Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains routines that help analyze properties that chains of
     11 // computations have.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_VALUETRACKING_H
     16 #define LLVM_ANALYSIS_VALUETRACKING_H
     17 
     18 #include "llvm/ADT/ArrayRef.h"
     19 #include "llvm/ADT/Optional.h"
     20 #include "llvm/IR/CallSite.h"
     21 #include "llvm/IR/Constants.h"
     22 #include "llvm/IR/Instruction.h"
     23 #include "llvm/IR/Intrinsics.h"
     24 #include <cassert>
     25 #include <cstdint>
     26 
     27 namespace llvm {
     28 
     29 class AddOperator;
     30 class APInt;
     31 class AssumptionCache;
     32 class DataLayout;
     33 class DominatorTree;
     34 class GEPOperator;
     35 class IntrinsicInst;
     36 struct KnownBits;
     37 class Loop;
     38 class LoopInfo;
     39 class MDNode;
     40 class OptimizationRemarkEmitter;
     41 class StringRef;
     42 class TargetLibraryInfo;
     43 class Value;
     44 
     45   /// Determine which bits of V are known to be either zero or one and return
     46   /// them in the KnownZero/KnownOne bit sets.
     47   ///
     48   /// This function is defined on values with integer type, values with pointer
     49   /// type, and vectors of integers.  In the case
     50   /// where V is a vector, the known zero and known one values are the
     51   /// same width as the vector element, and the bit is set only if it is true
     52   /// for all of the elements in the vector.
     53   void computeKnownBits(const Value *V, KnownBits &Known,
     54                         const DataLayout &DL, unsigned Depth = 0,
     55                         AssumptionCache *AC = nullptr,
     56                         const Instruction *CxtI = nullptr,
     57                         const DominatorTree *DT = nullptr,
     58                         OptimizationRemarkEmitter *ORE = nullptr);
     59 
     60   /// Returns the known bits rather than passing by reference.
     61   KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
     62                              unsigned Depth = 0, AssumptionCache *AC = nullptr,
     63                              const Instruction *CxtI = nullptr,
     64                              const DominatorTree *DT = nullptr,
     65                              OptimizationRemarkEmitter *ORE = nullptr);
     66 
     67   /// Compute known bits from the range metadata.
     68   /// \p KnownZero the set of bits that are known to be zero
     69   /// \p KnownOne the set of bits that are known to be one
     70   void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
     71                                          KnownBits &Known);
     72 
     73   /// Return true if LHS and RHS have no common bits set.
     74   bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
     75                            const DataLayout &DL,
     76                            AssumptionCache *AC = nullptr,
     77                            const Instruction *CxtI = nullptr,
     78                            const DominatorTree *DT = nullptr);
     79 
     80   /// Return true if the given value is known to have exactly one bit set when
     81   /// defined. For vectors return true if every element is known to be a power
     82   /// of two when defined. Supports values with integer or pointer type and
     83   /// vectors of integers. If 'OrZero' is set, then return true if the given
     84   /// value is either a power of two or zero.
     85   bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
     86                               bool OrZero = false, unsigned Depth = 0,
     87                               AssumptionCache *AC = nullptr,
     88                               const Instruction *CxtI = nullptr,
     89                               const DominatorTree *DT = nullptr);
     90 
     91   bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
     92 
     93   /// Return true if the given value is known to be non-zero when defined. For
     94   /// vectors, return true if every element is known to be non-zero when
     95   /// defined. For pointers, if the context instruction and dominator tree are
     96   /// specified, perform context-sensitive analysis and return true if the
     97   /// pointer couldn't possibly be null at the specified instruction.
     98   /// Supports values with integer or pointer type and vectors of integers.
     99   bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0,
    100                       AssumptionCache *AC = nullptr,
    101                       const Instruction *CxtI = nullptr,
    102                       const DominatorTree *DT = nullptr);
    103 
    104   /// Returns true if the give value is known to be non-negative.
    105   bool isKnownNonNegative(const Value *V, const DataLayout &DL,
    106                           unsigned Depth = 0,
    107                           AssumptionCache *AC = nullptr,
    108                           const Instruction *CxtI = nullptr,
    109                           const DominatorTree *DT = nullptr);
    110 
    111   /// Returns true if the given value is known be positive (i.e. non-negative
    112   /// and non-zero).
    113   bool isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth = 0,
    114                        AssumptionCache *AC = nullptr,
    115                        const Instruction *CxtI = nullptr,
    116                        const DominatorTree *DT = nullptr);
    117 
    118   /// Returns true if the given value is known be negative (i.e. non-positive
    119   /// and non-zero).
    120   bool isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth = 0,
    121                        AssumptionCache *AC = nullptr,
    122                        const Instruction *CxtI = nullptr,
    123                        const DominatorTree *DT = nullptr);
    124 
    125   /// Return true if the given values are known to be non-equal when defined.
    126   /// Supports scalar integer types only.
    127   bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
    128                       AssumptionCache *AC = nullptr,
    129                       const Instruction *CxtI = nullptr,
    130                       const DominatorTree *DT = nullptr);
    131 
    132   /// Return true if 'V & Mask' is known to be zero. We use this predicate to
    133   /// simplify operations downstream. Mask is known to be zero for bits that V
    134   /// cannot have.
    135   ///
    136   /// This function is defined on values with integer type, values with pointer
    137   /// type, and vectors of integers.  In the case
    138   /// where V is a vector, the mask, known zero, and known one values are the
    139   /// same width as the vector element, and the bit is set only if it is true
    140   /// for all of the elements in the vector.
    141   bool MaskedValueIsZero(const Value *V, const APInt &Mask,
    142                          const DataLayout &DL,
    143                          unsigned Depth = 0, AssumptionCache *AC = nullptr,
    144                          const Instruction *CxtI = nullptr,
    145                          const DominatorTree *DT = nullptr);
    146 
    147   /// Return the number of times the sign bit of the register is replicated into
    148   /// the other bits. We know that at least 1 bit is always equal to the sign
    149   /// bit (itself), but other cases can give us information. For example,
    150   /// immediately after an "ashr X, 2", we know that the top 3 bits are all
    151   /// equal to each other, so we return 3. For vectors, return the number of
    152   /// sign bits for the vector element with the mininum number of known sign
    153   /// bits.
    154   unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
    155                               unsigned Depth = 0, AssumptionCache *AC = nullptr,
    156                               const Instruction *CxtI = nullptr,
    157                               const DominatorTree *DT = nullptr);
    158 
    159   /// This function computes the integer multiple of Base that equals V. If
    160   /// successful, it returns true and returns the multiple in Multiple. If
    161   /// unsuccessful, it returns false. Also, if V can be simplified to an
    162   /// integer, then the simplified V is returned in Val. Look through sext only
    163   /// if LookThroughSExt=true.
    164   bool ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
    165                        bool LookThroughSExt = false,
    166                        unsigned Depth = 0);
    167 
    168   /// Map a call instruction to an intrinsic ID.  Libcalls which have equivalent
    169   /// intrinsics are treated as-if they were intrinsics.
    170   Intrinsic::ID getIntrinsicForCallSite(ImmutableCallSite ICS,
    171                                         const TargetLibraryInfo *TLI);
    172 
    173   /// Return true if we can prove that the specified FP value is never equal to
    174   /// -0.0.
    175   bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
    176                             unsigned Depth = 0);
    177 
    178   /// Return true if we can prove that the specified FP value is either NaN or
    179   /// never less than -0.0.
    180   ///
    181   ///      NaN --> true
    182   ///       +0 --> true
    183   ///       -0 --> true
    184   ///   x > +0 --> true
    185   ///   x < -0 --> false
    186   bool CannotBeOrderedLessThanZero(const Value *V, const TargetLibraryInfo *TLI);
    187 
    188   /// Return true if the floating-point scalar value is not a NaN or if the
    189   /// floating-point vector value has no NaN elements. Return false if a value
    190   /// could ever be NaN.
    191   bool isKnownNeverNaN(const Value *V);
    192 
    193   /// Return true if we can prove that the specified FP value's sign bit is 0.
    194   ///
    195   ///      NaN --> true/false (depending on the NaN's sign bit)
    196   ///       +0 --> true
    197   ///       -0 --> false
    198   ///   x > +0 --> true
    199   ///   x < -0 --> false
    200   bool SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI);
    201 
    202   /// If the specified value can be set by repeating the same byte in memory,
    203   /// return the i8 value that it is represented with. This is true for all i8
    204   /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
    205   /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
    206   /// i16 0x1234), return null.
    207   Value *isBytewiseValue(Value *V);
    208 
    209   /// Given an aggregrate and an sequence of indices, see if the scalar value
    210   /// indexed is already around as a register, for example if it were inserted
    211   /// directly into the aggregrate.
    212   ///
    213   /// If InsertBefore is not null, this function will duplicate (modified)
    214   /// insertvalues when a part of a nested struct is extracted.
    215   Value *FindInsertedValue(Value *V,
    216                            ArrayRef<unsigned> idx_range,
    217                            Instruction *InsertBefore = nullptr);
    218 
    219   /// Analyze the specified pointer to see if it can be expressed as a base
    220   /// pointer plus a constant offset. Return the base and offset to the caller.
    221   Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
    222                                           const DataLayout &DL);
    223   static inline const Value *
    224   GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
    225                                    const DataLayout &DL) {
    226     return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset,
    227                                             DL);
    228   }
    229 
    230   /// Returns true if the GEP is based on a pointer to a string (array of
    231   // \p CharSize integers) and is indexing into this string.
    232   bool isGEPBasedOnPointerToString(const GEPOperator *GEP,
    233                                    unsigned CharSize = 8);
    234 
    235   /// Represents offset+length into a ConstantDataArray.
    236   struct ConstantDataArraySlice {
    237     /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
    238     /// initializer, it just doesn't fit the ConstantDataArray interface).
    239     const ConstantDataArray *Array;
    240 
    241     /// Slice starts at this Offset.
    242     uint64_t Offset;
    243 
    244     /// Length of the slice.
    245     uint64_t Length;
    246 
    247     /// Moves the Offset and adjusts Length accordingly.
    248     void move(uint64_t Delta) {
    249       assert(Delta < Length);
    250       Offset += Delta;
    251       Length -= Delta;
    252     }
    253 
    254     /// Convenience accessor for elements in the slice.
    255     uint64_t operator[](unsigned I) const {
    256       return Array==nullptr ? 0 : Array->getElementAsInteger(I + Offset);
    257     }
    258   };
    259 
    260   /// Returns true if the value \p V is a pointer into a ConstantDataArray.
    261   /// If successful \p Slice will point to a ConstantDataArray info object
    262   /// with an appropriate offset.
    263   bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
    264                                 unsigned ElementSize, uint64_t Offset = 0);
    265 
    266   /// This function computes the length of a null-terminated C string pointed to
    267   /// by V. If successful, it returns true and returns the string in Str. If
    268   /// unsuccessful, it returns false. This does not include the trailing null
    269   /// character by default. If TrimAtNul is set to false, then this returns any
    270   /// trailing null characters as well as any other characters that come after
    271   /// it.
    272   bool getConstantStringInfo(const Value *V, StringRef &Str,
    273                              uint64_t Offset = 0, bool TrimAtNul = true);
    274 
    275   /// If we can compute the length of the string pointed to by the specified
    276   /// pointer, return 'len+1'.  If we can't, return 0.
    277   uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
    278 
    279   /// This method strips off any GEP address adjustments and pointer casts from
    280   /// the specified value, returning the original object being addressed. Note
    281   /// that the returned value has pointer type if the specified value does. If
    282   /// the MaxLookup value is non-zero, it limits the number of instructions to
    283   /// be stripped off.
    284   Value *GetUnderlyingObject(Value *V, const DataLayout &DL,
    285                              unsigned MaxLookup = 6);
    286   static inline const Value *GetUnderlyingObject(const Value *V,
    287                                                  const DataLayout &DL,
    288                                                  unsigned MaxLookup = 6) {
    289     return GetUnderlyingObject(const_cast<Value *>(V), DL, MaxLookup);
    290   }
    291 
    292   /// \brief This method is similar to GetUnderlyingObject except that it can
    293   /// look through phi and select instructions and return multiple objects.
    294   ///
    295   /// If LoopInfo is passed, loop phis are further analyzed.  If a pointer
    296   /// accesses different objects in each iteration, we don't look through the
    297   /// phi node. E.g. consider this loop nest:
    298   ///
    299   ///   int **A;
    300   ///   for (i)
    301   ///     for (j) {
    302   ///        A[i][j] = A[i-1][j] * B[j]
    303   ///     }
    304   ///
    305   /// This is transformed by Load-PRE to stash away A[i] for the next iteration
    306   /// of the outer loop:
    307   ///
    308   ///   Curr = A[0];          // Prev_0
    309   ///   for (i: 1..N) {
    310   ///     Prev = Curr;        // Prev = PHI (Prev_0, Curr)
    311   ///     Curr = A[i];
    312   ///     for (j: 0..N) {
    313   ///        Curr[j] = Prev[j] * B[j]
    314   ///     }
    315   ///   }
    316   ///
    317   /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
    318   /// should not assume that Curr and Prev share the same underlying object thus
    319   /// it shouldn't look through the phi above.
    320   void GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
    321                             const DataLayout &DL, LoopInfo *LI = nullptr,
    322                             unsigned MaxLookup = 6);
    323 
    324   /// This is a wrapper around GetUnderlyingObjects and adds support for basic
    325   /// ptrtoint+arithmetic+inttoptr sequences.
    326   bool getUnderlyingObjectsForCodeGen(const Value *V,
    327                             SmallVectorImpl<Value *> &Objects,
    328                             const DataLayout &DL);
    329 
    330   /// Return true if the only users of this pointer are lifetime markers.
    331   bool onlyUsedByLifetimeMarkers(const Value *V);
    332 
    333   /// Return true if the instruction does not have any effects besides
    334   /// calculating the result and does not have undefined behavior.
    335   ///
    336   /// This method never returns true for an instruction that returns true for
    337   /// mayHaveSideEffects; however, this method also does some other checks in
    338   /// addition. It checks for undefined behavior, like dividing by zero or
    339   /// loading from an invalid pointer (but not for undefined results, like a
    340   /// shift with a shift amount larger than the width of the result). It checks
    341   /// for malloc and alloca because speculatively executing them might cause a
    342   /// memory leak. It also returns false for instructions related to control
    343   /// flow, specifically terminators and PHI nodes.
    344   ///
    345   /// If the CtxI is specified this method performs context-sensitive analysis
    346   /// and returns true if it is safe to execute the instruction immediately
    347   /// before the CtxI.
    348   ///
    349   /// If the CtxI is NOT specified this method only looks at the instruction
    350   /// itself and its operands, so if this method returns true, it is safe to
    351   /// move the instruction as long as the correct dominance relationships for
    352   /// the operands and users hold.
    353   ///
    354   /// This method can return true for instructions that read memory;
    355   /// for such instructions, moving them may change the resulting value.
    356   bool isSafeToSpeculativelyExecute(const Value *V,
    357                                     const Instruction *CtxI = nullptr,
    358                                     const DominatorTree *DT = nullptr);
    359 
    360   /// Returns true if the result or effects of the given instructions \p I
    361   /// depend on or influence global memory.
    362   /// Memory dependence arises for example if the instruction reads from
    363   /// memory or may produce effects or undefined behaviour. Memory dependent
    364   /// instructions generally cannot be reorderd with respect to other memory
    365   /// dependent instructions or moved into non-dominated basic blocks.
    366   /// Instructions which just compute a value based on the values of their
    367   /// operands are not memory dependent.
    368   bool mayBeMemoryDependent(const Instruction &I);
    369 
    370   /// Return true if it is valid to use the assumptions provided by an
    371   /// assume intrinsic, I, at the point in the control-flow identified by the
    372   /// context instruction, CxtI.
    373   bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
    374                                const DominatorTree *DT = nullptr);
    375 
    376   enum class OverflowResult { AlwaysOverflows, MayOverflow, NeverOverflows };
    377 
    378   OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
    379                                                const Value *RHS,
    380                                                const DataLayout &DL,
    381                                                AssumptionCache *AC,
    382                                                const Instruction *CxtI,
    383                                                const DominatorTree *DT);
    384   OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
    385                                                const Value *RHS,
    386                                                const DataLayout &DL,
    387                                                AssumptionCache *AC,
    388                                                const Instruction *CxtI,
    389                                                const DominatorTree *DT);
    390   OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS,
    391                                              const DataLayout &DL,
    392                                              AssumptionCache *AC = nullptr,
    393                                              const Instruction *CxtI = nullptr,
    394                                              const DominatorTree *DT = nullptr);
    395   /// This version also leverages the sign bit of Add if known.
    396   OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
    397                                              const DataLayout &DL,
    398                                              AssumptionCache *AC = nullptr,
    399                                              const Instruction *CxtI = nullptr,
    400                                              const DominatorTree *DT = nullptr);
    401 
    402   /// Returns true if the arithmetic part of the \p II 's result is
    403   /// used only along the paths control dependent on the computation
    404   /// not overflowing, \p II being an <op>.with.overflow intrinsic.
    405   bool isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
    406                                  const DominatorTree &DT);
    407 
    408   /// Return true if this function can prove that the instruction I will
    409   /// always transfer execution to one of its successors (including the next
    410   /// instruction that follows within a basic block). E.g. this is not
    411   /// guaranteed for function calls that could loop infinitely.
    412   ///
    413   /// In other words, this function returns false for instructions that may
    414   /// transfer execution or fail to transfer execution in a way that is not
    415   /// captured in the CFG nor in the sequence of instructions within a basic
    416   /// block.
    417   ///
    418   /// Undefined behavior is assumed not to happen, so e.g. division is
    419   /// guaranteed to transfer execution to the following instruction even
    420   /// though division by zero might cause undefined behavior.
    421   bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
    422 
    423   /// Return true if this function can prove that the instruction I
    424   /// is executed for every iteration of the loop L.
    425   ///
    426   /// Note that this currently only considers the loop header.
    427   bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
    428                                               const Loop *L);
    429 
    430   /// Return true if this function can prove that I is guaranteed to yield
    431   /// full-poison (all bits poison) if at least one of its operands are
    432   /// full-poison (all bits poison).
    433   ///
    434   /// The exact rules for how poison propagates through instructions have
    435   /// not been settled as of 2015-07-10, so this function is conservative
    436   /// and only considers poison to be propagated in uncontroversial
    437   /// cases. There is no attempt to track values that may be only partially
    438   /// poison.
    439   bool propagatesFullPoison(const Instruction *I);
    440 
    441   /// Return either nullptr or an operand of I such that I will trigger
    442   /// undefined behavior if I is executed and that operand has a full-poison
    443   /// value (all bits poison).
    444   const Value *getGuaranteedNonFullPoisonOp(const Instruction *I);
    445 
    446   /// Return true if this function can prove that if PoisonI is executed
    447   /// and yields a full-poison value (all bits poison), then that will
    448   /// trigger undefined behavior.
    449   ///
    450   /// Note that this currently only considers the basic block that is
    451   /// the parent of I.
    452   bool programUndefinedIfFullPoison(const Instruction *PoisonI);
    453 
    454   /// \brief Specific patterns of select instructions we can match.
    455   enum SelectPatternFlavor {
    456     SPF_UNKNOWN = 0,
    457     SPF_SMIN,                   /// Signed minimum
    458     SPF_UMIN,                   /// Unsigned minimum
    459     SPF_SMAX,                   /// Signed maximum
    460     SPF_UMAX,                   /// Unsigned maximum
    461     SPF_FMINNUM,                /// Floating point minnum
    462     SPF_FMAXNUM,                /// Floating point maxnum
    463     SPF_ABS,                    /// Absolute value
    464     SPF_NABS                    /// Negated absolute value
    465   };
    466 
    467   /// \brief Behavior when a floating point min/max is given one NaN and one
    468   /// non-NaN as input.
    469   enum SelectPatternNaNBehavior {
    470     SPNB_NA = 0,                /// NaN behavior not applicable.
    471     SPNB_RETURNS_NAN,           /// Given one NaN input, returns the NaN.
    472     SPNB_RETURNS_OTHER,         /// Given one NaN input, returns the non-NaN.
    473     SPNB_RETURNS_ANY            /// Given one NaN input, can return either (or
    474                                 /// it has been determined that no operands can
    475                                 /// be NaN).
    476   };
    477 
    478   struct SelectPatternResult {
    479     SelectPatternFlavor Flavor;
    480     SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
    481                                           /// SPF_FMINNUM or SPF_FMAXNUM.
    482     bool Ordered;               /// When implementing this min/max pattern as
    483                                 /// fcmp; select, does the fcmp have to be
    484                                 /// ordered?
    485 
    486     /// \brief Return true if \p SPF is a min or a max pattern.
    487     static bool isMinOrMax(SelectPatternFlavor SPF) {
    488       return !(SPF == SPF_UNKNOWN || SPF == SPF_ABS || SPF == SPF_NABS);
    489     }
    490   };
    491 
    492   /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
    493   /// and providing the out parameter results if we successfully match.
    494   ///
    495   /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
    496   /// not match that of the original select. If this is the case, the cast
    497   /// operation (one of Trunc,SExt,Zext) that must be done to transform the
    498   /// type of LHS and RHS into the type of V is returned in CastOp.
    499   ///
    500   /// For example:
    501   ///   %1 = icmp slt i32 %a, i32 4
    502   ///   %2 = sext i32 %a to i64
    503   ///   %3 = select i1 %1, i64 %2, i64 4
    504   ///
    505   /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
    506   ///
    507   SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
    508                                          Instruction::CastOps *CastOp = nullptr);
    509   static inline SelectPatternResult
    510   matchSelectPattern(const Value *V, const Value *&LHS, const Value *&RHS,
    511                      Instruction::CastOps *CastOp = nullptr) {
    512     Value *L = const_cast<Value*>(LHS);
    513     Value *R = const_cast<Value*>(RHS);
    514     auto Result = matchSelectPattern(const_cast<Value*>(V), L, R);
    515     LHS = L;
    516     RHS = R;
    517     return Result;
    518   }
    519 
    520   /// Return true if RHS is known to be implied true by LHS.  Return false if
    521   /// RHS is known to be implied false by LHS.  Otherwise, return None if no
    522   /// implication can be made.
    523   /// A & B must be i1 (boolean) values or a vector of such values. Note that
    524   /// the truth table for implication is the same as <=u on i1 values (but not
    525   /// <=s!).  The truth table for both is:
    526   ///    | T | F (B)
    527   ///  T | T | F
    528   ///  F | T | T
    529   /// (A)
    530   Optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
    531                                     const DataLayout &DL, bool LHSIsTrue = true,
    532                                     unsigned Depth = 0);
    533 } // end namespace llvm
    534 
    535 #endif // LLVM_ANALYSIS_VALUETRACKING_H
    536