf nodes to hold RootLeaf+1?
   1162   const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
   1163 
   1164   // Compute element distribution among new nodes.
   1165   unsigned size[Nodes];
   1166   IdxPair NewOffset(0, Position);
   1167 
   1168   // Is is very common for the root node to be smaller than external nodes.
   1169   if (Nodes == 1)
   1170     size[0] = rootSize;
   1171   else
   1172     NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, size,
   1173                            Position, true);
   1174 
   1175   // Allocate new nodes.
   1176   unsigned pos = 0;
   1177   NodeRef node[Nodes];
   1178   for (unsigned n = 0; n != Nodes; ++n) {
   1179     Leaf *L = newNode<Leaf>();
   1180     L->copy(rootLeaf(), pos, 0, size[n]);
   1181     node[n] = NodeRef(L, size[n]);
   1182     pos += size[n];
   1183   }
   1184 
   1185   // Destroy the old leaf node, construct branch node instead.
   1186   switchRootToBranch();
   1187   for (unsigned n = 0; n != Nodes; ++n) {
   1188     rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
   1189     rootBranch().subtree(n) = node[n];
   1190   }
   1191   rootBranchStart() = node[0].template get<Leaf>().start(0);
   1192   rootSize = Nodes;
   1193   return NewOffset;
   1194 }
   1195 
   1196 // splitRoot - Split the current BranchRoot into multiple Branch nodes.
   1197 // Return the new (root offset, node offset) corresponding to Position.
   1198 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1199 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
   1200 splitRoot(unsigned Position) {
   1201   using namespace IntervalMapImpl;
   1202   // How many external leaf nodes to hold RootBranch+1?
   1203   const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
   1204 
   1205   // Compute element distribution among new nodes.
   1206   unsigned Size[Nodes];
   1207   IdxPair NewOffset(0, Position);
   1208 
   1209   // Is is very common for the root node to be smaller than external nodes.
   1210   if (Nodes == 1)
   1211     Size[0] = rootSize;
   1212   else
   1213     NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, Size,
   1214                            Position, true);
   1215 
   1216   // Allocate new nodes.
   1217   unsigned Pos = 0;
   1218   NodeRef Node[Nodes];
   1219   for (unsigned n = 0; n != Nodes; ++n) {
   1220     Branch *B = newNode<Branch>();
   1221     B->copy(rootBranch(), Pos, 0, Size[n]);
   1222     Node[n] = NodeRef(B, Size[n]);
   1223     Pos += Size[n];
   1224   }
   1225 
   1226   for (unsigned n = 0; n != Nodes; ++n) {
   1227     rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
   1228     rootBranch().subtree(n) = Node[n];
   1229   }
   1230   rootSize = Nodes;
   1231   ++height;
   1232   return NewOffset;
   1233 }
   1234 
   1235 /// visitNodes - Visit each external node.
   1236 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1237 void IntervalMap<KeyT, ValT, N, Traits>::
   1238 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
   1239   if (!branched())
   1240     return;
   1241   SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
   1242 
   1243   // Collect level 0 nodes from the root.
   1244   for (unsigned i = 0; i != rootSize; ++i)
   1245     Refs.push_back(rootBranch().subtree(i));
   1246 
   1247   // Visit all branch nodes.
   1248   for (unsigned h = height - 1; h; --h) {
   1249     for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
   1250       for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
   1251         NextRefs.push_back(Refs[i].subtree(j));
   1252       (this->*f)(Refs[i], h);
   1253     }
   1254     Refs.clear();
   1255     Refs.swap(NextRefs);
   1256   }
   1257 
   1258   // Visit all leaf nodes.
   1259   for (unsigned i = 0, e = Refs.size(); i != e; ++i)
   1260     (this->*f)(Refs[i], 0);
   1261 }
   1262 
   1263 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1264 void IntervalMap<KeyT, ValT, N, Traits>::
   1265 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
   1266   if (Level)
   1267     deleteNode(&Node.get<Branch>());
   1268   else
   1269     deleteNode(&Node.get<Leaf>());
   1270 }
   1271 
   1272 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1273 void IntervalMap<KeyT, ValT, N, Traits>::
   1274 clear() {
   1275   if (branched()) {
   1276     visitNodes(&IntervalMap::deleteNode);
   1277     switchRootToLeaf();
   1278   }
   1279   rootSize = 0;
   1280 }
   1281 
   1282 //===----------------------------------------------------------------------===//
   1283 //---                   IntervalMap::const_iterator                       ----//
   1284 //===----------------------------------------------------------------------===//
   1285 
   1286 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1287 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
   1288   public std::iterator<std::bidirectional_iterator_tag, ValT> {
   1289 
   1290 protected:
   1291   friend class IntervalMap;
   1292 
   1293   // The map referred to.
   1294   IntervalMap *map = nullptr;
   1295 
   1296   // We store a full path from the root to the current position.
   1297   // The path may be partially filled, but never between iterator calls.
   1298   IntervalMapImpl::Path path;
   1299 
   1300   explicit const_iterator(const IntervalMap &map) :
   1301     map(const_cast<IntervalMap*>(&map)) {}
   1302 
   1303   bool branched() const {
   1304     assert(map && "Invalid iterator");
   1305     return map->branched();
   1306   }
   1307 
   1308   void setRoot(unsigned Offset) {
   1309     if (branched())
   1310       path.setRoot(&map->rootBranch(), map->rootSize, Offset);
   1311     else
   1312       path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
   1313   }
   1314 
   1315   void pathFillFind(KeyT x);
   1316   void treeFind(KeyT x);
   1317   void treeAdvanceTo(KeyT x);
   1318 
   1319   /// unsafeStart - Writable access to start() for iterator.
   1320   KeyT &unsafeStart() const {
   1321     assert(valid() && "Cannot access invalid iterator");
   1322     return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
   1323                         path.leaf<RootLeaf>().start(path.leafOffset());
   1324   }
   1325 
   1326   /// unsafeStop - Writable access to stop() for iterator.
   1327   KeyT &unsafeStop() const {
   1328     assert(valid() && "Cannot access invalid iterator");
   1329     return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
   1330                         path.leaf<RootLeaf>().stop(path.leafOffset());
   1331   }
   1332 
   1333   /// unsafeValue - Writable access to value() for iterator.
   1334   ValT &unsafeValue() const {
   1335     assert(valid() && "Cannot access invalid iterator");
   1336     return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
   1337                         path.leaf<RootLeaf>().value(path.leafOffset());
   1338   }
   1339 
   1340 public:
   1341   /// const_iterator - Create an iterator that isn't pointing anywhere.
   1342   const_iterator() = default;
   1343 
   1344   /// setMap - Change the map iterated over. This call must be followed by a
   1345   /// call to goToBegin(), goToEnd(), or find()
   1346   void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
   1347 
   1348   /// valid - Return true if the current position is valid, false for end().
   1349   bool valid() const { return path.valid(); }
   1350 
   1351   /// atBegin - Return true if the current position is the first map entry.
   1352   bool atBegin() const { return path.atBegin(); }
   1353 
   1354   /// start - Return the beginning of the current interval.
   1355   const KeyT &start() const { return unsafeStart(); }
   1356 
   1357   /// stop - Return the end of the current interval.
   1358   const KeyT &stop() const { return unsafeStop(); }
   1359 
   1360   /// value - Return the mapped value at the current interval.
   1361   const ValT &value() const { return unsafeValue(); }
   1362 
   1363   const ValT &operator*() const { return value(); }
   1364 
   1365   bool operator==(const const_iterator &RHS) const {
   1366     assert(map == RHS.map && "Cannot compare iterators from different maps");
   1367     if (!valid())
   1368       return !RHS.valid();
   1369     if (path.leafOffset() != RHS.path.leafOffset())
   1370       return false;
   1371     return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
   1372   }
   1373 
   1374   bool operator!=(const const_iterator &RHS) const {
   1375     return !operator==(RHS);
   1376   }
   1377 
   1378   /// goToBegin - Move to the first interval in map.
   1379   void goToBegin() {
   1380     setRoot(0);
   1381     if (branched())
   1382       path.fillLeft(map->height);
   1383   }
   1384 
   1385   /// goToEnd - Move beyond the last interval in map.
   1386   void goToEnd() {
   1387     setRoot(map->rootSize);
   1388   }
   1389 
   1390   /// preincrement - move to the next interval.
   1391   const_iterator &operator++() {
   1392     assert(valid() && "Cannot increment end()");
   1393     if (++path.leafOffset() == path.leafSize() && branched())
   1394       path.moveRight(map->height);
   1395     return *this;
   1396   }
   1397 
   1398   /// postincrement - Dont do that!
   1399   const_iterator operator++(int) {
   1400     const_iterator tmp = *this;
   1401     operator++();
   1402     return tmp;
   1403   }
   1404 
   1405   /// predecrement - move to the previous interval.
   1406   const_iterator &operator--() {
   1407     if (path.leafOffset() && (valid() || !branched()))
   1408       --path.leafOffset();
   1409     else
   1410       path.moveLeft(map->height);
   1411     return *this;
   1412   }
   1413 
   1414   /// postdecrement - Dont do that!
   1415   const_iterator operator--(int) {
   1416     const_iterator tmp = *this;
   1417     operator--();
   1418     return tmp;
   1419   }
   1420 
   1421   /// find - Move to the first interval with stop >= x, or end().
   1422   /// This is a full search from the root, the current position is ignored.
   1423   void find(KeyT x) {
   1424     if (branched())
   1425       treeFind(x);
   1426     else
   1427       setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
   1428   }
   1429 
   1430   /// advanceTo - Move to the first interval with stop >= x, or end().
   1431   /// The search is started from the current position, and no earlier positions
   1432   /// can be found. This is much faster than find() for small moves.
   1433   void advanceTo(KeyT x) {
   1434     if (!valid())
   1435       return;
   1436     if (branched())
   1437       treeAdvanceTo(x);
   1438     else
   1439       path.leafOffset() =
   1440         map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
   1441   }
   1442 };
   1443 
   1444 /// pathFillFind - Complete path by searching for x.
   1445 /// @param x Key to search for.
   1446 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1447 void IntervalMap<KeyT, ValT, N, Traits>::
   1448 const_iterator::pathFillFind(KeyT x) {
   1449   IntervalMapImpl::NodeRef NR = path.subtree(path.height());
   1450   for (unsigned i = map->height - path.height() - 1; i; --i) {
   1451     unsigned p = NR.get<Branch>().safeFind(0, x);
   1452     path.push(NR, p);
   1453     NR = NR.subtree(p);
   1454   }
   1455   path.push(NR, NR.get<Leaf>().safeFind(0, x));
   1456 }
   1457 
   1458 /// treeFind - Find in a branched tree.
   1459 /// @param x Key to search for.
   1460 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1461 void IntervalMap<KeyT, ValT, N, Traits>::
   1462 const_iterator::treeFind(KeyT x) {
   1463   setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
   1464   if (valid())
   1465     pathFillFind(x);
   1466 }
   1467 
   1468 /// treeAdvanceTo - Find position after the current one.
   1469 /// @param x Key to search for.
   1470 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1471 void IntervalMap<KeyT, ValT, N, Traits>::
   1472 const_iterator::treeAdvanceTo(KeyT x) {
   1473   // Can we stay on the same leaf node?
   1474   if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
   1475     path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
   1476     return;
   1477   }
   1478 
   1479   // Drop the current leaf.
   1480   path.pop();
   1481 
   1482   // Search towards the root for a usable subtree.
   1483   if (path.height()) {
   1484     for (unsigned l = path.height() - 1; l; --l) {
   1485       if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
   1486         // The branch node at l+1 is usable
   1487         path.offset(l + 1) =
   1488           path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
   1489         return pathFillFind(x);
   1490       }
   1491       path.pop();
   1492     }
   1493     // Is the level-1 Branch usable?
   1494     if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
   1495       path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
   1496       return pathFillFind(x);
   1497     }
   1498   }
   1499 
   1500   // We reached the root.
   1501   setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
   1502   if (valid())
   1503     pathFillFind(x);
   1504 }
   1505 
   1506 //===----------------------------------------------------------------------===//
   1507 //---                       IntervalMap::iterator                         ----//
   1508 //===----------------------------------------------------------------------===//
   1509 
   1510 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1511 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
   1512   friend class IntervalMap;
   1513 
   1514   using IdxPair = IntervalMapImpl::IdxPair;
   1515 
   1516   explicit iterator(IntervalMap &map) : const_iterator(map) {}
   1517 
   1518   void setNodeStop(unsigned Level, KeyT Stop);
   1519   bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
   1520   template <typename NodeT> bool overflow(unsigned Level);
   1521   void treeInsert(KeyT a, KeyT b, ValT y);
   1522   void eraseNode(unsigned Level);
   1523   void treeErase(bool UpdateRoot = true);
   1524   bool canCoalesceLeft(KeyT Start, ValT x);
   1525   bool canCoalesceRight(KeyT Stop, ValT x);
   1526 
   1527 public:
   1528   /// iterator - Create null iterator.
   1529   iterator() = default;
   1530 
   1531   /// setStart - Move the start of the current interval.
   1532   /// This may cause coalescing with the previous interval.
   1533   /// @param a New start key, must not overlap the previous interval.
   1534   void setStart(KeyT a);
   1535 
   1536   /// setStop - Move the end of the current interval.
   1537   /// This may cause coalescing with the following interval.
   1538   /// @param b New stop key, must not overlap the following interval.
   1539   void setStop(KeyT b);
   1540 
   1541   /// setValue - Change the mapped value of the current interval.
   1542   /// This may cause coalescing with the previous and following intervals.
   1543   /// @param x New value.
   1544   void setValue(ValT x);
   1545 
   1546   /// setStartUnchecked - Move the start of the current interval without
   1547   /// checking for coalescing or overlaps.
   1548   /// This should only be used when it is known that coalescing is not required.
   1549   /// @param a New start key.
   1550   void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
   1551 
   1552   /// setStopUnchecked - Move the end of the current interval without checking
   1553   /// for coalescing or overlaps.
   1554   /// This should only be used when it is known that coalescing is not required.
   1555   /// @param b New stop key.
   1556   void setStopUnchecked(KeyT b) {
   1557     this->unsafeStop() = b;
   1558     // Update keys in branch nodes as well.
   1559     if (this->path.atLastEntry(this->path.height()))
   1560       setNodeStop(this->path.height(), b);
   1561   }
   1562 
   1563   /// setValueUnchecked - Change the mapped value of the current interval
   1564   /// without checking for coalescing.
   1565   /// @param x New value.
   1566   void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
   1567 
   1568   /// insert - Insert mapping [a;b] -> y before the current position.
   1569   void insert(KeyT a, KeyT b, ValT y);
   1570 
   1571   /// erase - Erase the current interval.
   1572   void erase();
   1573 
   1574   iterator &operator++() {
   1575     const_iterator::operator++();
   1576     return *this;
   1577   }
   1578 
   1579   iterator operator++(int) {
   1580     iterator tmp = *this;
   1581     operator++();
   1582     return tmp;
   1583   }
   1584 
   1585   iterator &operator--() {
   1586     const_iterator::operator--();
   1587     return *this;
   1588   }
   1589 
   1590   iterator operator--(int) {
   1591     iterator tmp = *this;
   1592     operator--();
   1593     return tmp;
   1594   }
   1595 };
   1596 
   1597 /// canCoalesceLeft - Can the current interval coalesce to the left after
   1598 /// changing start or value?
   1599 /// @param Start New start of current interval.
   1600 /// @param Value New value for current interval.
   1601 /// @return True when updating the current interval would enable coalescing.
   1602 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1603 bool IntervalMap<KeyT, ValT, N, Traits>::
   1604 iterator::canCoalesceLeft(KeyT Start, ValT Value) {
   1605   using namespace IntervalMapImpl;
   1606   Path &P = this->path;
   1607   if (!this->branched()) {
   1608     unsigned i = P.leafOffset();
   1609     RootLeaf &Node = P.leaf<RootLeaf>();
   1610     return i && Node.value(i-1) == Value &&
   1611                 Traits::adjacent(Node.stop(i-1), Start);
   1612   }
   1613   // Branched.
   1614   if (unsigned i = P.leafOffset()) {
   1615     Leaf &Node = P.leaf<Leaf>();
   1616     return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
   1617   } else if (NodeRef NR = P.getLeftSibling(P.height())) {
   1618     unsigned i = NR.size() - 1;
   1619     Leaf &Node = NR.get<Leaf>();
   1620     return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
   1621   }
   1622   return false;
   1623 }
   1624 
   1625 /// canCoalesceRight - Can the current interval coalesce to the right after
   1626 /// changing stop or value?
   1627 /// @param Stop New stop of current interval.
   1628 /// @param Value New value for current interval.
   1629 /// @return True when updating the current interval would enable coalescing.
   1630 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1631 bool IntervalMap<KeyT, ValT, N, Traits>::
   1632 iterator::canCoalesceRight(KeyT Stop, ValT Value) {
   1633   using namespace IntervalMapImpl;
   1634   Path &P = this->path;
   1635   unsigned i = P.leafOffset() + 1;
   1636   if (!this->branched()) {
   1637     if (i >= P.leafSize())
   1638       return false;
   1639     RootLeaf &Node = P.leaf<RootLeaf>();
   1640     return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
   1641   }
   1642   // Branched.
   1643   if (i < P.leafSize()) {
   1644     Leaf &Node = P.leaf<Leaf>();
   1645     return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
   1646   } else if (NodeRef NR = P.getRightSibling(P.height())) {
   1647     Leaf &Node = NR.get<Leaf>();
   1648     return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
   1649   }
   1650   return false;
   1651 }
   1652 
   1653 /// setNodeStop - Update the stop key of the current node at level and above.
   1654 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1655 void IntervalMap<KeyT, ValT, N, Traits>::
   1656 iterator::setNodeStop(unsigned Level, KeyT Stop) {
   1657   // There are no references to the root node, so nothing to update.
   1658   if (!Level)
   1659     return;
   1660   IntervalMapImpl::Path &P = this->path;
   1661   // Update nodes pointing to the current node.
   1662   while (--Level) {
   1663     P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
   1664     if (!P.atLastEntry(Level))
   1665       return;
   1666   }
   1667   // Update root separately since it has a different layout.
   1668   P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
   1669 }
   1670 
   1671 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1672 void IntervalMap<KeyT, ValT, N, Traits>::
   1673 iterator::setStart(KeyT a) {
   1674   assert(Traits::nonEmpty(a, this->stop()) && "Cannot move start beyond stop");
   1675   KeyT &CurStart = this->unsafeStart();
   1676   if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
   1677     CurStart = a;
   1678     return;
   1679   }
   1680   // Coalesce with the interval to the left.
   1681   --*this;
   1682   a = this->start();
   1683   erase();
   1684   setStartUnchecked(a);
   1685 }
   1686 
   1687 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1688 void IntervalMap<KeyT, ValT, N, Traits>::
   1689 iterator::setStop(KeyT b) {
   1690   assert(Traits::nonEmpty(this->start(), b) && "Cannot move stop beyond start");
   1691   if (Traits::startLess(b, this->stop()) ||
   1692       !canCoalesceRight(b, this->value())) {
   1693     setStopUnchecked(b);
   1694     return;
   1695   }
   1696   // Coalesce with interval to the right.
   1697   KeyT a = this->start();
   1698   erase();
   1699   setStartUnchecked(a);
   1700 }
   1701 
   1702 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1703 void IntervalMap<KeyT, ValT, N, Traits>::
   1704 iterator::setValue(ValT x) {
   1705   setValueUnchecked(x);
   1706   if (canCoalesceRight(this->stop(), x)) {
   1707     KeyT a = this->start();
   1708     erase();
   1709     setStartUnchecked(a);
   1710   }
   1711   if (canCoalesceLeft(this->start(), x)) {
   1712     --*this;
   1713     KeyT a = this->start();
   1714     erase();
   1715     setStartUnchecked(a);
   1716   }
   1717 }
   1718 
   1719 /// insertNode - insert a node before the current path at level.
   1720 /// Leave the current path pointing at the new node.
   1721 /// @param Level path index of the node to be inserted.
   1722 /// @param Node The node to be inserted.
   1723 /// @param Stop The last index in the new node.
   1724 /// @return True if the tree height was increased.
   1725 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1726 bool IntervalMap<KeyT, ValT, N, Traits>::
   1727 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
   1728   assert(Level && "Cannot insert next to the root");
   1729   bool SplitRoot = false;
   1730   IntervalMap &IM = *this->map;
   1731   IntervalMapImpl::Path &P = this->path;
   1732 
   1733   if (Level == 1) {
   1734     // Insert into the root branch node.
   1735     if (IM.rootSize < RootBranch::Capacity) {
   1736       IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
   1737       P.setSize(0, ++IM.rootSize);
   1738       P.reset(Level);
   1739       return SplitRoot;
   1740     }
   1741 
   1742     // We need to split the root while keeping our position.
   1743     SplitRoot = true;
   1744     IdxPair Offset = IM.splitRoot(P.offset(0));
   1745     P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
   1746 
   1747     // Fall through to insert at the new higher level.
   1748     ++Level;
   1749   }
   1750 
   1751   // When inserting before end(), make sure we have a valid path.
   1752   P.legalizeForInsert(--Level);
   1753 
   1754   // Insert into the branch node at Level-1.
   1755   if (P.size(Level) == Branch::Capacity) {
   1756     // Branch node is full, handle handle the overflow.
   1757     assert(!SplitRoot && "Cannot overflow after splitting the root");
   1758     SplitRoot = overflow<Branch>(Level);
   1759     Level += SplitRoot;
   1760   }
   1761   P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
   1762   P.setSize(Level, P.size(Level) + 1);
   1763   if (P.atLastEntry(Level))
   1764     setNodeStop(Level, Stop);
   1765   P.reset(Level + 1);
   1766   return SplitRoot;
   1767 }
   1768 
   1769 // insert
   1770 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1771 void IntervalMap<KeyT, ValT, N, Traits>::
   1772 iterator::insert(KeyT a, KeyT b, ValT y) {
   1773   if (this->branched())
   1774     return treeInsert(a, b, y);
   1775   IntervalMap &IM = *this->map;
   1776   IntervalMapImpl::Path &P = this->path;
   1777 
   1778   // Try simple root leaf insert.
   1779   unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
   1780 
   1781   // Was the root node insert successful?
   1782   if (Size <= RootLeaf::Capacity) {
   1783     P.setSize(0, IM.rootSize = Size);
   1784     return;
   1785   }
   1786 
   1787   // Root leaf node is full, we must branch.
   1788   IdxPair Offset = IM.branchRoot(P.leafOffset());
   1789   P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
   1790 
   1791   // Now it fits in the new leaf.
   1792   treeInsert(a, b, y);
   1793 }
   1794 
   1795 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1796 void IntervalMap<KeyT, ValT, N, Traits>::
   1797 iterator::treeInsert(KeyT a, KeyT b, ValT y) {
   1798   using namespace IntervalMapImpl;
   1799   Path &P = this->path;
   1800 
   1801   if (!P.valid())
   1802     P.legalizeForInsert(this->map->height);
   1803 
   1804   // Check if this insertion will extend the node to the left.
   1805   if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
   1806     // Node is growing to the left, will it affect a left sibling node?
   1807     if (NodeRef Sib = P.getLeftSibling(P.height())) {
   1808       Leaf &SibLeaf = Sib.get<Leaf>();
   1809       unsigned SibOfs = Sib.size() - 1;
   1810       if (SibLeaf.value(SibOfs) == y &&
   1811           Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
   1812         // This insertion will coalesce with the last entry in SibLeaf. We can
   1813         // handle it in two ways:
   1814         //  1. Extend SibLeaf.stop to b and be done, or
   1815         //  2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
   1816         // We prefer 1., but need 2 when coalescing to the right as well.
   1817         Leaf &CurLeaf = P.leaf<Leaf>();
   1818         P.moveLeft(P.height());
   1819         if (Traits::stopLess(b, CurLeaf.start(0)) &&
   1820             (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
   1821           // Easy, just extend SibLeaf and we're done.
   1822           setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
   1823           return;
   1824         } else {
   1825           // We have both left and right coalescing. Erase the old SibLeaf entry
   1826           // and continue inserting the larger interval.
   1827           a = SibLeaf.start(SibOfs);
   1828           treeErase(/* UpdateRoot= */false);
   1829         }
   1830       }
   1831     } else {
   1832       // No left sibling means we are at begin(). Update cached bound.
   1833       this->map->rootBranchStart() = a;
   1834     }
   1835   }
   1836 
   1837   // When we are inserting at the end of a leaf node, we must update stops.
   1838   unsigned Size = P.leafSize();
   1839   bool Grow = P.leafOffset() == Size;
   1840   Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
   1841 
   1842   // Leaf insertion unsuccessful? Overflow and try again.
   1843   if (Size > Leaf::Capacity) {
   1844     overflow<Leaf>(P.height());
   1845     Grow = P.leafOffset() == P.leafSize();
   1846     Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
   1847     assert(Size <= Leaf::Capacity && "overflow() didn't make room");
   1848   }
   1849 
   1850   // Inserted, update offset and leaf size.
   1851   P.setSize(P.height(), Size);
   1852 
   1853   // Insert was the last node entry, update stops.
   1854   if (Grow)
   1855     setNodeStop(P.height(), b);
   1856 }
   1857 
   1858 /// erase - erase the current interval and move to the next position.
   1859 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1860 void IntervalMap<KeyT, ValT, N, Traits>::
   1861 iterator::erase() {
   1862   IntervalMap &IM = *this->map;
   1863   IntervalMapImpl::Path &P = this->path;
   1864   assert(P.valid() && "Cannot erase end()");
   1865   if (this->branched())
   1866     return treeErase();
   1867   IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
   1868   P.setSize(0, --IM.rootSize);
   1869 }
   1870 
   1871 /// treeErase - erase() for a branched tree.
   1872 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1873 void IntervalMap<KeyT, ValT, N, Traits>::
   1874 iterator::treeErase(bool UpdateRoot) {
   1875   IntervalMap &IM = *this->map;
   1876   IntervalMapImpl::Path &P = this->path;
   1877   Leaf &Node = P.leaf<Leaf>();
   1878 
   1879   // Nodes are not allowed to become empty.
   1880   if (P.leafSize() == 1) {
   1881     IM.deleteNode(&Node);
   1882     eraseNode(IM.height);
   1883     // Update rootBranchStart if we erased begin().
   1884     if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
   1885       IM.rootBranchStart() = P.leaf<Leaf>().start(0);
   1886     return;
   1887   }
   1888 
   1889   // Erase current entry.
   1890   Node.erase(P.leafOffset(), P.leafSize());
   1891   unsigned NewSize = P.leafSize() - 1;
   1892   P.setSize(IM.height, NewSize);
   1893   // When we erase the last entry, update stop and move to a legal position.
   1894   if (P.leafOffset() == NewSize) {
   1895     setNodeStop(IM.height, Node.stop(NewSize - 1));
   1896     P.moveRight(IM.height);
   1897   } else if (UpdateRoot && P.atBegin())
   1898     IM.rootBranchStart() = P.leaf<Leaf>().start(0);
   1899 }
   1900 
   1901 /// eraseNode - Erase the current node at Level from its parent and move path to
   1902 /// the first entry of the next sibling node.
   1903 /// The node must be deallocated by the caller.
   1904 /// @param Level 1..height, the root node cannot be erased.
   1905 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1906 void IntervalMap<KeyT, ValT, N, Traits>::
   1907 iterator::eraseNode(unsigned Level) {
   1908   assert(Level && "Cannot erase root node");
   1909   IntervalMap &IM = *this->map;
   1910   IntervalMapImpl::Path &P = this->path;
   1911 
   1912   if (--Level == 0) {
   1913     IM.rootBranch().erase(P.offset(0), IM.rootSize);
   1914     P.setSize(0, --IM.rootSize);
   1915     // If this cleared the root, switch to height=0.
   1916     if (IM.empty()) {
   1917       IM.switchRootToLeaf();
   1918       this->setRoot(0);
   1919       return;
   1920     }
   1921   } else {
   1922     // Remove node ref from branch node at Level.
   1923     Branch &Parent = P.node<Branch>(Level);
   1924     if (P.size(Level) == 1) {
   1925       // Branch node became empty, remove it recursively.
   1926       IM.deleteNode(&Parent);
   1927       eraseNode(Level);
   1928     } else {
   1929       // Branch node won't become empty.
   1930       Parent.erase(P.offset(Level), P.size(Level));
   1931       unsigned NewSize = P.size(Level) - 1;
   1932       P.setSize(Level, NewSize);
   1933       // If we removed the last branch, update stop and move to a legal pos.
   1934       if (P.offset(Level) == NewSize) {
   1935         setNodeStop(Level, Parent.stop(NewSize - 1));
   1936         P.moveRight(Level);
   1937       }
   1938     }
   1939   }
   1940   // Update path cache for the new right sibling position.
   1941   if (P.valid()) {
   1942     P.reset(Level + 1);
   1943     P.offset(Level + 1) = 0;
   1944   }
   1945 }
   1946 
   1947 /// overflow - Distribute entries of the current node evenly among
   1948 /// its siblings and ensure that the current node is not full.
   1949 /// This may require allocating a new node.
   1950 /// @tparam NodeT The type of node at Level (Leaf or Branch).
   1951 /// @param Level path index of the overflowing node.
   1952 /// @return True when the tree height was changed.
   1953 template <typename KeyT, typename ValT, unsigned N, typename Traits>
   1954 template <typename NodeT>
   1955 bool IntervalMap<KeyT, ValT, N, Traits>::
   1956 iterator::overflow(unsigned Level) {
   1957   using namespace IntervalMapImpl;
   1958   Path &P = this->path;
   1959   unsigned CurSize[4];
   1960   NodeT *Node[4];
   1961   unsigned Nodes = 0;
   1962   unsigned Elements = 0;
   1963   unsigned Offset = P.offset(Level);
   1964 
   1965   // Do we have a left sibling?
   1966   NodeRef LeftSib = P.getLeftSibling(Level);
   1967   if (LeftSib) {
   1968     Offset += Elements = CurSize[Nodes] = LeftSib.size();
   1969     Node[Nodes++] = &LeftSib.get<NodeT>();
   1970   }
   1971 
   1972   // Current node.
   1973   Elements += CurSize[Nodes] = P.size(Level);
   1974   Node[Nodes++] = &P.node<NodeT>(Level);
   1975 
   1976   // Do we have a right sibling?
   1977   NodeRef RightSib = P.getRightSibling(Level);
   1978   if (RightSib) {
   1979     Elements += CurSize[Nodes] = RightSib.size();
   1980     Node[Nodes++] = &RightSib.get<NodeT>();
   1981   }
   1982 
   1983   // Do we need to allocate a new node?
   1984   unsigned NewNode = 0;
   1985   if (Elements + 1 > Nodes * NodeT::Capacity) {
   1986     // Insert NewNode at the penultimate position, or after a single node.
   1987     NewNode = Nodes == 1 ? 1 : Nodes - 1;
   1988     CurSize[Nodes] = CurSize[NewNode];
   1989     Node[Nodes] = Node[NewNode];
   1990     CurSize[NewNode] = 0;
   1991     Node[NewNode] = this->map->template newNode<NodeT>();
   1992     ++Nodes;
   1993   }
   1994 
   1995   // Compute the new element distribution.
   1996   unsigned NewSize[4];
   1997   IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
   1998                                  CurSize, NewSize, Offset, true);
   1999   adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
   2000 
   2001   // Move current location to the leftmost node.
   2002   if (LeftSib)
   2003     P.moveLeft(Level);
   2004 
   2005   // Elements have been rearranged, now update node sizes and stops.
   2006   bool SplitRoot = false;
   2007   unsigned Pos = 0;
   2008   while (true) {
   2009     KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
   2010     if (NewNode && Pos == NewNode) {
   2011       SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
   2012       Level += SplitRoot;
   2013     } else {
   2014       P.setSize(Level, NewSize[Pos]);
   2015       setNodeStop(Level, Stop);
   2016     }
   2017     if (Pos + 1 == Nodes)
   2018       break;
   2019     P.moveRight(Level);
   2020     ++Pos;
   2021   }
   2022 
   2023   // Where was I? Find NewOffset.
   2024   while(Pos != NewOffset.first) {
   2025     P.moveLeft(Level);
   2026     --Pos;
   2027   }
   2028   P.offset(Level) = NewOffset.second;
   2029   return SplitRoot;
   2030 }
   2031 
   2032 //===----------------------------------------------------------------------===//
   2033 //---                       IntervalMapOverlaps                           ----//
   2034 //===----------------------------------------------------------------------===//
   2035 
   2036 /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
   2037 /// IntervalMaps. The maps may be different, but the KeyT and Traits types
   2038 /// should be the same.
   2039 ///
   2040 /// Typical uses:
   2041 ///
   2042 /// 1. Test for overlap:
   2043 ///    bool overlap = IntervalMapOverlaps(a, b).valid();
   2044 ///
   2045 /// 2. Enumerate overlaps:
   2046 ///    for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
   2047 ///
   2048 template <typename MapA, typename MapB>
   2049 class IntervalMapOverlaps {
   2050   using KeyType = typename MapA::KeyType;
   2051   using Traits = typename MapA::KeyTraits;
   2052 
   2053   typename MapA::const_iterator posA;
   2054   typename MapB::const_iterator posB;
   2055 
   2056   /// advance - Move posA and posB forward until reaching an overlap, or until
   2057   /// either meets end.
   2058   /// Don't move the iterators if they are already overlapping.
   2059   void advance() {
   2060     if (!valid())
   2061       return;
   2062 
   2063     if (Traits::stopLess(posA.stop(), posB.start())) {
   2064       // A ends before B begins. Catch up.
   2065       posA.advanceTo(posB.start());
   2066       if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
   2067         return;
   2068     } else if (Traits::stopLess(posB.stop(), posA.start())) {
   2069       // B ends before A begins. Catch up.
   2070       posB.advanceTo(posA.start());
   2071       if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
   2072         return;
   2073     } else
   2074       // Already overlapping.
   2075       return;
   2076 
   2077     while (true) {
   2078       // Make a.end > b.start.
   2079       posA.advanceTo(posB.start());
   2080       if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
   2081         return;
   2082       // Make b.end > a.start.
   2083       posB.advanceTo(posA.start());
   2084       if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
   2085         return;
   2086     }
   2087   }
   2088 
   2089 public:
   2090   /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
   2091   IntervalMapOverlaps(const MapA &a, const MapB &b)
   2092     : posA(b.empty() ? a.end() : a.find(b.start())),
   2093       posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
   2094 
   2095   /// valid - Return true if iterator is at an overlap.
   2096   bool valid() const {
   2097     return posA.valid() && posB.valid();
   2098   }
   2099 
   2100   /// a - access the left hand side in the overlap.
   2101   const typename MapA::const_iterator &a() const { return posA; }
   2102 
   2103   /// b - access the right hand side in the overlap.
   2104   const typename MapB::const_iterator &b() const { return posB; }
   2105 
   2106   /// start - Beginning of the overlapping interval.
   2107   KeyType start() const {
   2108     KeyType ak = a().start();
   2109     KeyType bk = b().start();
   2110     return Traits::startLess(ak, bk) ? bk : ak;
   2111   }
   2112 
   2113   /// stop - End of the overlapping interval.
   2114   KeyType stop() const {
   2115     KeyType ak = a().stop();
   2116     KeyType bk = b().stop();
   2117     return Traits::startLess(ak, bk) ? ak : bk;
   2118   }
   2119 
   2120   /// skipA - Move to the next overlap that doesn't involve a().
   2121   void skipA() {
   2122     ++posA;
   2123     advance();
   2124   }
   2125 
   2126   /// skipB - Move to the next overlap that doesn't involve b().
   2127   void skipB() {
   2128     ++posB;
   2129     advance();
   2130   }
   2131 
   2132   /// Preincrement - Move to the next overlap.
   2133   IntervalMapOverlaps &operator++() {
   2134     // Bump the iterator that ends first. The other one may have more overlaps.
   2135     if (Traits::startLess(posB.stop(), posA.stop()))
   2136       skipB();
   2137     else
   2138       skipA();
   2139     return *this;
   2140   }
   2141 
   2142   /// advanceTo - Move to the first overlapping interval with
   2143   /// stopLess(x, stop()).
   2144   void advanceTo(KeyType x) {
   2145     if (!valid())
   2146       return;
   2147     // Make sure advanceTo sees monotonic keys.
   2148     if (Traits::stopLess(posA.stop(), x))
   2149       posA.advanceTo(x);
   2150     if (Traits::stopLess(posB.stop(), x))
   2151       posB.advanceTo(x);
   2152     advance();
   2153   }
   2154 };
   2155 
   2156 } // end namespace llvm
   2157 
   2158 #endif // LLVM_ADT_INTERVALMAP_H
   2159