Home | History | Annotate | Download | only in PBQP
      1 //===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // PBQP Graph class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_PBQP_GRAPH_H
     15 #define LLVM_CODEGEN_PBQP_GRAPH_H
     16 
     17 #include "llvm/ADT/STLExtras.h"
     18 #include <algorithm>
     19 #include <cassert>
     20 #include <iterator>
     21 #include <limits>
     22 #include <vector>
     23 
     24 namespace llvm {
     25 namespace PBQP {
     26 
     27   class GraphBase {
     28   public:
     29     using NodeId = unsigned;
     30     using EdgeId = unsigned;
     31 
     32     /// @brief Returns a value representing an invalid (non-existent) node.
     33     static NodeId invalidNodeId() {
     34       return std::numeric_limits<NodeId>::max();
     35     }
     36 
     37     /// @brief Returns a value representing an invalid (non-existent) edge.
     38     static EdgeId invalidEdgeId() {
     39       return std::numeric_limits<EdgeId>::max();
     40     }
     41   };
     42 
     43   /// PBQP Graph class.
     44   /// Instances of this class describe PBQP problems.
     45   ///
     46   template <typename SolverT>
     47   class Graph : public GraphBase {
     48   private:
     49     using CostAllocator = typename SolverT::CostAllocator;
     50 
     51   public:
     52     using RawVector = typename SolverT::RawVector;
     53     using RawMatrix = typename SolverT::RawMatrix;
     54     using Vector = typename SolverT::Vector;
     55     using Matrix = typename SolverT::Matrix;
     56     using VectorPtr = typename CostAllocator::VectorPtr;
     57     using MatrixPtr = typename CostAllocator::MatrixPtr;
     58     using NodeMetadata = typename SolverT::NodeMetadata;
     59     using EdgeMetadata = typename SolverT::EdgeMetadata;
     60     using GraphMetadata = typename SolverT::GraphMetadata;
     61 
     62   private:
     63     class NodeEntry {
     64     public:
     65       using AdjEdgeList = std::vector<EdgeId>;
     66       using AdjEdgeIdx = AdjEdgeList::size_type;
     67       using AdjEdgeItr = AdjEdgeList::const_iterator;
     68 
     69       NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {}
     70 
     71       static AdjEdgeIdx getInvalidAdjEdgeIdx() {
     72         return std::numeric_limits<AdjEdgeIdx>::max();
     73       }
     74 
     75       AdjEdgeIdx addAdjEdgeId(EdgeId EId) {
     76         AdjEdgeIdx Idx = AdjEdgeIds.size();
     77         AdjEdgeIds.push_back(EId);
     78         return Idx;
     79       }
     80 
     81       void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) {
     82         // Swap-and-pop for fast removal.
     83         //   1) Update the adj index of the edge currently at back().
     84         //   2) Move last Edge down to Idx.
     85         //   3) pop_back()
     86         // If Idx == size() - 1 then the setAdjEdgeIdx and swap are
     87         // redundant, but both operations are cheap.
     88         G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx);
     89         AdjEdgeIds[Idx] = AdjEdgeIds.back();
     90         AdjEdgeIds.pop_back();
     91       }
     92 
     93       const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; }
     94 
     95       VectorPtr Costs;
     96       NodeMetadata Metadata;
     97 
     98     private:
     99       AdjEdgeList AdjEdgeIds;
    100     };
    101 
    102     class EdgeEntry {
    103     public:
    104       EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs)
    105           : Costs(std::move(Costs)) {
    106         NIds[0] = N1Id;
    107         NIds[1] = N2Id;
    108         ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx();
    109         ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx();
    110       }
    111 
    112       void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) {
    113         assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() &&
    114                "Edge already connected to NIds[NIdx].");
    115         NodeEntry &N = G.getNode(NIds[NIdx]);
    116         ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId);
    117       }
    118 
    119       void connect(Graph &G, EdgeId ThisEdgeId) {
    120         connectToN(G, ThisEdgeId, 0);
    121         connectToN(G, ThisEdgeId, 1);
    122       }
    123 
    124       void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) {
    125         if (NId == NIds[0])
    126           ThisEdgeAdjIdxs[0] = NewIdx;
    127         else {
    128           assert(NId == NIds[1] && "Edge not connected to NId");
    129           ThisEdgeAdjIdxs[1] = NewIdx;
    130         }
    131       }
    132 
    133       void disconnectFromN(Graph &G, unsigned NIdx) {
    134         assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() &&
    135                "Edge not connected to NIds[NIdx].");
    136         NodeEntry &N = G.getNode(NIds[NIdx]);
    137         N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]);
    138         ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx();
    139       }
    140 
    141       void disconnectFrom(Graph &G, NodeId NId) {
    142         if (NId == NIds[0])
    143           disconnectFromN(G, 0);
    144         else {
    145           assert(NId == NIds[1] && "Edge does not connect NId");
    146           disconnectFromN(G, 1);
    147         }
    148       }
    149 
    150       NodeId getN1Id() const { return NIds[0]; }
    151       NodeId getN2Id() const { return NIds[1]; }
    152 
    153       MatrixPtr Costs;
    154       EdgeMetadata Metadata;
    155 
    156     private:
    157       NodeId NIds[2];
    158       typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2];
    159     };
    160 
    161     // ----- MEMBERS -----
    162 
    163     GraphMetadata Metadata;
    164     CostAllocator CostAlloc;
    165     SolverT *Solver = nullptr;
    166 
    167     using NodeVector = std::vector<NodeEntry>;
    168     using FreeNodeVector = std::vector<NodeId>;
    169     NodeVector Nodes;
    170     FreeNodeVector FreeNodeIds;
    171 
    172     using EdgeVector = std::vector<EdgeEntry>;
    173     using FreeEdgeVector = std::vector<EdgeId>;
    174     EdgeVector Edges;
    175     FreeEdgeVector FreeEdgeIds;
    176 
    177     Graph(const Graph &Other) {}
    178 
    179     // ----- INTERNAL METHODS -----
    180 
    181     NodeEntry &getNode(NodeId NId) {
    182       assert(NId < Nodes.size() && "Out of bound NodeId");
    183       return Nodes[NId];
    184     }
    185     const NodeEntry &getNode(NodeId NId) const {
    186       assert(NId < Nodes.size() && "Out of bound NodeId");
    187       return Nodes[NId];
    188     }
    189 
    190     EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; }
    191     const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; }
    192 
    193     NodeId addConstructedNode(NodeEntry N) {
    194       NodeId NId = 0;
    195       if (!FreeNodeIds.empty()) {
    196         NId = FreeNodeIds.back();
    197         FreeNodeIds.pop_back();
    198         Nodes[NId] = std::move(N);
    199       } else {
    200         NId = Nodes.size();
    201         Nodes.push_back(std::move(N));
    202       }
    203       return NId;
    204     }
    205 
    206     EdgeId addConstructedEdge(EdgeEntry E) {
    207       assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() &&
    208              "Attempt to add duplicate edge.");
    209       EdgeId EId = 0;
    210       if (!FreeEdgeIds.empty()) {
    211         EId = FreeEdgeIds.back();
    212         FreeEdgeIds.pop_back();
    213         Edges[EId] = std::move(E);
    214       } else {
    215         EId = Edges.size();
    216         Edges.push_back(std::move(E));
    217       }
    218 
    219       EdgeEntry &NE = getEdge(EId);
    220 
    221       // Add the edge to the adjacency sets of its nodes.
    222       NE.connect(*this, EId);
    223       return EId;
    224     }
    225 
    226     void operator=(const Graph &Other) {}
    227 
    228   public:
    229     using AdjEdgeItr = typename NodeEntry::AdjEdgeItr;
    230 
    231     class NodeItr {
    232     public:
    233       using iterator_category = std::forward_iterator_tag;
    234       using value_type = NodeId;
    235       using difference_type = int;
    236       using pointer = NodeId *;
    237       using reference = NodeId &;
    238 
    239       NodeItr(NodeId CurNId, const Graph &G)
    240         : CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) {
    241         this->CurNId = findNextInUse(CurNId); // Move to first in-use node id
    242       }
    243 
    244       bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; }
    245       bool operator!=(const NodeItr &O) const { return !(*this == O); }
    246       NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; }
    247       NodeId operator*() const { return CurNId; }
    248 
    249     private:
    250       NodeId findNextInUse(NodeId NId) const {
    251         while (NId < EndNId && is_contained(FreeNodeIds, NId)) {
    252           ++NId;
    253         }
    254         return NId;
    255       }
    256 
    257       NodeId CurNId, EndNId;
    258       const FreeNodeVector &FreeNodeIds;
    259     };
    260 
    261     class EdgeItr {
    262     public:
    263       EdgeItr(EdgeId CurEId, const Graph &G)
    264         : CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) {
    265         this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id
    266       }
    267 
    268       bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; }
    269       bool operator!=(const EdgeItr &O) const { return !(*this == O); }
    270       EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; }
    271       EdgeId operator*() const { return CurEId; }
    272 
    273     private:
    274       EdgeId findNextInUse(EdgeId EId) const {
    275         while (EId < EndEId && is_contained(FreeEdgeIds, EId)) {
    276           ++EId;
    277         }
    278         return EId;
    279       }
    280 
    281       EdgeId CurEId, EndEId;
    282       const FreeEdgeVector &FreeEdgeIds;
    283     };
    284 
    285     class NodeIdSet {
    286     public:
    287       NodeIdSet(const Graph &G) : G(G) {}
    288 
    289       NodeItr begin() const { return NodeItr(0, G); }
    290       NodeItr end() const { return NodeItr(G.Nodes.size(), G); }
    291 
    292       bool empty() const { return G.Nodes.empty(); }
    293 
    294       typename NodeVector::size_type size() const {
    295         return G.Nodes.size() - G.FreeNodeIds.size();
    296       }
    297 
    298     private:
    299       const Graph& G;
    300     };
    301 
    302     class EdgeIdSet {
    303     public:
    304       EdgeIdSet(const Graph &G) : G(G) {}
    305 
    306       EdgeItr begin() const { return EdgeItr(0, G); }
    307       EdgeItr end() const { return EdgeItr(G.Edges.size(), G); }
    308 
    309       bool empty() const { return G.Edges.empty(); }
    310 
    311       typename NodeVector::size_type size() const {
    312         return G.Edges.size() - G.FreeEdgeIds.size();
    313       }
    314 
    315     private:
    316       const Graph& G;
    317     };
    318 
    319     class AdjEdgeIdSet {
    320     public:
    321       AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {}
    322 
    323       typename NodeEntry::AdjEdgeItr begin() const {
    324         return NE.getAdjEdgeIds().begin();
    325       }
    326 
    327       typename NodeEntry::AdjEdgeItr end() const {
    328         return NE.getAdjEdgeIds().end();
    329       }
    330 
    331       bool empty() const { return NE.getAdjEdgeIds().empty(); }
    332 
    333       typename NodeEntry::AdjEdgeList::size_type size() const {
    334         return NE.getAdjEdgeIds().size();
    335       }
    336 
    337     private:
    338       const NodeEntry &NE;
    339     };
    340 
    341     /// @brief Construct an empty PBQP graph.
    342     Graph() = default;
    343 
    344     /// @brief Construct an empty PBQP graph with the given graph metadata.
    345     Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {}
    346 
    347     /// @brief Get a reference to the graph metadata.
    348     GraphMetadata& getMetadata() { return Metadata; }
    349 
    350     /// @brief Get a const-reference to the graph metadata.
    351     const GraphMetadata& getMetadata() const { return Metadata; }
    352 
    353     /// @brief Lock this graph to the given solver instance in preparation
    354     /// for running the solver. This method will call solver.handleAddNode for
    355     /// each node in the graph, and handleAddEdge for each edge, to give the
    356     /// solver an opportunity to set up any requried metadata.
    357     void setSolver(SolverT &S) {
    358       assert(!Solver && "Solver already set. Call unsetSolver().");
    359       Solver = &S;
    360       for (auto NId : nodeIds())
    361         Solver->handleAddNode(NId);
    362       for (auto EId : edgeIds())
    363         Solver->handleAddEdge(EId);
    364     }
    365 
    366     /// @brief Release from solver instance.
    367     void unsetSolver() {
    368       assert(Solver && "Solver not set.");
    369       Solver = nullptr;
    370     }
    371 
    372     /// @brief Add a node with the given costs.
    373     /// @param Costs Cost vector for the new node.
    374     /// @return Node iterator for the added node.
    375     template <typename OtherVectorT>
    376     NodeId addNode(OtherVectorT Costs) {
    377       // Get cost vector from the problem domain
    378       VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
    379       NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts));
    380       if (Solver)
    381         Solver->handleAddNode(NId);
    382       return NId;
    383     }
    384 
    385     /// @brief Add a node bypassing the cost allocator.
    386     /// @param Costs Cost vector ptr for the new node (must be convertible to
    387     ///        VectorPtr).
    388     /// @return Node iterator for the added node.
    389     ///
    390     ///   This method allows for fast addition of a node whose costs don't need
    391     /// to be passed through the cost allocator. The most common use case for
    392     /// this is when duplicating costs from an existing node (when using a
    393     /// pooling allocator). These have already been uniqued, so we can avoid
    394     /// re-constructing and re-uniquing them by attaching them directly to the
    395     /// new node.
    396     template <typename OtherVectorPtrT>
    397     NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) {
    398       NodeId NId = addConstructedNode(NodeEntry(Costs));
    399       if (Solver)
    400         Solver->handleAddNode(NId);
    401       return NId;
    402     }
    403 
    404     /// @brief Add an edge between the given nodes with the given costs.
    405     /// @param N1Id First node.
    406     /// @param N2Id Second node.
    407     /// @param Costs Cost matrix for new edge.
    408     /// @return Edge iterator for the added edge.
    409     template <typename OtherVectorT>
    410     EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) {
    411       assert(getNodeCosts(N1Id).getLength() == Costs.getRows() &&
    412              getNodeCosts(N2Id).getLength() == Costs.getCols() &&
    413              "Matrix dimensions mismatch.");
    414       // Get cost matrix from the problem domain.
    415       MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
    416       EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts));
    417       if (Solver)
    418         Solver->handleAddEdge(EId);
    419       return EId;
    420     }
    421 
    422     /// @brief Add an edge bypassing the cost allocator.
    423     /// @param N1Id First node.
    424     /// @param N2Id Second node.
    425     /// @param Costs Cost matrix for new edge.
    426     /// @return Edge iterator for the added edge.
    427     ///
    428     ///   This method allows for fast addition of an edge whose costs don't need
    429     /// to be passed through the cost allocator. The most common use case for
    430     /// this is when duplicating costs from an existing edge (when using a
    431     /// pooling allocator). These have already been uniqued, so we can avoid
    432     /// re-constructing and re-uniquing them by attaching them directly to the
    433     /// new edge.
    434     template <typename OtherMatrixPtrT>
    435     NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id,
    436                                          OtherMatrixPtrT Costs) {
    437       assert(getNodeCosts(N1Id).getLength() == Costs->getRows() &&
    438              getNodeCosts(N2Id).getLength() == Costs->getCols() &&
    439              "Matrix dimensions mismatch.");
    440       // Get cost matrix from the problem domain.
    441       EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs));
    442       if (Solver)
    443         Solver->handleAddEdge(EId);
    444       return EId;
    445     }
    446 
    447     /// @brief Returns true if the graph is empty.
    448     bool empty() const { return NodeIdSet(*this).empty(); }
    449 
    450     NodeIdSet nodeIds() const { return NodeIdSet(*this); }
    451     EdgeIdSet edgeIds() const { return EdgeIdSet(*this); }
    452 
    453     AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); }
    454 
    455     /// @brief Get the number of nodes in the graph.
    456     /// @return Number of nodes in the graph.
    457     unsigned getNumNodes() const { return NodeIdSet(*this).size(); }
    458 
    459     /// @brief Get the number of edges in the graph.
    460     /// @return Number of edges in the graph.
    461     unsigned getNumEdges() const { return EdgeIdSet(*this).size(); }
    462 
    463     /// @brief Set a node's cost vector.
    464     /// @param NId Node to update.
    465     /// @param Costs New costs to set.
    466     template <typename OtherVectorT>
    467     void setNodeCosts(NodeId NId, OtherVectorT Costs) {
    468       VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
    469       if (Solver)
    470         Solver->handleSetNodeCosts(NId, *AllocatedCosts);
    471       getNode(NId).Costs = AllocatedCosts;
    472     }
    473 
    474     /// @brief Get a VectorPtr to a node's cost vector. Rarely useful - use
    475     ///        getNodeCosts where possible.
    476     /// @param NId Node id.
    477     /// @return VectorPtr to node cost vector.
    478     ///
    479     ///   This method is primarily useful for duplicating costs quickly by
    480     /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
    481     /// getNodeCosts when dealing with node cost values.
    482     const VectorPtr& getNodeCostsPtr(NodeId NId) const {
    483       return getNode(NId).Costs;
    484     }
    485 
    486     /// @brief Get a node's cost vector.
    487     /// @param NId Node id.
    488     /// @return Node cost vector.
    489     const Vector& getNodeCosts(NodeId NId) const {
    490       return *getNodeCostsPtr(NId);
    491     }
    492 
    493     NodeMetadata& getNodeMetadata(NodeId NId) {
    494       return getNode(NId).Metadata;
    495     }
    496 
    497     const NodeMetadata& getNodeMetadata(NodeId NId) const {
    498       return getNode(NId).Metadata;
    499     }
    500 
    501     typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const {
    502       return getNode(NId).getAdjEdgeIds().size();
    503     }
    504 
    505     /// @brief Update an edge's cost matrix.
    506     /// @param EId Edge id.
    507     /// @param Costs New cost matrix.
    508     template <typename OtherMatrixT>
    509     void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) {
    510       MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
    511       if (Solver)
    512         Solver->handleUpdateCosts(EId, *AllocatedCosts);
    513       getEdge(EId).Costs = AllocatedCosts;
    514     }
    515 
    516     /// @brief Get a MatrixPtr to a node's cost matrix. Rarely useful - use
    517     ///        getEdgeCosts where possible.
    518     /// @param EId Edge id.
    519     /// @return MatrixPtr to edge cost matrix.
    520     ///
    521     ///   This method is primarily useful for duplicating costs quickly by
    522     /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
    523     /// getEdgeCosts when dealing with edge cost values.
    524     const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const {
    525       return getEdge(EId).Costs;
    526     }
    527 
    528     /// @brief Get an edge's cost matrix.
    529     /// @param EId Edge id.
    530     /// @return Edge cost matrix.
    531     const Matrix& getEdgeCosts(EdgeId EId) const {
    532       return *getEdge(EId).Costs;
    533     }
    534 
    535     EdgeMetadata& getEdgeMetadata(EdgeId EId) {
    536       return getEdge(EId).Metadata;
    537     }
    538 
    539     const EdgeMetadata& getEdgeMetadata(EdgeId EId) const {
    540       return getEdge(EId).Metadata;
    541     }
    542 
    543     /// @brief Get the first node connected to this edge.
    544     /// @param EId Edge id.
    545     /// @return The first node connected to the given edge.
    546     NodeId getEdgeNode1Id(EdgeId EId) const {
    547       return getEdge(EId).getN1Id();
    548     }
    549 
    550     /// @brief Get the second node connected to this edge.
    551     /// @param EId Edge id.
    552     /// @return The second node connected to the given edge.
    553     NodeId getEdgeNode2Id(EdgeId EId) const {
    554       return getEdge(EId).getN2Id();
    555     }
    556 
    557     /// @brief Get the "other" node connected to this edge.
    558     /// @param EId Edge id.
    559     /// @param NId Node id for the "given" node.
    560     /// @return The iterator for the "other" node connected to this edge.
    561     NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) {
    562       EdgeEntry &E = getEdge(EId);
    563       if (E.getN1Id() == NId) {
    564         return E.getN2Id();
    565       } // else
    566       return E.getN1Id();
    567     }
    568 
    569     /// @brief Get the edge connecting two nodes.
    570     /// @param N1Id First node id.
    571     /// @param N2Id Second node id.
    572     /// @return An id for edge (N1Id, N2Id) if such an edge exists,
    573     ///         otherwise returns an invalid edge id.
    574     EdgeId findEdge(NodeId N1Id, NodeId N2Id) {
    575       for (auto AEId : adjEdgeIds(N1Id)) {
    576         if ((getEdgeNode1Id(AEId) == N2Id) ||
    577             (getEdgeNode2Id(AEId) == N2Id)) {
    578           return AEId;
    579         }
    580       }
    581       return invalidEdgeId();
    582     }
    583 
    584     /// @brief Remove a node from the graph.
    585     /// @param NId Node id.
    586     void removeNode(NodeId NId) {
    587       if (Solver)
    588         Solver->handleRemoveNode(NId);
    589       NodeEntry &N = getNode(NId);
    590       // TODO: Can this be for-each'd?
    591       for (AdjEdgeItr AEItr = N.adjEdgesBegin(),
    592              AEEnd = N.adjEdgesEnd();
    593            AEItr != AEEnd;) {
    594         EdgeId EId = *AEItr;
    595         ++AEItr;
    596         removeEdge(EId);
    597       }
    598       FreeNodeIds.push_back(NId);
    599     }
    600 
    601     /// @brief Disconnect an edge from the given node.
    602     ///
    603     /// Removes the given edge from the adjacency list of the given node.
    604     /// This operation leaves the edge in an 'asymmetric' state: It will no
    605     /// longer appear in an iteration over the given node's (NId's) edges, but
    606     /// will appear in an iteration over the 'other', unnamed node's edges.
    607     ///
    608     /// This does not correspond to any normal graph operation, but exists to
    609     /// support efficient PBQP graph-reduction based solvers. It is used to
    610     /// 'effectively' remove the unnamed node from the graph while the solver
    611     /// is performing the reduction. The solver will later call reconnectNode
    612     /// to restore the edge in the named node's adjacency list.
    613     ///
    614     /// Since the degree of a node is the number of connected edges,
    615     /// disconnecting an edge from a node 'u' will cause the degree of 'u' to
    616     /// drop by 1.
    617     ///
    618     /// A disconnected edge WILL still appear in an iteration over the graph
    619     /// edges.
    620     ///
    621     /// A disconnected edge should not be removed from the graph, it should be
    622     /// reconnected first.
    623     ///
    624     /// A disconnected edge can be reconnected by calling the reconnectEdge
    625     /// method.
    626     void disconnectEdge(EdgeId EId, NodeId NId) {
    627       if (Solver)
    628         Solver->handleDisconnectEdge(EId, NId);
    629 
    630       EdgeEntry &E = getEdge(EId);
    631       E.disconnectFrom(*this, NId);
    632     }
    633 
    634     /// @brief Convenience method to disconnect all neighbours from the given
    635     ///        node.
    636     void disconnectAllNeighborsFromNode(NodeId NId) {
    637       for (auto AEId : adjEdgeIds(NId))
    638         disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId));
    639     }
    640 
    641     /// @brief Re-attach an edge to its nodes.
    642     ///
    643     /// Adds an edge that had been previously disconnected back into the
    644     /// adjacency set of the nodes that the edge connects.
    645     void reconnectEdge(EdgeId EId, NodeId NId) {
    646       EdgeEntry &E = getEdge(EId);
    647       E.connectTo(*this, EId, NId);
    648       if (Solver)
    649         Solver->handleReconnectEdge(EId, NId);
    650     }
    651 
    652     /// @brief Remove an edge from the graph.
    653     /// @param EId Edge id.
    654     void removeEdge(EdgeId EId) {
    655       if (Solver)
    656         Solver->handleRemoveEdge(EId);
    657       EdgeEntry &E = getEdge(EId);
    658       E.disconnect();
    659       FreeEdgeIds.push_back(EId);
    660       Edges[EId].invalidate();
    661     }
    662 
    663     /// @brief Remove all nodes and edges from the graph.
    664     void clear() {
    665       Nodes.clear();
    666       FreeNodeIds.clear();
    667       Edges.clear();
    668       FreeEdgeIds.clear();
    669     }
    670   };
    671 
    672 } // end namespace PBQP
    673 } // end namespace llvm
    674 
    675 #endif // LLVM_CODEGEN_PBQP_GRAPH_HPP
    676