Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SmallBitVector class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_SMALLBITVECTOR_H
     15 #define LLVM_ADT_SMALLBITVECTOR_H
     16 
     17 #include "llvm/ADT/BitVector.h"
     18 #include "llvm/ADT/iterator_range.h"
     19 #include "llvm/Support/MathExtras.h"
     20 #include <algorithm>
     21 #include <cassert>
     22 #include <climits>
     23 #include <cstddef>
     24 #include <cstdint>
     25 #include <limits>
     26 #include <utility>
     27 
     28 namespace llvm {
     29 
     30 /// This is a 'bitvector' (really, a variable-sized bit array), optimized for
     31 /// the case when the array is small. It contains one pointer-sized field, which
     32 /// is directly used as a plain collection of bits when possible, or as a
     33 /// pointer to a larger heap-allocated array when necessary. This allows normal
     34 /// "small" cases to be fast without losing generality for large inputs.
     35 class SmallBitVector {
     36   // TODO: In "large" mode, a pointer to a BitVector is used, leading to an
     37   // unnecessary level of indirection. It would be more efficient to use a
     38   // pointer to memory containing size, allocation size, and the array of bits.
     39   uintptr_t X = 1;
     40 
     41   enum {
     42     // The number of bits in this class.
     43     NumBaseBits = sizeof(uintptr_t) * CHAR_BIT,
     44 
     45     // One bit is used to discriminate between small and large mode. The
     46     // remaining bits are used for the small-mode representation.
     47     SmallNumRawBits = NumBaseBits - 1,
     48 
     49     // A few more bits are used to store the size of the bit set in small mode.
     50     // Theoretically this is a ceil-log2. These bits are encoded in the most
     51     // significant bits of the raw bits.
     52     SmallNumSizeBits = (NumBaseBits == 32 ? 5 :
     53                         NumBaseBits == 64 ? 6 :
     54                         SmallNumRawBits),
     55 
     56     // The remaining bits are used to store the actual set in small mode.
     57     SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits
     58   };
     59 
     60   static_assert(NumBaseBits == 64 || NumBaseBits == 32,
     61                 "Unsupported word size");
     62 
     63 public:
     64   using size_type = unsigned;
     65 
     66   // Encapsulation of a single bit.
     67   class reference {
     68     SmallBitVector &TheVector;
     69     unsigned BitPos;
     70 
     71   public:
     72     reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {}
     73 
     74     reference(const reference&) = default;
     75 
     76     reference& operator=(reference t) {
     77       *this = bool(t);
     78       return *this;
     79     }
     80 
     81     reference& operator=(bool t) {
     82       if (t)
     83         TheVector.set(BitPos);
     84       else
     85         TheVector.reset(BitPos);
     86       return *this;
     87     }
     88 
     89     operator bool() const {
     90       return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos);
     91     }
     92   };
     93 
     94 private:
     95   bool isSmall() const {
     96     return X & uintptr_t(1);
     97   }
     98 
     99   BitVector *getPointer() const {
    100     assert(!isSmall());
    101     return reinterpret_cast<BitVector *>(X);
    102   }
    103 
    104   void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) {
    105     X = 1;
    106     setSmallSize(NewSize);
    107     setSmallBits(NewSmallBits);
    108   }
    109 
    110   void switchToLarge(BitVector *BV) {
    111     X = reinterpret_cast<uintptr_t>(BV);
    112     assert(!isSmall() && "Tried to use an unaligned pointer");
    113   }
    114 
    115   // Return all the bits used for the "small" representation; this includes
    116   // bits for the size as well as the element bits.
    117   uintptr_t getSmallRawBits() const {
    118     assert(isSmall());
    119     return X >> 1;
    120   }
    121 
    122   void setSmallRawBits(uintptr_t NewRawBits) {
    123     assert(isSmall());
    124     X = (NewRawBits << 1) | uintptr_t(1);
    125   }
    126 
    127   // Return the size.
    128   size_t getSmallSize() const { return getSmallRawBits() >> SmallNumDataBits; }
    129 
    130   void setSmallSize(size_t Size) {
    131     setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits));
    132   }
    133 
    134   // Return the element bits.
    135   uintptr_t getSmallBits() const {
    136     return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize());
    137   }
    138 
    139   void setSmallBits(uintptr_t NewBits) {
    140     setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) |
    141                     (getSmallSize() << SmallNumDataBits));
    142   }
    143 
    144 public:
    145   /// Creates an empty bitvector.
    146   SmallBitVector() = default;
    147 
    148   /// Creates a bitvector of specified number of bits. All bits are initialized
    149   /// to the specified value.
    150   explicit SmallBitVector(unsigned s, bool t = false) {
    151     if (s <= SmallNumDataBits)
    152       switchToSmall(t ? ~uintptr_t(0) : 0, s);
    153     else
    154       switchToLarge(new BitVector(s, t));
    155   }
    156 
    157   /// SmallBitVector copy ctor.
    158   SmallBitVector(const SmallBitVector &RHS) {
    159     if (RHS.isSmall())
    160       X = RHS.X;
    161     else
    162       switchToLarge(new BitVector(*RHS.getPointer()));
    163   }
    164 
    165   SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) {
    166     RHS.X = 1;
    167   }
    168 
    169   ~SmallBitVector() {
    170     if (!isSmall())
    171       delete getPointer();
    172   }
    173 
    174   using const_set_bits_iterator = const_set_bits_iterator_impl<SmallBitVector>;
    175   using set_iterator = const_set_bits_iterator;
    176 
    177   const_set_bits_iterator set_bits_begin() const {
    178     return const_set_bits_iterator(*this);
    179   }
    180 
    181   const_set_bits_iterator set_bits_end() const {
    182     return const_set_bits_iterator(*this, -1);
    183   }
    184 
    185   iterator_range<const_set_bits_iterator> set_bits() const {
    186     return make_range(set_bits_begin(), set_bits_end());
    187   }
    188 
    189   /// Tests whether there are no bits in this bitvector.
    190   bool empty() const {
    191     return isSmall() ? getSmallSize() == 0 : getPointer()->empty();
    192   }
    193 
    194   /// Returns the number of bits in this bitvector.
    195   size_t size() const {
    196     return isSmall() ? getSmallSize() : getPointer()->size();
    197   }
    198 
    199   /// Returns the number of bits which are set.
    200   size_type count() const {
    201     if (isSmall()) {
    202       uintptr_t Bits = getSmallBits();
    203       return countPopulation(Bits);
    204     }
    205     return getPointer()->count();
    206   }
    207 
    208   /// Returns true if any bit is set.
    209   bool any() const {
    210     if (isSmall())
    211       return getSmallBits() != 0;
    212     return getPointer()->any();
    213   }
    214 
    215   /// Returns true if all bits are set.
    216   bool all() const {
    217     if (isSmall())
    218       return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1;
    219     return getPointer()->all();
    220   }
    221 
    222   /// Returns true if none of the bits are set.
    223   bool none() const {
    224     if (isSmall())
    225       return getSmallBits() == 0;
    226     return getPointer()->none();
    227   }
    228 
    229   /// Returns the index of the first set bit, -1 if none of the bits are set.
    230   int find_first() const {
    231     if (isSmall()) {
    232       uintptr_t Bits = getSmallBits();
    233       if (Bits == 0)
    234         return -1;
    235       return countTrailingZeros(Bits);
    236     }
    237     return getPointer()->find_first();
    238   }
    239 
    240   int find_last() const {
    241     if (isSmall()) {
    242       uintptr_t Bits = getSmallBits();
    243       if (Bits == 0)
    244         return -1;
    245       return NumBaseBits - countLeadingZeros(Bits);
    246     }
    247     return getPointer()->find_last();
    248   }
    249 
    250   /// Returns the index of the first unset bit, -1 if all of the bits are set.
    251   int find_first_unset() const {
    252     if (isSmall()) {
    253       if (count() == getSmallSize())
    254         return -1;
    255 
    256       uintptr_t Bits = getSmallBits();
    257       return countTrailingOnes(Bits);
    258     }
    259     return getPointer()->find_first_unset();
    260   }
    261 
    262   int find_last_unset() const {
    263     if (isSmall()) {
    264       if (count() == getSmallSize())
    265         return -1;
    266 
    267       uintptr_t Bits = getSmallBits();
    268       return NumBaseBits - countLeadingOnes(Bits);
    269     }
    270     return getPointer()->find_last_unset();
    271   }
    272 
    273   /// Returns the index of the next set bit following the "Prev" bit.
    274   /// Returns -1 if the next set bit is not found.
    275   int find_next(unsigned Prev) const {
    276     if (isSmall()) {
    277       uintptr_t Bits = getSmallBits();
    278       // Mask off previous bits.
    279       Bits &= ~uintptr_t(0) << (Prev + 1);
    280       if (Bits == 0 || Prev + 1 >= getSmallSize())
    281         return -1;
    282       return countTrailingZeros(Bits);
    283     }
    284     return getPointer()->find_next(Prev);
    285   }
    286 
    287   /// Returns the index of the next unset bit following the "Prev" bit.
    288   /// Returns -1 if the next unset bit is not found.
    289   int find_next_unset(unsigned Prev) const {
    290     if (isSmall()) {
    291       ++Prev;
    292       uintptr_t Bits = getSmallBits();
    293       // Mask in previous bits.
    294       uintptr_t Mask = (1 << Prev) - 1;
    295       Bits |= Mask;
    296 
    297       if (Bits == ~uintptr_t(0) || Prev + 1 >= getSmallSize())
    298         return -1;
    299       return countTrailingOnes(Bits);
    300     }
    301     return getPointer()->find_next_unset(Prev);
    302   }
    303 
    304   /// find_prev - Returns the index of the first set bit that precedes the
    305   /// the bit at \p PriorTo.  Returns -1 if all previous bits are unset.
    306   int find_prev(unsigned PriorTo) const {
    307     if (isSmall()) {
    308       if (PriorTo == 0)
    309         return -1;
    310 
    311       --PriorTo;
    312       uintptr_t Bits = getSmallBits();
    313       Bits &= maskTrailingOnes<uintptr_t>(PriorTo + 1);
    314       if (Bits == 0)
    315         return -1;
    316 
    317       return NumBaseBits - countLeadingZeros(Bits) - 1;
    318     }
    319     return getPointer()->find_prev(PriorTo);
    320   }
    321 
    322   /// Clear all bits.
    323   void clear() {
    324     if (!isSmall())
    325       delete getPointer();
    326     switchToSmall(0, 0);
    327   }
    328 
    329   /// Grow or shrink the bitvector.
    330   void resize(unsigned N, bool t = false) {
    331     if (!isSmall()) {
    332       getPointer()->resize(N, t);
    333     } else if (SmallNumDataBits >= N) {
    334       uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0;
    335       setSmallSize(N);
    336       setSmallBits(NewBits | getSmallBits());
    337     } else {
    338       BitVector *BV = new BitVector(N, t);
    339       uintptr_t OldBits = getSmallBits();
    340       for (size_t i = 0, e = getSmallSize(); i != e; ++i)
    341         (*BV)[i] = (OldBits >> i) & 1;
    342       switchToLarge(BV);
    343     }
    344   }
    345 
    346   void reserve(unsigned N) {
    347     if (isSmall()) {
    348       if (N > SmallNumDataBits) {
    349         uintptr_t OldBits = getSmallRawBits();
    350         size_t SmallSize = getSmallSize();
    351         BitVector *BV = new BitVector(SmallSize);
    352         for (size_t i = 0; i < SmallSize; ++i)
    353           if ((OldBits >> i) & 1)
    354             BV->set(i);
    355         BV->reserve(N);
    356         switchToLarge(BV);
    357       }
    358     } else {
    359       getPointer()->reserve(N);
    360     }
    361   }
    362 
    363   // Set, reset, flip
    364   SmallBitVector &set() {
    365     if (isSmall())
    366       setSmallBits(~uintptr_t(0));
    367     else
    368       getPointer()->set();
    369     return *this;
    370   }
    371 
    372   SmallBitVector &set(unsigned Idx) {
    373     if (isSmall()) {
    374       assert(Idx <= static_cast<unsigned>(
    375                         std::numeric_limits<uintptr_t>::digits) &&
    376              "undefined behavior");
    377       setSmallBits(getSmallBits() | (uintptr_t(1) << Idx));
    378     }
    379     else
    380       getPointer()->set(Idx);
    381     return *this;
    382   }
    383 
    384   /// Efficiently set a range of bits in [I, E)
    385   SmallBitVector &set(unsigned I, unsigned E) {
    386     assert(I <= E && "Attempted to set backwards range!");
    387     assert(E <= size() && "Attempted to set out-of-bounds range!");
    388     if (I == E) return *this;
    389     if (isSmall()) {
    390       uintptr_t EMask = ((uintptr_t)1) << E;
    391       uintptr_t IMask = ((uintptr_t)1) << I;
    392       uintptr_t Mask = EMask - IMask;
    393       setSmallBits(getSmallBits() | Mask);
    394     } else
    395       getPointer()->set(I, E);
    396     return *this;
    397   }
    398 
    399   SmallBitVector &reset() {
    400     if (isSmall())
    401       setSmallBits(0);
    402     else
    403       getPointer()->reset();
    404     return *this;
    405   }
    406 
    407   SmallBitVector &reset(unsigned Idx) {
    408     if (isSmall())
    409       setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx));
    410     else
    411       getPointer()->reset(Idx);
    412     return *this;
    413   }
    414 
    415   /// Efficiently reset a range of bits in [I, E)
    416   SmallBitVector &reset(unsigned I, unsigned E) {
    417     assert(I <= E && "Attempted to reset backwards range!");
    418     assert(E <= size() && "Attempted to reset out-of-bounds range!");
    419     if (I == E) return *this;
    420     if (isSmall()) {
    421       uintptr_t EMask = ((uintptr_t)1) << E;
    422       uintptr_t IMask = ((uintptr_t)1) << I;
    423       uintptr_t Mask = EMask - IMask;
    424       setSmallBits(getSmallBits() & ~Mask);
    425     } else
    426       getPointer()->reset(I, E);
    427     return *this;
    428   }
    429 
    430   SmallBitVector &flip() {
    431     if (isSmall())
    432       setSmallBits(~getSmallBits());
    433     else
    434       getPointer()->flip();
    435     return *this;
    436   }
    437 
    438   SmallBitVector &flip(unsigned Idx) {
    439     if (isSmall())
    440       setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx));
    441     else
    442       getPointer()->flip(Idx);
    443     return *this;
    444   }
    445 
    446   // No argument flip.
    447   SmallBitVector operator~() const {
    448     return SmallBitVector(*this).flip();
    449   }
    450 
    451   // Indexing.
    452   reference operator[](unsigned Idx) {
    453     assert(Idx < size() && "Out-of-bounds Bit access.");
    454     return reference(*this, Idx);
    455   }
    456 
    457   bool operator[](unsigned Idx) const {
    458     assert(Idx < size() && "Out-of-bounds Bit access.");
    459     if (isSmall())
    460       return ((getSmallBits() >> Idx) & 1) != 0;
    461     return getPointer()->operator[](Idx);
    462   }
    463 
    464   bool test(unsigned Idx) const {
    465     return (*this)[Idx];
    466   }
    467 
    468   /// Test if any common bits are set.
    469   bool anyCommon(const SmallBitVector &RHS) const {
    470     if (isSmall() && RHS.isSmall())
    471       return (getSmallBits() & RHS.getSmallBits()) != 0;
    472     if (!isSmall() && !RHS.isSmall())
    473       return getPointer()->anyCommon(*RHS.getPointer());
    474 
    475     for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
    476       if (test(i) && RHS.test(i))
    477         return true;
    478     return false;
    479   }
    480 
    481   // Comparison operators.
    482   bool operator==(const SmallBitVector &RHS) const {
    483     if (size() != RHS.size())
    484       return false;
    485     if (isSmall())
    486       return getSmallBits() == RHS.getSmallBits();
    487     else
    488       return *getPointer() == *RHS.getPointer();
    489   }
    490 
    491   bool operator!=(const SmallBitVector &RHS) const {
    492     return !(*this == RHS);
    493   }
    494 
    495   // Intersection, union, disjoint union.
    496   SmallBitVector &operator&=(const SmallBitVector &RHS) {
    497     resize(std::max(size(), RHS.size()));
    498     if (isSmall())
    499       setSmallBits(getSmallBits() & RHS.getSmallBits());
    500     else if (!RHS.isSmall())
    501       getPointer()->operator&=(*RHS.getPointer());
    502     else {
    503       SmallBitVector Copy = RHS;
    504       Copy.resize(size());
    505       getPointer()->operator&=(*Copy.getPointer());
    506     }
    507     return *this;
    508   }
    509 
    510   /// Reset bits that are set in RHS. Same as *this &= ~RHS.
    511   SmallBitVector &reset(const SmallBitVector &RHS) {
    512     if (isSmall() && RHS.isSmall())
    513       setSmallBits(getSmallBits() & ~RHS.getSmallBits());
    514     else if (!isSmall() && !RHS.isSmall())
    515       getPointer()->reset(*RHS.getPointer());
    516     else
    517       for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
    518         if (RHS.test(i))
    519           reset(i);
    520 
    521     return *this;
    522   }
    523 
    524   /// Check if (This - RHS) is zero. This is the same as reset(RHS) and any().
    525   bool test(const SmallBitVector &RHS) const {
    526     if (isSmall() && RHS.isSmall())
    527       return (getSmallBits() & ~RHS.getSmallBits()) != 0;
    528     if (!isSmall() && !RHS.isSmall())
    529       return getPointer()->test(*RHS.getPointer());
    530 
    531     unsigned i, e;
    532     for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
    533       if (test(i) && !RHS.test(i))
    534         return true;
    535 
    536     for (e = size(); i != e; ++i)
    537       if (test(i))
    538         return true;
    539 
    540     return false;
    541   }
    542 
    543   SmallBitVector &operator|=(const SmallBitVector &RHS) {
    544     resize(std::max(size(), RHS.size()));
    545     if (isSmall())
    546       setSmallBits(getSmallBits() | RHS.getSmallBits());
    547     else if (!RHS.isSmall())
    548       getPointer()->operator|=(*RHS.getPointer());
    549     else {
    550       SmallBitVector Copy = RHS;
    551       Copy.resize(size());
    552       getPointer()->operator|=(*Copy.getPointer());
    553     }
    554     return *this;
    555   }
    556 
    557   SmallBitVector &operator^=(const SmallBitVector &RHS) {
    558     resize(std::max(size(), RHS.size()));
    559     if (isSmall())
    560       setSmallBits(getSmallBits() ^ RHS.getSmallBits());
    561     else if (!RHS.isSmall())
    562       getPointer()->operator^=(*RHS.getPointer());
    563     else {
    564       SmallBitVector Copy = RHS;
    565       Copy.resize(size());
    566       getPointer()->operator^=(*Copy.getPointer());
    567     }
    568     return *this;
    569   }
    570 
    571   SmallBitVector &operator<<=(unsigned N) {
    572     if (isSmall())
    573       setSmallBits(getSmallBits() << N);
    574     else
    575       getPointer()->operator<<=(N);
    576     return *this;
    577   }
    578 
    579   SmallBitVector &operator>>=(unsigned N) {
    580     if (isSmall())
    581       setSmallBits(getSmallBits() >> N);
    582     else
    583       getPointer()->operator>>=(N);
    584     return *this;
    585   }
    586 
    587   // Assignment operator.
    588   const SmallBitVector &operator=(const SmallBitVector &RHS) {
    589     if (isSmall()) {
    590       if (RHS.isSmall())
    591         X = RHS.X;
    592       else
    593         switchToLarge(new BitVector(*RHS.getPointer()));
    594     } else {
    595       if (!RHS.isSmall())
    596         *getPointer() = *RHS.getPointer();
    597       else {
    598         delete getPointer();
    599         X = RHS.X;
    600       }
    601     }
    602     return *this;
    603   }
    604 
    605   const SmallBitVector &operator=(SmallBitVector &&RHS) {
    606     if (this != &RHS) {
    607       clear();
    608       swap(RHS);
    609     }
    610     return *this;
    611   }
    612 
    613   void swap(SmallBitVector &RHS) {
    614     std::swap(X, RHS.X);
    615   }
    616 
    617   /// Add '1' bits from Mask to this vector. Don't resize.
    618   /// This computes "*this |= Mask".
    619   void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    620     if (isSmall())
    621       applyMask<true, false>(Mask, MaskWords);
    622     else
    623       getPointer()->setBitsInMask(Mask, MaskWords);
    624   }
    625 
    626   /// Clear any bits in this vector that are set in Mask. Don't resize.
    627   /// This computes "*this &= ~Mask".
    628   void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    629     if (isSmall())
    630       applyMask<false, false>(Mask, MaskWords);
    631     else
    632       getPointer()->clearBitsInMask(Mask, MaskWords);
    633   }
    634 
    635   /// Add a bit to this vector for every '0' bit in Mask. Don't resize.
    636   /// This computes "*this |= ~Mask".
    637   void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    638     if (isSmall())
    639       applyMask<true, true>(Mask, MaskWords);
    640     else
    641       getPointer()->setBitsNotInMask(Mask, MaskWords);
    642   }
    643 
    644   /// Clear a bit in this vector for every '0' bit in Mask. Don't resize.
    645   /// This computes "*this &= Mask".
    646   void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    647     if (isSmall())
    648       applyMask<false, true>(Mask, MaskWords);
    649     else
    650       getPointer()->clearBitsNotInMask(Mask, MaskWords);
    651   }
    652 
    653 private:
    654   template <bool AddBits, bool InvertMask>
    655   void applyMask(const uint32_t *Mask, unsigned MaskWords) {
    656     assert(MaskWords <= sizeof(uintptr_t) && "Mask is larger than base!");
    657     uintptr_t M = Mask[0];
    658     if (NumBaseBits == 64)
    659       M |= uint64_t(Mask[1]) << 32;
    660     if (InvertMask)
    661       M = ~M;
    662     if (AddBits)
    663       setSmallBits(getSmallBits() | M);
    664     else
    665       setSmallBits(getSmallBits() & ~M);
    666   }
    667 };
    668 
    669 inline SmallBitVector
    670 operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) {
    671   SmallBitVector Result(LHS);
    672   Result &= RHS;
    673   return Result;
    674 }
    675 
    676 inline SmallBitVector
    677 operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) {
    678   SmallBitVector Result(LHS);
    679   Result |= RHS;
    680   return Result;
    681 }
    682 
    683 inline SmallBitVector
    684 operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) {
    685   SmallBitVector Result(LHS);
    686   Result ^= RHS;
    687   return Result;
    688 }
    689 
    690 } // end namespace llvm
    691 
    692 namespace std {
    693 
    694 /// Implement std::swap in terms of BitVector swap.
    695 inline void
    696 swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) {
    697   LHS.swap(RHS);
    698 }
    699 
    700 } // end namespace std
    701 
    702 #endif // LLVM_ADT_SMALLBITVECTOR_H
    703