Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief This file implements a class to represent arbitrary precision
     12 /// integral constant values and operations on them.
     13 ///
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_ADT_APINT_H
     17 #define LLVM_ADT_APINT_H
     18 
     19 #include "llvm/Support/Compiler.h"
     20 #include "llvm/Support/MathExtras.h"
     21 #include <cassert>
     22 #include <climits>
     23 #include <cstring>
     24 #include <string>
     25 
     26 namespace llvm {
     27 class FoldingSetNodeID;
     28 class StringRef;
     29 class hash_code;
     30 class raw_ostream;
     31 
     32 template <typename T> class SmallVectorImpl;
     33 template <typename T> class ArrayRef;
     34 
     35 class APInt;
     36 
     37 inline APInt operator-(APInt);
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                              APInt Class
     41 //===----------------------------------------------------------------------===//
     42 
     43 /// \brief Class for arbitrary precision integers.
     44 ///
     45 /// APInt is a functional replacement for common case unsigned integer type like
     46 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
     47 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
     48 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
     49 /// and methods to manipulate integer values of any bit-width. It supports both
     50 /// the typical integer arithmetic and comparison operations as well as bitwise
     51 /// manipulation.
     52 ///
     53 /// The class has several invariants worth noting:
     54 ///   * All bit, byte, and word positions are zero-based.
     55 ///   * Once the bit width is set, it doesn't change except by the Truncate,
     56 ///     SignExtend, or ZeroExtend operations.
     57 ///   * All binary operators must be on APInt instances of the same bit width.
     58 ///     Attempting to use these operators on instances with different bit
     59 ///     widths will yield an assertion.
     60 ///   * The value is stored canonically as an unsigned value. For operations
     61 ///     where it makes a difference, there are both signed and unsigned variants
     62 ///     of the operation. For example, sdiv and udiv. However, because the bit
     63 ///     widths must be the same, operations such as Mul and Add produce the same
     64 ///     results regardless of whether the values are interpreted as signed or
     65 ///     not.
     66 ///   * In general, the class tries to follow the style of computation that LLVM
     67 ///     uses in its IR. This simplifies its use for LLVM.
     68 ///
     69 class LLVM_NODISCARD APInt {
     70 public:
     71   typedef uint64_t WordType;
     72 
     73   /// This enum is used to hold the constants we needed for APInt.
     74   enum : unsigned {
     75     /// Byte size of a word.
     76     APINT_WORD_SIZE = sizeof(WordType),
     77     /// Bits in a word.
     78     APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
     79   };
     80 
     81   static const WordType WORD_MAX = ~WordType(0);
     82 
     83 private:
     84   /// This union is used to store the integer value. When the
     85   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
     86   union {
     87     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
     88     uint64_t *pVal; ///< Used to store the >64 bits integer value.
     89   } U;
     90 
     91   unsigned BitWidth; ///< The number of bits in this APInt.
     92 
     93   friend struct DenseMapAPIntKeyInfo;
     94 
     95   friend class APSInt;
     96 
     97   /// \brief Fast internal constructor
     98   ///
     99   /// This constructor is used only internally for speed of construction of
    100   /// temporaries. It is unsafe for general use so it is not public.
    101   APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
    102     U.pVal = val;
    103   }
    104 
    105   /// \brief Determine if this APInt just has one word to store value.
    106   ///
    107   /// \returns true if the number of bits <= 64, false otherwise.
    108   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
    109 
    110   /// \brief Determine which word a bit is in.
    111   ///
    112   /// \returns the word position for the specified bit position.
    113   static unsigned whichWord(unsigned bitPosition) {
    114     return bitPosition / APINT_BITS_PER_WORD;
    115   }
    116 
    117   /// \brief Determine which bit in a word a bit is in.
    118   ///
    119   /// \returns the bit position in a word for the specified bit position
    120   /// in the APInt.
    121   static unsigned whichBit(unsigned bitPosition) {
    122     return bitPosition % APINT_BITS_PER_WORD;
    123   }
    124 
    125   /// \brief Get a single bit mask.
    126   ///
    127   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
    128   /// This method generates and returns a uint64_t (word) mask for a single
    129   /// bit at a specific bit position. This is used to mask the bit in the
    130   /// corresponding word.
    131   static uint64_t maskBit(unsigned bitPosition) {
    132     return 1ULL << whichBit(bitPosition);
    133   }
    134 
    135   /// \brief Clear unused high order bits
    136   ///
    137   /// This method is used internally to clear the top "N" bits in the high order
    138   /// word that are not used by the APInt. This is needed after the most
    139   /// significant word is assigned a value to ensure that those bits are
    140   /// zero'd out.
    141   APInt &clearUnusedBits() {
    142     // Compute how many bits are used in the final word
    143     unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
    144 
    145     // Mask out the high bits.
    146     uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits);
    147     if (isSingleWord())
    148       U.VAL &= mask;
    149     else
    150       U.pVal[getNumWords() - 1] &= mask;
    151     return *this;
    152   }
    153 
    154   /// \brief Get the word corresponding to a bit position
    155   /// \returns the corresponding word for the specified bit position.
    156   uint64_t getWord(unsigned bitPosition) const {
    157     return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
    158   }
    159 
    160   /// Utility method to change the bit width of this APInt to new bit width,
    161   /// allocating and/or deallocating as necessary. There is no guarantee on the
    162   /// value of any bits upon return. Caller should populate the bits after.
    163   void reallocate(unsigned NewBitWidth);
    164 
    165   /// \brief Convert a char array into an APInt
    166   ///
    167   /// \param radix 2, 8, 10, 16, or 36
    168   /// Converts a string into a number.  The string must be non-empty
    169   /// and well-formed as a number of the given base. The bit-width
    170   /// must be sufficient to hold the result.
    171   ///
    172   /// This is used by the constructors that take string arguments.
    173   ///
    174   /// StringRef::getAsInteger is superficially similar but (1) does
    175   /// not assume that the string is well-formed and (2) grows the
    176   /// result to hold the input.
    177   void fromString(unsigned numBits, StringRef str, uint8_t radix);
    178 
    179   /// \brief An internal division function for dividing APInts.
    180   ///
    181   /// This is used by the toString method to divide by the radix. It simply
    182   /// provides a more convenient form of divide for internal use since KnuthDiv
    183   /// has specific constraints on its inputs. If those constraints are not met
    184   /// then it provides a simpler form of divide.
    185   static void divide(const WordType *LHS, unsigned lhsWords,
    186                      const WordType *RHS, unsigned rhsWords, WordType *Quotient,
    187                      WordType *Remainder);
    188 
    189   /// out-of-line slow case for inline constructor
    190   void initSlowCase(uint64_t val, bool isSigned);
    191 
    192   /// shared code between two array constructors
    193   void initFromArray(ArrayRef<uint64_t> array);
    194 
    195   /// out-of-line slow case for inline copy constructor
    196   void initSlowCase(const APInt &that);
    197 
    198   /// out-of-line slow case for shl
    199   void shlSlowCase(unsigned ShiftAmt);
    200 
    201   /// out-of-line slow case for lshr.
    202   void lshrSlowCase(unsigned ShiftAmt);
    203 
    204   /// out-of-line slow case for ashr.
    205   void ashrSlowCase(unsigned ShiftAmt);
    206 
    207   /// out-of-line slow case for operator=
    208   void AssignSlowCase(const APInt &RHS);
    209 
    210   /// out-of-line slow case for operator==
    211   bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
    212 
    213   /// out-of-line slow case for countLeadingZeros
    214   unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
    215 
    216   /// out-of-line slow case for countLeadingOnes.
    217   unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
    218 
    219   /// out-of-line slow case for countTrailingZeros.
    220   unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
    221 
    222   /// out-of-line slow case for countTrailingOnes
    223   unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
    224 
    225   /// out-of-line slow case for countPopulation
    226   unsigned countPopulationSlowCase() const LLVM_READONLY;
    227 
    228   /// out-of-line slow case for intersects.
    229   bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
    230 
    231   /// out-of-line slow case for isSubsetOf.
    232   bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
    233 
    234   /// out-of-line slow case for setBits.
    235   void setBitsSlowCase(unsigned loBit, unsigned hiBit);
    236 
    237   /// out-of-line slow case for flipAllBits.
    238   void flipAllBitsSlowCase();
    239 
    240   /// out-of-line slow case for operator&=.
    241   void AndAssignSlowCase(const APInt& RHS);
    242 
    243   /// out-of-line slow case for operator|=.
    244   void OrAssignSlowCase(const APInt& RHS);
    245 
    246   /// out-of-line slow case for operator^=.
    247   void XorAssignSlowCase(const APInt& RHS);
    248 
    249   /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
    250   /// to, or greater than RHS.
    251   int compare(const APInt &RHS) const LLVM_READONLY;
    252 
    253   /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
    254   /// to, or greater than RHS.
    255   int compareSigned(const APInt &RHS) const LLVM_READONLY;
    256 
    257 public:
    258   /// \name Constructors
    259   /// @{
    260 
    261   /// \brief Create a new APInt of numBits width, initialized as val.
    262   ///
    263   /// If isSigned is true then val is treated as if it were a signed value
    264   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
    265   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
    266   /// the range of val are zero filled).
    267   ///
    268   /// \param numBits the bit width of the constructed APInt
    269   /// \param val the initial value of the APInt
    270   /// \param isSigned how to treat signedness of val
    271   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
    272       : BitWidth(numBits) {
    273     assert(BitWidth && "bitwidth too small");
    274     if (isSingleWord()) {
    275       U.VAL = val;
    276       clearUnusedBits();
    277     } else {
    278       initSlowCase(val, isSigned);
    279     }
    280   }
    281 
    282   /// \brief Construct an APInt of numBits width, initialized as bigVal[].
    283   ///
    284   /// Note that bigVal.size() can be smaller or larger than the corresponding
    285   /// bit width but any extraneous bits will be dropped.
    286   ///
    287   /// \param numBits the bit width of the constructed APInt
    288   /// \param bigVal a sequence of words to form the initial value of the APInt
    289   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
    290 
    291   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
    292   /// deprecated because this constructor is prone to ambiguity with the
    293   /// APInt(unsigned, uint64_t, bool) constructor.
    294   ///
    295   /// If this overload is ever deleted, care should be taken to prevent calls
    296   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
    297   /// constructor.
    298   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
    299 
    300   /// \brief Construct an APInt from a string representation.
    301   ///
    302   /// This constructor interprets the string \p str in the given radix. The
    303   /// interpretation stops when the first character that is not suitable for the
    304   /// radix is encountered, or the end of the string. Acceptable radix values
    305   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
    306   /// string to require more bits than numBits.
    307   ///
    308   /// \param numBits the bit width of the constructed APInt
    309   /// \param str the string to be interpreted
    310   /// \param radix the radix to use for the conversion
    311   APInt(unsigned numBits, StringRef str, uint8_t radix);
    312 
    313   /// Simply makes *this a copy of that.
    314   /// @brief Copy Constructor.
    315   APInt(const APInt &that) : BitWidth(that.BitWidth) {
    316     if (isSingleWord())
    317       U.VAL = that.U.VAL;
    318     else
    319       initSlowCase(that);
    320   }
    321 
    322   /// \brief Move Constructor.
    323   APInt(APInt &&that) : BitWidth(that.BitWidth) {
    324     memcpy(&U, &that.U, sizeof(U));
    325     that.BitWidth = 0;
    326   }
    327 
    328   /// \brief Destructor.
    329   ~APInt() {
    330     if (needsCleanup())
    331       delete[] U.pVal;
    332   }
    333 
    334   /// \brief Default constructor that creates an uninteresting APInt
    335   /// representing a 1-bit zero value.
    336   ///
    337   /// This is useful for object deserialization (pair this with the static
    338   ///  method Read).
    339   explicit APInt() : BitWidth(1) { U.VAL = 0; }
    340 
    341   /// \brief Returns whether this instance allocated memory.
    342   bool needsCleanup() const { return !isSingleWord(); }
    343 
    344   /// Used to insert APInt objects, or objects that contain APInt objects, into
    345   ///  FoldingSets.
    346   void Profile(FoldingSetNodeID &id) const;
    347 
    348   /// @}
    349   /// \name Value Tests
    350   /// @{
    351 
    352   /// \brief Determine sign of this APInt.
    353   ///
    354   /// This tests the high bit of this APInt to determine if it is set.
    355   ///
    356   /// \returns true if this APInt is negative, false otherwise
    357   bool isNegative() const { return (*this)[BitWidth - 1]; }
    358 
    359   /// \brief Determine if this APInt Value is non-negative (>= 0)
    360   ///
    361   /// This tests the high bit of the APInt to determine if it is unset.
    362   bool isNonNegative() const { return !isNegative(); }
    363 
    364   /// \brief Determine if sign bit of this APInt is set.
    365   ///
    366   /// This tests the high bit of this APInt to determine if it is set.
    367   ///
    368   /// \returns true if this APInt has its sign bit set, false otherwise.
    369   bool isSignBitSet() const { return (*this)[BitWidth-1]; }
    370 
    371   /// \brief Determine if sign bit of this APInt is clear.
    372   ///
    373   /// This tests the high bit of this APInt to determine if it is clear.
    374   ///
    375   /// \returns true if this APInt has its sign bit clear, false otherwise.
    376   bool isSignBitClear() const { return !isSignBitSet(); }
    377 
    378   /// \brief Determine if this APInt Value is positive.
    379   ///
    380   /// This tests if the value of this APInt is positive (> 0). Note
    381   /// that 0 is not a positive value.
    382   ///
    383   /// \returns true if this APInt is positive.
    384   bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
    385 
    386   /// \brief Determine if all bits are set
    387   ///
    388   /// This checks to see if the value has all bits of the APInt are set or not.
    389   bool isAllOnesValue() const {
    390     if (isSingleWord())
    391       return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth);
    392     return countTrailingOnesSlowCase() == BitWidth;
    393   }
    394 
    395   /// \brief Determine if all bits are clear
    396   ///
    397   /// This checks to see if the value has all bits of the APInt are clear or
    398   /// not.
    399   bool isNullValue() const { return !*this; }
    400 
    401   /// \brief Determine if this is a value of 1.
    402   ///
    403   /// This checks to see if the value of this APInt is one.
    404   bool isOneValue() const {
    405     if (isSingleWord())
    406       return U.VAL == 1;
    407     return countLeadingZerosSlowCase() == BitWidth - 1;
    408   }
    409 
    410   /// \brief Determine if this is the largest unsigned value.
    411   ///
    412   /// This checks to see if the value of this APInt is the maximum unsigned
    413   /// value for the APInt's bit width.
    414   bool isMaxValue() const { return isAllOnesValue(); }
    415 
    416   /// \brief Determine if this is the largest signed value.
    417   ///
    418   /// This checks to see if the value of this APInt is the maximum signed
    419   /// value for the APInt's bit width.
    420   bool isMaxSignedValue() const {
    421     if (isSingleWord())
    422       return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
    423     return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
    424   }
    425 
    426   /// \brief Determine if this is the smallest unsigned value.
    427   ///
    428   /// This checks to see if the value of this APInt is the minimum unsigned
    429   /// value for the APInt's bit width.
    430   bool isMinValue() const { return isNullValue(); }
    431 
    432   /// \brief Determine if this is the smallest signed value.
    433   ///
    434   /// This checks to see if the value of this APInt is the minimum signed
    435   /// value for the APInt's bit width.
    436   bool isMinSignedValue() const {
    437     if (isSingleWord())
    438       return U.VAL == (WordType(1) << (BitWidth - 1));
    439     return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
    440   }
    441 
    442   /// \brief Check if this APInt has an N-bits unsigned integer value.
    443   bool isIntN(unsigned N) const {
    444     assert(N && "N == 0 ???");
    445     return getActiveBits() <= N;
    446   }
    447 
    448   /// \brief Check if this APInt has an N-bits signed integer value.
    449   bool isSignedIntN(unsigned N) const {
    450     assert(N && "N == 0 ???");
    451     return getMinSignedBits() <= N;
    452   }
    453 
    454   /// \brief Check if this APInt's value is a power of two greater than zero.
    455   ///
    456   /// \returns true if the argument APInt value is a power of two > 0.
    457   bool isPowerOf2() const {
    458     if (isSingleWord())
    459       return isPowerOf2_64(U.VAL);
    460     return countPopulationSlowCase() == 1;
    461   }
    462 
    463   /// \brief Check if the APInt's value is returned by getSignMask.
    464   ///
    465   /// \returns true if this is the value returned by getSignMask.
    466   bool isSignMask() const { return isMinSignedValue(); }
    467 
    468   /// \brief Convert APInt to a boolean value.
    469   ///
    470   /// This converts the APInt to a boolean value as a test against zero.
    471   bool getBoolValue() const { return !!*this; }
    472 
    473   /// If this value is smaller than the specified limit, return it, otherwise
    474   /// return the limit value.  This causes the value to saturate to the limit.
    475   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
    476     return ugt(Limit) ? Limit : getZExtValue();
    477   }
    478 
    479   /// \brief Check if the APInt consists of a repeated bit pattern.
    480   ///
    481   /// e.g. 0x01010101 satisfies isSplat(8).
    482   /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
    483   /// width without remainder.
    484   bool isSplat(unsigned SplatSizeInBits) const;
    485 
    486   /// \returns true if this APInt value is a sequence of \param numBits ones
    487   /// starting at the least significant bit with the remainder zero.
    488   bool isMask(unsigned numBits) const {
    489     assert(numBits != 0 && "numBits must be non-zero");
    490     assert(numBits <= BitWidth && "numBits out of range");
    491     if (isSingleWord())
    492       return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits));
    493     unsigned Ones = countTrailingOnesSlowCase();
    494     return (numBits == Ones) &&
    495            ((Ones + countLeadingZerosSlowCase()) == BitWidth);
    496   }
    497 
    498   /// \returns true if this APInt is a non-empty sequence of ones starting at
    499   /// the least significant bit with the remainder zero.
    500   /// Ex. isMask(0x0000FFFFU) == true.
    501   bool isMask() const {
    502     if (isSingleWord())
    503       return isMask_64(U.VAL);
    504     unsigned Ones = countTrailingOnesSlowCase();
    505     return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
    506   }
    507 
    508   /// \brief Return true if this APInt value contains a sequence of ones with
    509   /// the remainder zero.
    510   bool isShiftedMask() const {
    511     if (isSingleWord())
    512       return isShiftedMask_64(U.VAL);
    513     unsigned Ones = countPopulationSlowCase();
    514     unsigned LeadZ = countLeadingZerosSlowCase();
    515     return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
    516   }
    517 
    518   /// @}
    519   /// \name Value Generators
    520   /// @{
    521 
    522   /// \brief Gets maximum unsigned value of APInt for specific bit width.
    523   static APInt getMaxValue(unsigned numBits) {
    524     return getAllOnesValue(numBits);
    525   }
    526 
    527   /// \brief Gets maximum signed value of APInt for a specific bit width.
    528   static APInt getSignedMaxValue(unsigned numBits) {
    529     APInt API = getAllOnesValue(numBits);
    530     API.clearBit(numBits - 1);
    531     return API;
    532   }
    533 
    534   /// \brief Gets minimum unsigned value of APInt for a specific bit width.
    535   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
    536 
    537   /// \brief Gets minimum signed value of APInt for a specific bit width.
    538   static APInt getSignedMinValue(unsigned numBits) {
    539     APInt API(numBits, 0);
    540     API.setBit(numBits - 1);
    541     return API;
    542   }
    543 
    544   /// \brief Get the SignMask for a specific bit width.
    545   ///
    546   /// This is just a wrapper function of getSignedMinValue(), and it helps code
    547   /// readability when we want to get a SignMask.
    548   static APInt getSignMask(unsigned BitWidth) {
    549     return getSignedMinValue(BitWidth);
    550   }
    551 
    552   /// \brief Get the all-ones value.
    553   ///
    554   /// \returns the all-ones value for an APInt of the specified bit-width.
    555   static APInt getAllOnesValue(unsigned numBits) {
    556     return APInt(numBits, WORD_MAX, true);
    557   }
    558 
    559   /// \brief Get the '0' value.
    560   ///
    561   /// \returns the '0' value for an APInt of the specified bit-width.
    562   static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
    563 
    564   /// \brief Compute an APInt containing numBits highbits from this APInt.
    565   ///
    566   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    567   /// the low bits and right shift to the least significant bit.
    568   ///
    569   /// \returns the high "numBits" bits of this APInt.
    570   APInt getHiBits(unsigned numBits) const;
    571 
    572   /// \brief Compute an APInt containing numBits lowbits from this APInt.
    573   ///
    574   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    575   /// the high bits.
    576   ///
    577   /// \returns the low "numBits" bits of this APInt.
    578   APInt getLoBits(unsigned numBits) const;
    579 
    580   /// \brief Return an APInt with exactly one bit set in the result.
    581   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
    582     APInt Res(numBits, 0);
    583     Res.setBit(BitNo);
    584     return Res;
    585   }
    586 
    587   /// \brief Get a value with a block of bits set.
    588   ///
    589   /// Constructs an APInt value that has a contiguous range of bits set. The
    590   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
    591   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
    592   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
    593   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
    594   ///
    595   /// \param numBits the intended bit width of the result
    596   /// \param loBit the index of the lowest bit set.
    597   /// \param hiBit the index of the highest bit set.
    598   ///
    599   /// \returns An APInt value with the requested bits set.
    600   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
    601     APInt Res(numBits, 0);
    602     Res.setBits(loBit, hiBit);
    603     return Res;
    604   }
    605 
    606   /// \brief Get a value with upper bits starting at loBit set.
    607   ///
    608   /// Constructs an APInt value that has a contiguous range of bits set. The
    609   /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
    610   /// bits will be zero. For example, with parameters(32, 12) you would get
    611   /// 0xFFFFF000.
    612   ///
    613   /// \param numBits the intended bit width of the result
    614   /// \param loBit the index of the lowest bit to set.
    615   ///
    616   /// \returns An APInt value with the requested bits set.
    617   static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
    618     APInt Res(numBits, 0);
    619     Res.setBitsFrom(loBit);
    620     return Res;
    621   }
    622 
    623   /// \brief Get a value with high bits set
    624   ///
    625   /// Constructs an APInt value that has the top hiBitsSet bits set.
    626   ///
    627   /// \param numBits the bitwidth of the result
    628   /// \param hiBitsSet the number of high-order bits set in the result.
    629   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
    630     APInt Res(numBits, 0);
    631     Res.setHighBits(hiBitsSet);
    632     return Res;
    633   }
    634 
    635   /// \brief Get a value with low bits set
    636   ///
    637   /// Constructs an APInt value that has the bottom loBitsSet bits set.
    638   ///
    639   /// \param numBits the bitwidth of the result
    640   /// \param loBitsSet the number of low-order bits set in the result.
    641   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
    642     APInt Res(numBits, 0);
    643     Res.setLowBits(loBitsSet);
    644     return Res;
    645   }
    646 
    647   /// \brief Return a value containing V broadcasted over NewLen bits.
    648   static APInt getSplat(unsigned NewLen, const APInt &V);
    649 
    650   /// \brief Determine if two APInts have the same value, after zero-extending
    651   /// one of them (if needed!) to ensure that the bit-widths match.
    652   static bool isSameValue(const APInt &I1, const APInt &I2) {
    653     if (I1.getBitWidth() == I2.getBitWidth())
    654       return I1 == I2;
    655 
    656     if (I1.getBitWidth() > I2.getBitWidth())
    657       return I1 == I2.zext(I1.getBitWidth());
    658 
    659     return I1.zext(I2.getBitWidth()) == I2;
    660   }
    661 
    662   /// \brief Overload to compute a hash_code for an APInt value.
    663   friend hash_code hash_value(const APInt &Arg);
    664 
    665   /// This function returns a pointer to the internal storage of the APInt.
    666   /// This is useful for writing out the APInt in binary form without any
    667   /// conversions.
    668   const uint64_t *getRawData() const {
    669     if (isSingleWord())
    670       return &U.VAL;
    671     return &U.pVal[0];
    672   }
    673 
    674   /// @}
    675   /// \name Unary Operators
    676   /// @{
    677 
    678   /// \brief Postfix increment operator.
    679   ///
    680   /// Increments *this by 1.
    681   ///
    682   /// \returns a new APInt value representing the original value of *this.
    683   const APInt operator++(int) {
    684     APInt API(*this);
    685     ++(*this);
    686     return API;
    687   }
    688 
    689   /// \brief Prefix increment operator.
    690   ///
    691   /// \returns *this incremented by one
    692   APInt &operator++();
    693 
    694   /// \brief Postfix decrement operator.
    695   ///
    696   /// Decrements *this by 1.
    697   ///
    698   /// \returns a new APInt value representing the original value of *this.
    699   const APInt operator--(int) {
    700     APInt API(*this);
    701     --(*this);
    702     return API;
    703   }
    704 
    705   /// \brief Prefix decrement operator.
    706   ///
    707   /// \returns *this decremented by one.
    708   APInt &operator--();
    709 
    710   /// \brief Logical negation operator.
    711   ///
    712   /// Performs logical negation operation on this APInt.
    713   ///
    714   /// \returns true if *this is zero, false otherwise.
    715   bool operator!() const {
    716     if (isSingleWord())
    717       return U.VAL == 0;
    718     return countLeadingZerosSlowCase() == BitWidth;
    719   }
    720 
    721   /// @}
    722   /// \name Assignment Operators
    723   /// @{
    724 
    725   /// \brief Copy assignment operator.
    726   ///
    727   /// \returns *this after assignment of RHS.
    728   APInt &operator=(const APInt &RHS) {
    729     // If the bitwidths are the same, we can avoid mucking with memory
    730     if (isSingleWord() && RHS.isSingleWord()) {
    731       U.VAL = RHS.U.VAL;
    732       BitWidth = RHS.BitWidth;
    733       return clearUnusedBits();
    734     }
    735 
    736     AssignSlowCase(RHS);
    737     return *this;
    738   }
    739 
    740   /// @brief Move assignment operator.
    741   APInt &operator=(APInt &&that) {
    742     assert(this != &that && "Self-move not supported");
    743     if (!isSingleWord())
    744       delete[] U.pVal;
    745 
    746     // Use memcpy so that type based alias analysis sees both VAL and pVal
    747     // as modified.
    748     memcpy(&U, &that.U, sizeof(U));
    749 
    750     BitWidth = that.BitWidth;
    751     that.BitWidth = 0;
    752 
    753     return *this;
    754   }
    755 
    756   /// \brief Assignment operator.
    757   ///
    758   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
    759   /// the bit width, the excess bits are truncated. If the bit width is larger
    760   /// than 64, the value is zero filled in the unspecified high order bits.
    761   ///
    762   /// \returns *this after assignment of RHS value.
    763   APInt &operator=(uint64_t RHS) {
    764     if (isSingleWord()) {
    765       U.VAL = RHS;
    766       clearUnusedBits();
    767     } else {
    768       U.pVal[0] = RHS;
    769       memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
    770     }
    771     return *this;
    772   }
    773 
    774   /// \brief Bitwise AND assignment operator.
    775   ///
    776   /// Performs a bitwise AND operation on this APInt and RHS. The result is
    777   /// assigned to *this.
    778   ///
    779   /// \returns *this after ANDing with RHS.
    780   APInt &operator&=(const APInt &RHS) {
    781     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    782     if (isSingleWord())
    783       U.VAL &= RHS.U.VAL;
    784     else
    785       AndAssignSlowCase(RHS);
    786     return *this;
    787   }
    788 
    789   /// \brief Bitwise AND assignment operator.
    790   ///
    791   /// Performs a bitwise AND operation on this APInt and RHS. RHS is
    792   /// logically zero-extended or truncated to match the bit-width of
    793   /// the LHS.
    794   APInt &operator&=(uint64_t RHS) {
    795     if (isSingleWord()) {
    796       U.VAL &= RHS;
    797       return *this;
    798     }
    799     U.pVal[0] &= RHS;
    800     memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
    801     return *this;
    802   }
    803 
    804   /// \brief Bitwise OR assignment operator.
    805   ///
    806   /// Performs a bitwise OR operation on this APInt and RHS. The result is
    807   /// assigned *this;
    808   ///
    809   /// \returns *this after ORing with RHS.
    810   APInt &operator|=(const APInt &RHS) {
    811     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    812     if (isSingleWord())
    813       U.VAL |= RHS.U.VAL;
    814     else
    815       OrAssignSlowCase(RHS);
    816     return *this;
    817   }
    818 
    819   /// \brief Bitwise OR assignment operator.
    820   ///
    821   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
    822   /// logically zero-extended or truncated to match the bit-width of
    823   /// the LHS.
    824   APInt &operator|=(uint64_t RHS) {
    825     if (isSingleWord()) {
    826       U.VAL |= RHS;
    827       clearUnusedBits();
    828     } else {
    829       U.pVal[0] |= RHS;
    830     }
    831     return *this;
    832   }
    833 
    834   /// \brief Bitwise XOR assignment operator.
    835   ///
    836   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
    837   /// assigned to *this.
    838   ///
    839   /// \returns *this after XORing with RHS.
    840   APInt &operator^=(const APInt &RHS) {
    841     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    842     if (isSingleWord())
    843       U.VAL ^= RHS.U.VAL;
    844     else
    845       XorAssignSlowCase(RHS);
    846     return *this;
    847   }
    848 
    849   /// \brief Bitwise XOR assignment operator.
    850   ///
    851   /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
    852   /// logically zero-extended or truncated to match the bit-width of
    853   /// the LHS.
    854   APInt &operator^=(uint64_t RHS) {
    855     if (isSingleWord()) {
    856       U.VAL ^= RHS;
    857       clearUnusedBits();
    858     } else {
    859       U.pVal[0] ^= RHS;
    860     }
    861     return *this;
    862   }
    863 
    864   /// \brief Multiplication assignment operator.
    865   ///
    866   /// Multiplies this APInt by RHS and assigns the result to *this.
    867   ///
    868   /// \returns *this
    869   APInt &operator*=(const APInt &RHS);
    870   APInt &operator*=(uint64_t RHS);
    871 
    872   /// \brief Addition assignment operator.
    873   ///
    874   /// Adds RHS to *this and assigns the result to *this.
    875   ///
    876   /// \returns *this
    877   APInt &operator+=(const APInt &RHS);
    878   APInt &operator+=(uint64_t RHS);
    879 
    880   /// \brief Subtraction assignment operator.
    881   ///
    882   /// Subtracts RHS from *this and assigns the result to *this.
    883   ///
    884   /// \returns *this
    885   APInt &operator-=(const APInt &RHS);
    886   APInt &operator-=(uint64_t RHS);
    887 
    888   /// \brief Left-shift assignment function.
    889   ///
    890   /// Shifts *this left by shiftAmt and assigns the result to *this.
    891   ///
    892   /// \returns *this after shifting left by ShiftAmt
    893   APInt &operator<<=(unsigned ShiftAmt) {
    894     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
    895     if (isSingleWord()) {
    896       if (ShiftAmt == BitWidth)
    897         U.VAL = 0;
    898       else
    899         U.VAL <<= ShiftAmt;
    900       return clearUnusedBits();
    901     }
    902     shlSlowCase(ShiftAmt);
    903     return *this;
    904   }
    905 
    906   /// \brief Left-shift assignment function.
    907   ///
    908   /// Shifts *this left by shiftAmt and assigns the result to *this.
    909   ///
    910   /// \returns *this after shifting left by ShiftAmt
    911   APInt &operator<<=(const APInt &ShiftAmt);
    912 
    913   /// @}
    914   /// \name Binary Operators
    915   /// @{
    916 
    917   /// \brief Multiplication operator.
    918   ///
    919   /// Multiplies this APInt by RHS and returns the result.
    920   APInt operator*(const APInt &RHS) const;
    921 
    922   /// \brief Left logical shift operator.
    923   ///
    924   /// Shifts this APInt left by \p Bits and returns the result.
    925   APInt operator<<(unsigned Bits) const { return shl(Bits); }
    926 
    927   /// \brief Left logical shift operator.
    928   ///
    929   /// Shifts this APInt left by \p Bits and returns the result.
    930   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
    931 
    932   /// \brief Arithmetic right-shift function.
    933   ///
    934   /// Arithmetic right-shift this APInt by shiftAmt.
    935   APInt ashr(unsigned ShiftAmt) const {
    936     APInt R(*this);
    937     R.ashrInPlace(ShiftAmt);
    938     return R;
    939   }
    940 
    941   /// Arithmetic right-shift this APInt by ShiftAmt in place.
    942   void ashrInPlace(unsigned ShiftAmt) {
    943     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
    944     if (isSingleWord()) {
    945       int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
    946       if (ShiftAmt == BitWidth)
    947         U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
    948       else
    949         U.VAL = SExtVAL >> ShiftAmt;
    950       clearUnusedBits();
    951       return;
    952     }
    953     ashrSlowCase(ShiftAmt);
    954   }
    955 
    956   /// \brief Logical right-shift function.
    957   ///
    958   /// Logical right-shift this APInt by shiftAmt.
    959   APInt lshr(unsigned shiftAmt) const {
    960     APInt R(*this);
    961     R.lshrInPlace(shiftAmt);
    962     return R;
    963   }
    964 
    965   /// Logical right-shift this APInt by ShiftAmt in place.
    966   void lshrInPlace(unsigned ShiftAmt) {
    967     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
    968     if (isSingleWord()) {
    969       if (ShiftAmt == BitWidth)
    970         U.VAL = 0;
    971       else
    972         U.VAL >>= ShiftAmt;
    973       return;
    974     }
    975     lshrSlowCase(ShiftAmt);
    976   }
    977 
    978   /// \brief Left-shift function.
    979   ///
    980   /// Left-shift this APInt by shiftAmt.
    981   APInt shl(unsigned shiftAmt) const {
    982     APInt R(*this);
    983     R <<= shiftAmt;
    984     return R;
    985   }
    986 
    987   /// \brief Rotate left by rotateAmt.
    988   APInt rotl(unsigned rotateAmt) const;
    989 
    990   /// \brief Rotate right by rotateAmt.
    991   APInt rotr(unsigned rotateAmt) const;
    992 
    993   /// \brief Arithmetic right-shift function.
    994   ///
    995   /// Arithmetic right-shift this APInt by shiftAmt.
    996   APInt ashr(const APInt &ShiftAmt) const {
    997     APInt R(*this);
    998     R.ashrInPlace(ShiftAmt);
    999     return R;
   1000   }
   1001 
   1002   /// Arithmetic right-shift this APInt by shiftAmt in place.
   1003   void ashrInPlace(const APInt &shiftAmt);
   1004 
   1005   /// \brief Logical right-shift function.
   1006   ///
   1007   /// Logical right-shift this APInt by shiftAmt.
   1008   APInt lshr(const APInt &ShiftAmt) const {
   1009     APInt R(*this);
   1010     R.lshrInPlace(ShiftAmt);
   1011     return R;
   1012   }
   1013 
   1014   /// Logical right-shift this APInt by ShiftAmt in place.
   1015   void lshrInPlace(const APInt &ShiftAmt);
   1016 
   1017   /// \brief Left-shift function.
   1018   ///
   1019   /// Left-shift this APInt by shiftAmt.
   1020   APInt shl(const APInt &ShiftAmt) const {
   1021     APInt R(*this);
   1022     R <<= ShiftAmt;
   1023     return R;
   1024   }
   1025 
   1026   /// \brief Rotate left by rotateAmt.
   1027   APInt rotl(const APInt &rotateAmt) const;
   1028 
   1029   /// \brief Rotate right by rotateAmt.
   1030   APInt rotr(const APInt &rotateAmt) const;
   1031 
   1032   /// \brief Unsigned division operation.
   1033   ///
   1034   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
   1035   /// RHS are treated as unsigned quantities for purposes of this division.
   1036   ///
   1037   /// \returns a new APInt value containing the division result
   1038   APInt udiv(const APInt &RHS) const;
   1039   APInt udiv(uint64_t RHS) const;
   1040 
   1041   /// \brief Signed division function for APInt.
   1042   ///
   1043   /// Signed divide this APInt by APInt RHS.
   1044   APInt sdiv(const APInt &RHS) const;
   1045   APInt sdiv(int64_t RHS) const;
   1046 
   1047   /// \brief Unsigned remainder operation.
   1048   ///
   1049   /// Perform an unsigned remainder operation on this APInt with RHS being the
   1050   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
   1051   /// of this operation. Note that this is a true remainder operation and not a
   1052   /// modulo operation because the sign follows the sign of the dividend which
   1053   /// is *this.
   1054   ///
   1055   /// \returns a new APInt value containing the remainder result
   1056   APInt urem(const APInt &RHS) const;
   1057   uint64_t urem(uint64_t RHS) const;
   1058 
   1059   /// \brief Function for signed remainder operation.
   1060   ///
   1061   /// Signed remainder operation on APInt.
   1062   APInt srem(const APInt &RHS) const;
   1063   int64_t srem(int64_t RHS) const;
   1064 
   1065   /// \brief Dual division/remainder interface.
   1066   ///
   1067   /// Sometimes it is convenient to divide two APInt values and obtain both the
   1068   /// quotient and remainder. This function does both operations in the same
   1069   /// computation making it a little more efficient. The pair of input arguments
   1070   /// may overlap with the pair of output arguments. It is safe to call
   1071   /// udivrem(X, Y, X, Y), for example.
   1072   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
   1073                       APInt &Remainder);
   1074   static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
   1075                       uint64_t &Remainder);
   1076 
   1077   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
   1078                       APInt &Remainder);
   1079   static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
   1080                       int64_t &Remainder);
   1081 
   1082   // Operations that return overflow indicators.
   1083   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
   1084   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
   1085   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
   1086   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
   1087   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
   1088   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
   1089   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
   1090   APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
   1091   APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
   1092 
   1093   /// \brief Array-indexing support.
   1094   ///
   1095   /// \returns the bit value at bitPosition
   1096   bool operator[](unsigned bitPosition) const {
   1097     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
   1098     return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
   1099   }
   1100 
   1101   /// @}
   1102   /// \name Comparison Operators
   1103   /// @{
   1104 
   1105   /// \brief Equality operator.
   1106   ///
   1107   /// Compares this APInt with RHS for the validity of the equality
   1108   /// relationship.
   1109   bool operator==(const APInt &RHS) const {
   1110     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
   1111     if (isSingleWord())
   1112       return U.VAL == RHS.U.VAL;
   1113     return EqualSlowCase(RHS);
   1114   }
   1115 
   1116   /// \brief Equality operator.
   1117   ///
   1118   /// Compares this APInt with a uint64_t for the validity of the equality
   1119   /// relationship.
   1120   ///
   1121   /// \returns true if *this == Val
   1122   bool operator==(uint64_t Val) const {
   1123     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
   1124   }
   1125 
   1126   /// \brief Equality comparison.
   1127   ///
   1128   /// Compares this APInt with RHS for the validity of the equality
   1129   /// relationship.
   1130   ///
   1131   /// \returns true if *this == Val
   1132   bool eq(const APInt &RHS) const { return (*this) == RHS; }
   1133 
   1134   /// \brief Inequality operator.
   1135   ///
   1136   /// Compares this APInt with RHS for the validity of the inequality
   1137   /// relationship.
   1138   ///
   1139   /// \returns true if *this != Val
   1140   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
   1141 
   1142   /// \brief Inequality operator.
   1143   ///
   1144   /// Compares this APInt with a uint64_t for the validity of the inequality
   1145   /// relationship.
   1146   ///
   1147   /// \returns true if *this != Val
   1148   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
   1149 
   1150   /// \brief Inequality comparison
   1151   ///
   1152   /// Compares this APInt with RHS for the validity of the inequality
   1153   /// relationship.
   1154   ///
   1155   /// \returns true if *this != Val
   1156   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
   1157 
   1158   /// \brief Unsigned less than comparison
   1159   ///
   1160   /// Regards both *this and RHS as unsigned quantities and compares them for
   1161   /// the validity of the less-than relationship.
   1162   ///
   1163   /// \returns true if *this < RHS when both are considered unsigned.
   1164   bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
   1165 
   1166   /// \brief Unsigned less than comparison
   1167   ///
   1168   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1169   /// the validity of the less-than relationship.
   1170   ///
   1171   /// \returns true if *this < RHS when considered unsigned.
   1172   bool ult(uint64_t RHS) const {
   1173     // Only need to check active bits if not a single word.
   1174     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
   1175   }
   1176 
   1177   /// \brief Signed less than comparison
   1178   ///
   1179   /// Regards both *this and RHS as signed quantities and compares them for
   1180   /// validity of the less-than relationship.
   1181   ///
   1182   /// \returns true if *this < RHS when both are considered signed.
   1183   bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
   1184 
   1185   /// \brief Signed less than comparison
   1186   ///
   1187   /// Regards both *this as a signed quantity and compares it with RHS for
   1188   /// the validity of the less-than relationship.
   1189   ///
   1190   /// \returns true if *this < RHS when considered signed.
   1191   bool slt(int64_t RHS) const {
   1192     return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
   1193                                                         : getSExtValue() < RHS;
   1194   }
   1195 
   1196   /// \brief Unsigned less or equal comparison
   1197   ///
   1198   /// Regards both *this and RHS as unsigned quantities and compares them for
   1199   /// validity of the less-or-equal relationship.
   1200   ///
   1201   /// \returns true if *this <= RHS when both are considered unsigned.
   1202   bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
   1203 
   1204   /// \brief Unsigned less or equal comparison
   1205   ///
   1206   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1207   /// the validity of the less-or-equal relationship.
   1208   ///
   1209   /// \returns true if *this <= RHS when considered unsigned.
   1210   bool ule(uint64_t RHS) const { return !ugt(RHS); }
   1211 
   1212   /// \brief Signed less or equal comparison
   1213   ///
   1214   /// Regards both *this and RHS as signed quantities and compares them for
   1215   /// validity of the less-or-equal relationship.
   1216   ///
   1217   /// \returns true if *this <= RHS when both are considered signed.
   1218   bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
   1219 
   1220   /// \brief Signed less or equal comparison
   1221   ///
   1222   /// Regards both *this as a signed quantity and compares it with RHS for the
   1223   /// validity of the less-or-equal relationship.
   1224   ///
   1225   /// \returns true if *this <= RHS when considered signed.
   1226   bool sle(uint64_t RHS) const { return !sgt(RHS); }
   1227 
   1228   /// \brief Unsigned greather than comparison
   1229   ///
   1230   /// Regards both *this and RHS as unsigned quantities and compares them for
   1231   /// the validity of the greater-than relationship.
   1232   ///
   1233   /// \returns true if *this > RHS when both are considered unsigned.
   1234   bool ugt(const APInt &RHS) const { return !ule(RHS); }
   1235 
   1236   /// \brief Unsigned greater than comparison
   1237   ///
   1238   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1239   /// the validity of the greater-than relationship.
   1240   ///
   1241   /// \returns true if *this > RHS when considered unsigned.
   1242   bool ugt(uint64_t RHS) const {
   1243     // Only need to check active bits if not a single word.
   1244     return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
   1245   }
   1246 
   1247   /// \brief Signed greather than comparison
   1248   ///
   1249   /// Regards both *this and RHS as signed quantities and compares them for the
   1250   /// validity of the greater-than relationship.
   1251   ///
   1252   /// \returns true if *this > RHS when both are considered signed.
   1253   bool sgt(const APInt &RHS) const { return !sle(RHS); }
   1254 
   1255   /// \brief Signed greater than comparison
   1256   ///
   1257   /// Regards both *this as a signed quantity and compares it with RHS for
   1258   /// the validity of the greater-than relationship.
   1259   ///
   1260   /// \returns true if *this > RHS when considered signed.
   1261   bool sgt(int64_t RHS) const {
   1262     return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
   1263                                                         : getSExtValue() > RHS;
   1264   }
   1265 
   1266   /// \brief Unsigned greater or equal comparison
   1267   ///
   1268   /// Regards both *this and RHS as unsigned quantities and compares them for
   1269   /// validity of the greater-or-equal relationship.
   1270   ///
   1271   /// \returns true if *this >= RHS when both are considered unsigned.
   1272   bool uge(const APInt &RHS) const { return !ult(RHS); }
   1273 
   1274   /// \brief Unsigned greater or equal comparison
   1275   ///
   1276   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1277   /// the validity of the greater-or-equal relationship.
   1278   ///
   1279   /// \returns true if *this >= RHS when considered unsigned.
   1280   bool uge(uint64_t RHS) const { return !ult(RHS); }
   1281 
   1282   /// \brief Signed greather or equal comparison
   1283   ///
   1284   /// Regards both *this and RHS as signed quantities and compares them for
   1285   /// validity of the greater-or-equal relationship.
   1286   ///
   1287   /// \returns true if *this >= RHS when both are considered signed.
   1288   bool sge(const APInt &RHS) const { return !slt(RHS); }
   1289 
   1290   /// \brief Signed greater or equal comparison
   1291   ///
   1292   /// Regards both *this as a signed quantity and compares it with RHS for
   1293   /// the validity of the greater-or-equal relationship.
   1294   ///
   1295   /// \returns true if *this >= RHS when considered signed.
   1296   bool sge(int64_t RHS) const { return !slt(RHS); }
   1297 
   1298   /// This operation tests if there are any pairs of corresponding bits
   1299   /// between this APInt and RHS that are both set.
   1300   bool intersects(const APInt &RHS) const {
   1301     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
   1302     if (isSingleWord())
   1303       return (U.VAL & RHS.U.VAL) != 0;
   1304     return intersectsSlowCase(RHS);
   1305   }
   1306 
   1307   /// This operation checks that all bits set in this APInt are also set in RHS.
   1308   bool isSubsetOf(const APInt &RHS) const {
   1309     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
   1310     if (isSingleWord())
   1311       return (U.VAL & ~RHS.U.VAL) == 0;
   1312     return isSubsetOfSlowCase(RHS);
   1313   }
   1314 
   1315   /// @}
   1316   /// \name Resizing Operators
   1317   /// @{
   1318 
   1319   /// \brief Truncate to new width.
   1320   ///
   1321   /// Truncate the APInt to a specified width. It is an error to specify a width
   1322   /// that is greater than or equal to the current width.
   1323   APInt trunc(unsigned width) const;
   1324 
   1325   /// \brief Sign extend to a new width.
   1326   ///
   1327   /// This operation sign extends the APInt to a new width. If the high order
   1328   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
   1329   /// It is an error to specify a width that is less than or equal to the
   1330   /// current width.
   1331   APInt sext(unsigned width) const;
   1332 
   1333   /// \brief Zero extend to a new width.
   1334   ///
   1335   /// This operation zero extends the APInt to a new width. The high order bits
   1336   /// are filled with 0 bits.  It is an error to specify a width that is less
   1337   /// than or equal to the current width.
   1338   APInt zext(unsigned width) const;
   1339 
   1340   /// \brief Sign extend or truncate to width
   1341   ///
   1342   /// Make this APInt have the bit width given by \p width. The value is sign
   1343   /// extended, truncated, or left alone to make it that width.
   1344   APInt sextOrTrunc(unsigned width) const;
   1345 
   1346   /// \brief Zero extend or truncate to width
   1347   ///
   1348   /// Make this APInt have the bit width given by \p width. The value is zero
   1349   /// extended, truncated, or left alone to make it that width.
   1350   APInt zextOrTrunc(unsigned width) const;
   1351 
   1352   /// \brief Sign extend or truncate to width
   1353   ///
   1354   /// Make this APInt have the bit width given by \p width. The value is sign
   1355   /// extended, or left alone to make it that width.
   1356   APInt sextOrSelf(unsigned width) const;
   1357 
   1358   /// \brief Zero extend or truncate to width
   1359   ///
   1360   /// Make this APInt have the bit width given by \p width. The value is zero
   1361   /// extended, or left alone to make it that width.
   1362   APInt zextOrSelf(unsigned width) const;
   1363 
   1364   /// @}
   1365   /// \name Bit Manipulation Operators
   1366   /// @{
   1367 
   1368   /// \brief Set every bit to 1.
   1369   void setAllBits() {
   1370     if (isSingleWord())
   1371       U.VAL = WORD_MAX;
   1372     else
   1373       // Set all the bits in all the words.
   1374       memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
   1375     // Clear the unused ones
   1376     clearUnusedBits();
   1377   }
   1378 
   1379   /// \brief Set a given bit to 1.
   1380   ///
   1381   /// Set the given bit to 1 whose position is given as "bitPosition".
   1382   void setBit(unsigned BitPosition) {
   1383     assert(BitPosition <= BitWidth && "BitPosition out of range");
   1384     WordType Mask = maskBit(BitPosition);
   1385     if (isSingleWord())
   1386       U.VAL |= Mask;
   1387     else
   1388       U.pVal[whichWord(BitPosition)] |= Mask;
   1389   }
   1390 
   1391   /// Set the sign bit to 1.
   1392   void setSignBit() {
   1393     setBit(BitWidth - 1);
   1394   }
   1395 
   1396   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
   1397   void setBits(unsigned loBit, unsigned hiBit) {
   1398     assert(hiBit <= BitWidth && "hiBit out of range");
   1399     assert(loBit <= BitWidth && "loBit out of range");
   1400     assert(loBit <= hiBit && "loBit greater than hiBit");
   1401     if (loBit == hiBit)
   1402       return;
   1403     if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
   1404       uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
   1405       mask <<= loBit;
   1406       if (isSingleWord())
   1407         U.VAL |= mask;
   1408       else
   1409         U.pVal[0] |= mask;
   1410     } else {
   1411       setBitsSlowCase(loBit, hiBit);
   1412     }
   1413   }
   1414 
   1415   /// Set the top bits starting from loBit.
   1416   void setBitsFrom(unsigned loBit) {
   1417     return setBits(loBit, BitWidth);
   1418   }
   1419 
   1420   /// Set the bottom loBits bits.
   1421   void setLowBits(unsigned loBits) {
   1422     return setBits(0, loBits);
   1423   }
   1424 
   1425   /// Set the top hiBits bits.
   1426   void setHighBits(unsigned hiBits) {
   1427     return setBits(BitWidth - hiBits, BitWidth);
   1428   }
   1429 
   1430   /// \brief Set every bit to 0.
   1431   void clearAllBits() {
   1432     if (isSingleWord())
   1433       U.VAL = 0;
   1434     else
   1435       memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
   1436   }
   1437 
   1438   /// \brief Set a given bit to 0.
   1439   ///
   1440   /// Set the given bit to 0 whose position is given as "bitPosition".
   1441   void clearBit(unsigned BitPosition) {
   1442     assert(BitPosition <= BitWidth && "BitPosition out of range");
   1443     WordType Mask = ~maskBit(BitPosition);
   1444     if (isSingleWord())
   1445       U.VAL &= Mask;
   1446     else
   1447       U.pVal[whichWord(BitPosition)] &= Mask;
   1448   }
   1449 
   1450   /// Set the sign bit to 0.
   1451   void clearSignBit() {
   1452     clearBit(BitWidth - 1);
   1453   }
   1454 
   1455   /// \brief Toggle every bit to its opposite value.
   1456   void flipAllBits() {
   1457     if (isSingleWord()) {
   1458       U.VAL ^= WORD_MAX;
   1459       clearUnusedBits();
   1460     } else {
   1461       flipAllBitsSlowCase();
   1462     }
   1463   }
   1464 
   1465   /// \brief Toggles a given bit to its opposite value.
   1466   ///
   1467   /// Toggle a given bit to its opposite value whose position is given
   1468   /// as "bitPosition".
   1469   void flipBit(unsigned bitPosition);
   1470 
   1471   /// Negate this APInt in place.
   1472   void negate() {
   1473     flipAllBits();
   1474     ++(*this);
   1475   }
   1476 
   1477   /// Insert the bits from a smaller APInt starting at bitPosition.
   1478   void insertBits(const APInt &SubBits, unsigned bitPosition);
   1479 
   1480   /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
   1481   APInt extractBits(unsigned numBits, unsigned bitPosition) const;
   1482 
   1483   /// @}
   1484   /// \name Value Characterization Functions
   1485   /// @{
   1486 
   1487   /// \brief Return the number of bits in the APInt.
   1488   unsigned getBitWidth() const { return BitWidth; }
   1489 
   1490   /// \brief Get the number of words.
   1491   ///
   1492   /// Here one word's bitwidth equals to that of uint64_t.
   1493   ///
   1494   /// \returns the number of words to hold the integer value of this APInt.
   1495   unsigned getNumWords() const { return getNumWords(BitWidth); }
   1496 
   1497   /// \brief Get the number of words.
   1498   ///
   1499   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
   1500   ///
   1501   /// \returns the number of words to hold the integer value with a given bit
   1502   /// width.
   1503   static unsigned getNumWords(unsigned BitWidth) {
   1504     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
   1505   }
   1506 
   1507   /// \brief Compute the number of active bits in the value
   1508   ///
   1509   /// This function returns the number of active bits which is defined as the
   1510   /// bit width minus the number of leading zeros. This is used in several
   1511   /// computations to see how "wide" the value is.
   1512   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
   1513 
   1514   /// \brief Compute the number of active words in the value of this APInt.
   1515   ///
   1516   /// This is used in conjunction with getActiveData to extract the raw value of
   1517   /// the APInt.
   1518   unsigned getActiveWords() const {
   1519     unsigned numActiveBits = getActiveBits();
   1520     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
   1521   }
   1522 
   1523   /// \brief Get the minimum bit size for this signed APInt
   1524   ///
   1525   /// Computes the minimum bit width for this APInt while considering it to be a
   1526   /// signed (and probably negative) value. If the value is not negative, this
   1527   /// function returns the same value as getActiveBits()+1. Otherwise, it
   1528   /// returns the smallest bit width that will retain the negative value. For
   1529   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
   1530   /// for -1, this function will always return 1.
   1531   unsigned getMinSignedBits() const {
   1532     if (isNegative())
   1533       return BitWidth - countLeadingOnes() + 1;
   1534     return getActiveBits() + 1;
   1535   }
   1536 
   1537   /// \brief Get zero extended value
   1538   ///
   1539   /// This method attempts to return the value of this APInt as a zero extended
   1540   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
   1541   /// uint64_t. Otherwise an assertion will result.
   1542   uint64_t getZExtValue() const {
   1543     if (isSingleWord())
   1544       return U.VAL;
   1545     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
   1546     return U.pVal[0];
   1547   }
   1548 
   1549   /// \brief Get sign extended value
   1550   ///
   1551   /// This method attempts to return the value of this APInt as a sign extended
   1552   /// int64_t. The bit width must be <= 64 or the value must fit within an
   1553   /// int64_t. Otherwise an assertion will result.
   1554   int64_t getSExtValue() const {
   1555     if (isSingleWord())
   1556       return SignExtend64(U.VAL, BitWidth);
   1557     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
   1558     return int64_t(U.pVal[0]);
   1559   }
   1560 
   1561   /// \brief Get bits required for string value.
   1562   ///
   1563   /// This method determines how many bits are required to hold the APInt
   1564   /// equivalent of the string given by \p str.
   1565   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
   1566 
   1567   /// \brief The APInt version of the countLeadingZeros functions in
   1568   ///   MathExtras.h.
   1569   ///
   1570   /// It counts the number of zeros from the most significant bit to the first
   1571   /// one bit.
   1572   ///
   1573   /// \returns BitWidth if the value is zero, otherwise returns the number of
   1574   ///   zeros from the most significant bit to the first one bits.
   1575   unsigned countLeadingZeros() const {
   1576     if (isSingleWord()) {
   1577       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
   1578       return llvm::countLeadingZeros(U.VAL) - unusedBits;
   1579     }
   1580     return countLeadingZerosSlowCase();
   1581   }
   1582 
   1583   /// \brief Count the number of leading one bits.
   1584   ///
   1585   /// This function is an APInt version of the countLeadingOnes
   1586   /// functions in MathExtras.h. It counts the number of ones from the most
   1587   /// significant bit to the first zero bit.
   1588   ///
   1589   /// \returns 0 if the high order bit is not set, otherwise returns the number
   1590   /// of 1 bits from the most significant to the least
   1591   unsigned countLeadingOnes() const {
   1592     if (isSingleWord())
   1593       return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
   1594     return countLeadingOnesSlowCase();
   1595   }
   1596 
   1597   /// Computes the number of leading bits of this APInt that are equal to its
   1598   /// sign bit.
   1599   unsigned getNumSignBits() const {
   1600     return isNegative() ? countLeadingOnes() : countLeadingZeros();
   1601   }
   1602 
   1603   /// \brief Count the number of trailing zero bits.
   1604   ///
   1605   /// This function is an APInt version of the countTrailingZeros
   1606   /// functions in MathExtras.h. It counts the number of zeros from the least
   1607   /// significant bit to the first set bit.
   1608   ///
   1609   /// \returns BitWidth if the value is zero, otherwise returns the number of
   1610   /// zeros from the least significant bit to the first one bit.
   1611   unsigned countTrailingZeros() const {
   1612     if (isSingleWord())
   1613       return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
   1614     return countTrailingZerosSlowCase();
   1615   }
   1616 
   1617   /// \brief Count the number of trailing one bits.
   1618   ///
   1619   /// This function is an APInt version of the countTrailingOnes
   1620   /// functions in MathExtras.h. It counts the number of ones from the least
   1621   /// significant bit to the first zero bit.
   1622   ///
   1623   /// \returns BitWidth if the value is all ones, otherwise returns the number
   1624   /// of ones from the least significant bit to the first zero bit.
   1625   unsigned countTrailingOnes() const {
   1626     if (isSingleWord())
   1627       return llvm::countTrailingOnes(U.VAL);
   1628     return countTrailingOnesSlowCase();
   1629   }
   1630 
   1631   /// \brief Count the number of bits set.
   1632   ///
   1633   /// This function is an APInt version of the countPopulation functions
   1634   /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
   1635   ///
   1636   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
   1637   unsigned countPopulation() const {
   1638     if (isSingleWord())
   1639       return llvm::countPopulation(U.VAL);
   1640     return countPopulationSlowCase();
   1641   }
   1642 
   1643   /// @}
   1644   /// \name Conversion Functions
   1645   /// @{
   1646   void print(raw_ostream &OS, bool isSigned) const;
   1647 
   1648   /// Converts an APInt to a string and append it to Str.  Str is commonly a
   1649   /// SmallString.
   1650   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
   1651                 bool formatAsCLiteral = false) const;
   1652 
   1653   /// Considers the APInt to be unsigned and converts it into a string in the
   1654   /// radix given. The radix can be 2, 8, 10 16, or 36.
   1655   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1656     toString(Str, Radix, false, false);
   1657   }
   1658 
   1659   /// Considers the APInt to be signed and converts it into a string in the
   1660   /// radix given. The radix can be 2, 8, 10, 16, or 36.
   1661   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1662     toString(Str, Radix, true, false);
   1663   }
   1664 
   1665   /// \brief Return the APInt as a std::string.
   1666   ///
   1667   /// Note that this is an inefficient method.  It is better to pass in a
   1668   /// SmallVector/SmallString to the methods above to avoid thrashing the heap
   1669   /// for the string.
   1670   std::string toString(unsigned Radix, bool Signed) const;
   1671 
   1672   /// \returns a byte-swapped representation of this APInt Value.
   1673   APInt byteSwap() const;
   1674 
   1675   /// \returns the value with the bit representation reversed of this APInt
   1676   /// Value.
   1677   APInt reverseBits() const;
   1678 
   1679   /// \brief Converts this APInt to a double value.
   1680   double roundToDouble(bool isSigned) const;
   1681 
   1682   /// \brief Converts this unsigned APInt to a double value.
   1683   double roundToDouble() const { return roundToDouble(false); }
   1684 
   1685   /// \brief Converts this signed APInt to a double value.
   1686   double signedRoundToDouble() const { return roundToDouble(true); }
   1687 
   1688   /// \brief Converts APInt bits to a double
   1689   ///
   1690   /// The conversion does not do a translation from integer to double, it just
   1691   /// re-interprets the bits as a double. Note that it is valid to do this on
   1692   /// any bit width. Exactly 64 bits will be translated.
   1693   double bitsToDouble() const {
   1694     return BitsToDouble(getWord(0));
   1695   }
   1696 
   1697   /// \brief Converts APInt bits to a double
   1698   ///
   1699   /// The conversion does not do a translation from integer to float, it just
   1700   /// re-interprets the bits as a float. Note that it is valid to do this on
   1701   /// any bit width. Exactly 32 bits will be translated.
   1702   float bitsToFloat() const {
   1703     return BitsToFloat(getWord(0));
   1704   }
   1705 
   1706   /// \brief Converts a double to APInt bits.
   1707   ///
   1708   /// The conversion does not do a translation from double to integer, it just
   1709   /// re-interprets the bits of the double.
   1710   static APInt doubleToBits(double V) {
   1711     return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
   1712   }
   1713 
   1714   /// \brief Converts a float to APInt bits.
   1715   ///
   1716   /// The conversion does not do a translation from float to integer, it just
   1717   /// re-interprets the bits of the float.
   1718   static APInt floatToBits(float V) {
   1719     return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
   1720   }
   1721 
   1722   /// @}
   1723   /// \name Mathematics Operations
   1724   /// @{
   1725 
   1726   /// \returns the floor log base 2 of this APInt.
   1727   unsigned logBase2() const { return getActiveBits() -  1; }
   1728 
   1729   /// \returns the ceil log base 2 of this APInt.
   1730   unsigned ceilLogBase2() const {
   1731     APInt temp(*this);
   1732     --temp;
   1733     return temp.getActiveBits();
   1734   }
   1735 
   1736   /// \returns the nearest log base 2 of this APInt. Ties round up.
   1737   ///
   1738   /// NOTE: When we have a BitWidth of 1, we define:
   1739   ///
   1740   ///   log2(0) = UINT32_MAX
   1741   ///   log2(1) = 0
   1742   ///
   1743   /// to get around any mathematical concerns resulting from
   1744   /// referencing 2 in a space where 2 does no exist.
   1745   unsigned nearestLogBase2() const {
   1746     // Special case when we have a bitwidth of 1. If VAL is 1, then we
   1747     // get 0. If VAL is 0, we get WORD_MAX which gets truncated to
   1748     // UINT32_MAX.
   1749     if (BitWidth == 1)
   1750       return U.VAL - 1;
   1751 
   1752     // Handle the zero case.
   1753     if (isNullValue())
   1754       return UINT32_MAX;
   1755 
   1756     // The non-zero case is handled by computing:
   1757     //
   1758     //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
   1759     //
   1760     // where x[i] is referring to the value of the ith bit of x.
   1761     unsigned lg = logBase2();
   1762     return lg + unsigned((*this)[lg - 1]);
   1763   }
   1764 
   1765   /// \returns the log base 2 of this APInt if its an exact power of two, -1
   1766   /// otherwise
   1767   int32_t exactLogBase2() const {
   1768     if (!isPowerOf2())
   1769       return -1;
   1770     return logBase2();
   1771   }
   1772 
   1773   /// \brief Compute the square root
   1774   APInt sqrt() const;
   1775 
   1776   /// \brief Get the absolute value;
   1777   ///
   1778   /// If *this is < 0 then return -(*this), otherwise *this;
   1779   APInt abs() const {
   1780     if (isNegative())
   1781       return -(*this);
   1782     return *this;
   1783   }
   1784 
   1785   /// \returns the multiplicative inverse for a given modulo.
   1786   APInt multiplicativeInverse(const APInt &modulo) const;
   1787 
   1788   /// @}
   1789   /// \name Support for division by constant
   1790   /// @{
   1791 
   1792   /// Calculate the magic number for signed division by a constant.
   1793   struct ms;
   1794   ms magic() const;
   1795 
   1796   /// Calculate the magic number for unsigned division by a constant.
   1797   struct mu;
   1798   mu magicu(unsigned LeadingZeros = 0) const;
   1799 
   1800   /// @}
   1801   /// \name Building-block Operations for APInt and APFloat
   1802   /// @{
   1803 
   1804   // These building block operations operate on a representation of arbitrary
   1805   // precision, two's-complement, bignum integer values. They should be
   1806   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
   1807   // generally a pointer to the base of an array of integer parts, representing
   1808   // an unsigned bignum, and a count of how many parts there are.
   1809 
   1810   /// Sets the least significant part of a bignum to the input value, and zeroes
   1811   /// out higher parts.
   1812   static void tcSet(WordType *, WordType, unsigned);
   1813 
   1814   /// Assign one bignum to another.
   1815   static void tcAssign(WordType *, const WordType *, unsigned);
   1816 
   1817   /// Returns true if a bignum is zero, false otherwise.
   1818   static bool tcIsZero(const WordType *, unsigned);
   1819 
   1820   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
   1821   static int tcExtractBit(const WordType *, unsigned bit);
   1822 
   1823   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
   1824   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
   1825   /// significant bit of DST.  All high bits above srcBITS in DST are
   1826   /// zero-filled.
   1827   static void tcExtract(WordType *, unsigned dstCount,
   1828                         const WordType *, unsigned srcBits,
   1829                         unsigned srcLSB);
   1830 
   1831   /// Set the given bit of a bignum.  Zero-based.
   1832   static void tcSetBit(WordType *, unsigned bit);
   1833 
   1834   /// Clear the given bit of a bignum.  Zero-based.
   1835   static void tcClearBit(WordType *, unsigned bit);
   1836 
   1837   /// Returns the bit number of the least or most significant set bit of a
   1838   /// number.  If the input number has no bits set -1U is returned.
   1839   static unsigned tcLSB(const WordType *, unsigned n);
   1840   static unsigned tcMSB(const WordType *parts, unsigned n);
   1841 
   1842   /// Negate a bignum in-place.
   1843   static void tcNegate(WordType *, unsigned);
   1844 
   1845   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
   1846   static WordType tcAdd(WordType *, const WordType *,
   1847                         WordType carry, unsigned);
   1848   /// DST += RHS.  Returns the carry flag.
   1849   static WordType tcAddPart(WordType *, WordType, unsigned);
   1850 
   1851   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
   1852   static WordType tcSubtract(WordType *, const WordType *,
   1853                              WordType carry, unsigned);
   1854   /// DST -= RHS.  Returns the carry flag.
   1855   static WordType tcSubtractPart(WordType *, WordType, unsigned);
   1856 
   1857   /// DST += SRC * MULTIPLIER + PART   if add is true
   1858   /// DST  = SRC * MULTIPLIER + PART   if add is false
   1859   ///
   1860   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
   1861   /// start at the same point, i.e. DST == SRC.
   1862   ///
   1863   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
   1864   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
   1865   /// result, and if all of the omitted higher parts were zero return zero,
   1866   /// otherwise overflow occurred and return one.
   1867   static int tcMultiplyPart(WordType *dst, const WordType *src,
   1868                             WordType multiplier, WordType carry,
   1869                             unsigned srcParts, unsigned dstParts,
   1870                             bool add);
   1871 
   1872   /// DST = LHS * RHS, where DST has the same width as the operands and is
   1873   /// filled with the least significant parts of the result.  Returns one if
   1874   /// overflow occurred, otherwise zero.  DST must be disjoint from both
   1875   /// operands.
   1876   static int tcMultiply(WordType *, const WordType *, const WordType *,
   1877                         unsigned);
   1878 
   1879   /// DST = LHS * RHS, where DST has width the sum of the widths of the
   1880   /// operands. No overflow occurs. DST must be disjoint from both operands.
   1881   static void tcFullMultiply(WordType *, const WordType *,
   1882                              const WordType *, unsigned, unsigned);
   1883 
   1884   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
   1885   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
   1886   /// REMAINDER to the remainder, return zero.  i.e.
   1887   ///
   1888   ///  OLD_LHS = RHS * LHS + REMAINDER
   1889   ///
   1890   /// SCRATCH is a bignum of the same size as the operands and result for use by
   1891   /// the routine; its contents need not be initialized and are destroyed.  LHS,
   1892   /// REMAINDER and SCRATCH must be distinct.
   1893   static int tcDivide(WordType *lhs, const WordType *rhs,
   1894                       WordType *remainder, WordType *scratch,
   1895                       unsigned parts);
   1896 
   1897   /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
   1898   /// restrictions on Count.
   1899   static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
   1900 
   1901   /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
   1902   /// restrictions on Count.
   1903   static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
   1904 
   1905   /// The obvious AND, OR and XOR and complement operations.
   1906   static void tcAnd(WordType *, const WordType *, unsigned);
   1907   static void tcOr(WordType *, const WordType *, unsigned);
   1908   static void tcXor(WordType *, const WordType *, unsigned);
   1909   static void tcComplement(WordType *, unsigned);
   1910 
   1911   /// Comparison (unsigned) of two bignums.
   1912   static int tcCompare(const WordType *, const WordType *, unsigned);
   1913 
   1914   /// Increment a bignum in-place.  Return the carry flag.
   1915   static WordType tcIncrement(WordType *dst, unsigned parts) {
   1916     return tcAddPart(dst, 1, parts);
   1917   }
   1918 
   1919   /// Decrement a bignum in-place.  Return the borrow flag.
   1920   static WordType tcDecrement(WordType *dst, unsigned parts) {
   1921     return tcSubtractPart(dst, 1, parts);
   1922   }
   1923 
   1924   /// Set the least significant BITS and clear the rest.
   1925   static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
   1926 
   1927   /// \brief debug method
   1928   void dump() const;
   1929 
   1930   /// @}
   1931 };
   1932 
   1933 /// Magic data for optimising signed division by a constant.
   1934 struct APInt::ms {
   1935   APInt m;    ///< magic number
   1936   unsigned s; ///< shift amount
   1937 };
   1938 
   1939 /// Magic data for optimising unsigned division by a constant.
   1940 struct APInt::mu {
   1941   APInt m;    ///< magic number
   1942   bool a;     ///< add indicator
   1943   unsigned s; ///< shift amount
   1944 };
   1945 
   1946 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
   1947 
   1948 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
   1949 
   1950 /// \brief Unary bitwise complement operator.
   1951 ///
   1952 /// \returns an APInt that is the bitwise complement of \p v.
   1953 inline APInt operator~(APInt v) {
   1954   v.flipAllBits();
   1955   return v;
   1956 }
   1957 
   1958 inline APInt operator&(APInt a, const APInt &b) {
   1959   a &= b;
   1960   return a;
   1961 }
   1962 
   1963 inline APInt operator&(const APInt &a, APInt &&b) {
   1964   b &= a;
   1965   return std::move(b);
   1966 }
   1967 
   1968 inline APInt operator&(APInt a, uint64_t RHS) {
   1969   a &= RHS;
   1970   return a;
   1971 }
   1972 
   1973 inline APInt operator&(uint64_t LHS, APInt b) {
   1974   b &= LHS;
   1975   return b;
   1976 }
   1977 
   1978 inline APInt operator|(APInt a, const APInt &b) {
   1979   a |= b;
   1980   return a;
   1981 }
   1982 
   1983 inline APInt operator|(const APInt &a, APInt &&b) {
   1984   b |= a;
   1985   return std::move(b);
   1986 }
   1987 
   1988 inline APInt operator|(APInt a, uint64_t RHS) {
   1989   a |= RHS;
   1990   return a;
   1991 }
   1992 
   1993 inline APInt operator|(uint64_t LHS, APInt b) {
   1994   b |= LHS;
   1995   return b;
   1996 }
   1997 
   1998 inline APInt operator^(APInt a, const APInt &b) {
   1999   a ^= b;
   2000   return a;
   2001 }
   2002 
   2003 inline APInt operator^(const APInt &a, APInt &&b) {
   2004   b ^= a;
   2005   return std::move(b);
   2006 }
   2007 
   2008 inline APInt operator^(APInt a, uint64_t RHS) {
   2009   a ^= RHS;
   2010   return a;
   2011 }
   2012 
   2013 inline APInt operator^(uint64_t LHS, APInt b) {
   2014   b ^= LHS;
   2015   return b;
   2016 }
   2017 
   2018 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
   2019   I.print(OS, true);
   2020   return OS;
   2021 }
   2022 
   2023 inline APInt operator-(APInt v) {
   2024   v.negate();
   2025   return v;
   2026 }
   2027 
   2028 inline APInt operator+(APInt a, const APInt &b) {
   2029   a += b;
   2030   return a;
   2031 }
   2032 
   2033 inline APInt operator+(const APInt &a, APInt &&b) {
   2034   b += a;
   2035   return std::move(b);
   2036 }
   2037 
   2038 inline APInt operator+(APInt a, uint64_t RHS) {
   2039   a += RHS;
   2040   return a;
   2041 }
   2042 
   2043 inline APInt operator+(uint64_t LHS, APInt b) {
   2044   b += LHS;
   2045   return b;
   2046 }
   2047 
   2048 inline APInt operator-(APInt a, const APInt &b) {
   2049   a -= b;
   2050   return a;
   2051 }
   2052 
   2053 inline APInt operator-(const APInt &a, APInt &&b) {
   2054   b.negate();
   2055   b += a;
   2056   return std::move(b);
   2057 }
   2058 
   2059 inline APInt operator-(APInt a, uint64_t RHS) {
   2060   a -= RHS;
   2061   return a;
   2062 }
   2063 
   2064 inline APInt operator-(uint64_t LHS, APInt b) {
   2065   b.negate();
   2066   b += LHS;
   2067   return b;
   2068 }
   2069 
   2070 inline APInt operator*(APInt a, uint64_t RHS) {
   2071   a *= RHS;
   2072   return a;
   2073 }
   2074 
   2075 inline APInt operator*(uint64_t LHS, APInt b) {
   2076   b *= LHS;
   2077   return b;
   2078 }
   2079 
   2080 
   2081 namespace APIntOps {
   2082 
   2083 /// \brief Determine the smaller of two APInts considered to be signed.
   2084 inline const APInt &smin(const APInt &A, const APInt &B) {
   2085   return A.slt(B) ? A : B;
   2086 }
   2087 
   2088 /// \brief Determine the larger of two APInts considered to be signed.
   2089 inline const APInt &smax(const APInt &A, const APInt &B) {
   2090   return A.sgt(B) ? A : B;
   2091 }
   2092 
   2093 /// \brief Determine the smaller of two APInts considered to be signed.
   2094 inline const APInt &umin(const APInt &A, const APInt &B) {
   2095   return A.ult(B) ? A : B;
   2096 }
   2097 
   2098 /// \brief Determine the larger of two APInts considered to be unsigned.
   2099 inline const APInt &umax(const APInt &A, const APInt &B) {
   2100   return A.ugt(B) ? A : B;
   2101 }
   2102 
   2103 /// \brief Compute GCD of two unsigned APInt values.
   2104 ///
   2105 /// This function returns the greatest common divisor of the two APInt values
   2106 /// using Stein's algorithm.
   2107 ///
   2108 /// \returns the greatest common divisor of A and B.
   2109 APInt GreatestCommonDivisor(APInt A, APInt B);
   2110 
   2111 /// \brief Converts the given APInt to a double value.
   2112 ///
   2113 /// Treats the APInt as an unsigned value for conversion purposes.
   2114 inline double RoundAPIntToDouble(const APInt &APIVal) {
   2115   return APIVal.roundToDouble();
   2116 }
   2117 
   2118 /// \brief Converts the given APInt to a double value.
   2119 ///
   2120 /// Treats the APInt as a signed value for conversion purposes.
   2121 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
   2122   return APIVal.signedRoundToDouble();
   2123 }
   2124 
   2125 /// \brief Converts the given APInt to a float vlalue.
   2126 inline float RoundAPIntToFloat(const APInt &APIVal) {
   2127   return float(RoundAPIntToDouble(APIVal));
   2128 }
   2129 
   2130 /// \brief Converts the given APInt to a float value.
   2131 ///
   2132 /// Treast the APInt as a signed value for conversion purposes.
   2133 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
   2134   return float(APIVal.signedRoundToDouble());
   2135 }
   2136 
   2137 /// \brief Converts the given double value into a APInt.
   2138 ///
   2139 /// This function convert a double value to an APInt value.
   2140 APInt RoundDoubleToAPInt(double Double, unsigned width);
   2141 
   2142 /// \brief Converts a float value into a APInt.
   2143 ///
   2144 /// Converts a float value into an APInt value.
   2145 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
   2146   return RoundDoubleToAPInt(double(Float), width);
   2147 }
   2148 
   2149 } // End of APIntOps namespace
   2150 
   2151 // See friend declaration above. This additional declaration is required in
   2152 // order to compile LLVM with IBM xlC compiler.
   2153 hash_code hash_value(const APInt &Arg);
   2154 } // End of llvm namespace
   2155 
   2156 #endif
   2157