Home | History | Annotate | Download | only in Target
      1 //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the target-independent interfaces which should be
     11 // implemented by each target which is using a TableGen based code generator.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 // Include all information about LLVM intrinsics.
     16 include "llvm/IR/Intrinsics.td"
     17 
     18 //===----------------------------------------------------------------------===//
     19 // Register file description - These classes are used to fill in the target
     20 // description classes.
     21 
     22 class RegisterClass; // Forward def
     23 
     24 class HwMode<string FS> {
     25   // A string representing subtarget features that turn on this HW mode.
     26   // For example, "+feat1,-feat2" will indicate that the mode is active
     27   // when "feat1" is enabled and "feat2" is disabled at the same time.
     28   // Any other features are not checked.
     29   // When multiple modes are used, they should be mutually exclusive,
     30   // otherwise the results are unpredictable.
     31   string Features = FS;
     32 }
     33 
     34 // A special mode recognized by tablegen. This mode is considered active
     35 // when no other mode is active. For targets that do not use specific hw
     36 // modes, this is the only mode.
     37 def DefaultMode : HwMode<"">;
     38 
     39 // A class used to associate objects with HW modes. It is only intended to
     40 // be used as a base class, where the derived class should contain a member
     41 // "Objects", which is a list of the same length as the list of modes.
     42 // The n-th element on the Objects list will be associated with the n-th
     43 // element on the Modes list.
     44 class HwModeSelect<list<HwMode> Ms> {
     45   list<HwMode> Modes = Ms;
     46 }
     47 
     48 // A common class that implements a counterpart of ValueType, which is
     49 // dependent on a HW mode. This class inherits from ValueType itself,
     50 // which makes it possible to use objects of this class where ValueType
     51 // objects could be used. This is specifically applicable to selection
     52 // patterns.
     53 class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
     54     : HwModeSelect<Ms>, ValueType<0, 0> {
     55   // The length of this list must be the same as the length of Ms.
     56   list<ValueType> Objects = Ts;
     57 }
     58 
     59 // A class representing the register size, spill size and spill alignment
     60 // in bits of a register.
     61 class RegInfo<int RS, int SS, int SA> {
     62   int RegSize = RS;         // Register size in bits.
     63   int SpillSize = SS;       // Spill slot size in bits.
     64   int SpillAlignment = SA;  // Spill slot alignment in bits.
     65 }
     66 
     67 // The register size/alignment information, parameterized by a HW mode.
     68 class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
     69     : HwModeSelect<Ms> {
     70   // The length of this list must be the same as the length of Ms.
     71   list<RegInfo> Objects = Ts;
     72 }
     73 
     74 // SubRegIndex - Use instances of SubRegIndex to identify subregisters.
     75 class SubRegIndex<int size, int offset = 0> {
     76   string Namespace = "";
     77 
     78   // Size - Size (in bits) of the sub-registers represented by this index.
     79   int Size = size;
     80 
     81   // Offset - Offset of the first bit that is part of this sub-register index.
     82   // Set it to -1 if the same index is used to represent sub-registers that can
     83   // be at different offsets (for example when using an index to access an
     84   // element in a register tuple).
     85   int Offset = offset;
     86 
     87   // ComposedOf - A list of two SubRegIndex instances, [A, B].
     88   // This indicates that this SubRegIndex is the result of composing A and B.
     89   // See ComposedSubRegIndex.
     90   list<SubRegIndex> ComposedOf = [];
     91 
     92   // CoveringSubRegIndices - A list of two or more sub-register indexes that
     93   // cover this sub-register.
     94   //
     95   // This field should normally be left blank as TableGen can infer it.
     96   //
     97   // TableGen automatically detects sub-registers that straddle the registers
     98   // in the SubRegs field of a Register definition. For example:
     99   //
    100   //   Q0    = dsub_0 -> D0, dsub_1 -> D1
    101   //   Q1    = dsub_0 -> D2, dsub_1 -> D3
    102   //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
    103   //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
    104   //
    105   // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
    106   // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
    107   // CoveringSubRegIndices = [dsub_1, dsub_2].
    108   list<SubRegIndex> CoveringSubRegIndices = [];
    109 }
    110 
    111 // ComposedSubRegIndex - A sub-register that is the result of composing A and B.
    112 // Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
    113 class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
    114   : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
    115                         !if(!eq(B.Offset, -1), -1,
    116                             !add(A.Offset, B.Offset)))> {
    117   // See SubRegIndex.
    118   let ComposedOf = [A, B];
    119 }
    120 
    121 // RegAltNameIndex - The alternate name set to use for register operands of
    122 // this register class when printing.
    123 class RegAltNameIndex {
    124   string Namespace = "";
    125 }
    126 def NoRegAltName : RegAltNameIndex;
    127 
    128 // Register - You should define one instance of this class for each register
    129 // in the target machine.  String n will become the "name" of the register.
    130 class Register<string n, list<string> altNames = []> {
    131   string Namespace = "";
    132   string AsmName = n;
    133   list<string> AltNames = altNames;
    134 
    135   // Aliases - A list of registers that this register overlaps with.  A read or
    136   // modification of this register can potentially read or modify the aliased
    137   // registers.
    138   list<Register> Aliases = [];
    139 
    140   // SubRegs - A list of registers that are parts of this register. Note these
    141   // are "immediate" sub-registers and the registers within the list do not
    142   // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
    143   // not [AX, AH, AL].
    144   list<Register> SubRegs = [];
    145 
    146   // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
    147   // to address it. Sub-sub-register indices are automatically inherited from
    148   // SubRegs.
    149   list<SubRegIndex> SubRegIndices = [];
    150 
    151   // RegAltNameIndices - The alternate name indices which are valid for this
    152   // register.
    153   list<RegAltNameIndex> RegAltNameIndices = [];
    154 
    155   // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
    156   // These values can be determined by locating the <target>.h file in the
    157   // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
    158   // order of these names correspond to the enumeration used by gcc.  A value of
    159   // -1 indicates that the gcc number is undefined and -2 that register number
    160   // is invalid for this mode/flavour.
    161   list<int> DwarfNumbers = [];
    162 
    163   // CostPerUse - Additional cost of instructions using this register compared
    164   // to other registers in its class. The register allocator will try to
    165   // minimize the number of instructions using a register with a CostPerUse.
    166   // This is used by the x86-64 and ARM Thumb targets where some registers
    167   // require larger instruction encodings.
    168   int CostPerUse = 0;
    169 
    170   // CoveredBySubRegs - When this bit is set, the value of this register is
    171   // completely determined by the value of its sub-registers.  For example, the
    172   // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
    173   // covered by its sub-register AX.
    174   bit CoveredBySubRegs = 0;
    175 
    176   // HWEncoding - The target specific hardware encoding for this register.
    177   bits<16> HWEncoding = 0;
    178 }
    179 
    180 // RegisterWithSubRegs - This can be used to define instances of Register which
    181 // need to specify sub-registers.
    182 // List "subregs" specifies which registers are sub-registers to this one. This
    183 // is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
    184 // This allows the code generator to be careful not to put two values with
    185 // overlapping live ranges into registers which alias.
    186 class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
    187   let SubRegs = subregs;
    188 }
    189 
    190 // DAGOperand - An empty base class that unifies RegisterClass's and other forms
    191 // of Operand's that are legal as type qualifiers in DAG patterns.  This should
    192 // only ever be used for defining multiclasses that are polymorphic over both
    193 // RegisterClass's and other Operand's.
    194 class DAGOperand {
    195   string OperandNamespace = "MCOI";
    196   string DecoderMethod = "";
    197 }
    198 
    199 // RegisterClass - Now that all of the registers are defined, and aliases
    200 // between registers are defined, specify which registers belong to which
    201 // register classes.  This also defines the default allocation order of
    202 // registers by register allocators.
    203 //
    204 class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
    205                     dag regList, RegAltNameIndex idx = NoRegAltName>
    206   : DAGOperand {
    207   string Namespace = namespace;
    208 
    209   // The register size/alignment information, parameterized by a HW mode.
    210   RegInfoByHwMode RegInfos;
    211 
    212   // RegType - Specify the list ValueType of the registers in this register
    213   // class.  Note that all registers in a register class must have the same
    214   // ValueTypes.  This is a list because some targets permit storing different
    215   // types in same register, for example vector values with 128-bit total size,
    216   // but different count/size of items, like SSE on x86.
    217   //
    218   list<ValueType> RegTypes = regTypes;
    219 
    220   // Size - Specify the spill size in bits of the registers.  A default value of
    221   // zero lets tablgen pick an appropriate size.
    222   int Size = 0;
    223 
    224   // Alignment - Specify the alignment required of the registers when they are
    225   // stored or loaded to memory.
    226   //
    227   int Alignment = alignment;
    228 
    229   // CopyCost - This value is used to specify the cost of copying a value
    230   // between two registers in this register class. The default value is one
    231   // meaning it takes a single instruction to perform the copying. A negative
    232   // value means copying is extremely expensive or impossible.
    233   int CopyCost = 1;
    234 
    235   // MemberList - Specify which registers are in this class.  If the
    236   // allocation_order_* method are not specified, this also defines the order of
    237   // allocation used by the register allocator.
    238   //
    239   dag MemberList = regList;
    240 
    241   // AltNameIndex - The alternate register name to use when printing operands
    242   // of this register class. Every register in the register class must have
    243   // a valid alternate name for the given index.
    244   RegAltNameIndex altNameIndex = idx;
    245 
    246   // isAllocatable - Specify that the register class can be used for virtual
    247   // registers and register allocation.  Some register classes are only used to
    248   // model instruction operand constraints, and should have isAllocatable = 0.
    249   bit isAllocatable = 1;
    250 
    251   // AltOrders - List of alternative allocation orders. The default order is
    252   // MemberList itself, and that is good enough for most targets since the
    253   // register allocators automatically remove reserved registers and move
    254   // callee-saved registers to the end.
    255   list<dag> AltOrders = [];
    256 
    257   // AltOrderSelect - The body of a function that selects the allocation order
    258   // to use in a given machine function. The code will be inserted in a
    259   // function like this:
    260   //
    261   //   static inline unsigned f(const MachineFunction &MF) { ... }
    262   //
    263   // The function should return 0 to select the default order defined by
    264   // MemberList, 1 to select the first AltOrders entry and so on.
    265   code AltOrderSelect = [{}];
    266 
    267   // Specify allocation priority for register allocators using a greedy
    268   // heuristic. Classes with higher priority values are assigned first. This is
    269   // useful as it is sometimes beneficial to assign registers to highly
    270   // constrained classes first. The value has to be in the range [0,63].
    271   int AllocationPriority = 0;
    272 
    273   // The diagnostic type to present when referencing this operand in a match
    274   // failure error message. If this is empty, the default Match_InvalidOperand
    275   // diagnostic type will be used. If this is "<name>", a Match_<name> enum
    276   // value will be generated and used for this operand type. The target
    277   // assembly parser is responsible for converting this into a user-facing
    278   // diagnostic message.
    279   string DiagnosticType = "";
    280 
    281   // A diagnostic message to emit when an invalid value is provided for this
    282   // register class when it is being used an an assembly operand. If this is
    283   // non-empty, an anonymous diagnostic type enum value will be generated, and
    284   // the assembly matcher will provide a function to map from diagnostic types
    285   // to message strings.
    286   string DiagnosticString = "";
    287 }
    288 
    289 // The memberList in a RegisterClass is a dag of set operations. TableGen
    290 // evaluates these set operations and expand them into register lists. These
    291 // are the most common operation, see test/TableGen/SetTheory.td for more
    292 // examples of what is possible:
    293 //
    294 // (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
    295 // register class, or a sub-expression. This is also the way to simply list
    296 // registers.
    297 //
    298 // (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
    299 //
    300 // (and GPR, CSR) - Set intersection. All registers from the first set that are
    301 // also in the second set.
    302 //
    303 // (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
    304 // numbered registers.  Takes an optional 4th operand which is a stride to use
    305 // when generating the sequence.
    306 //
    307 // (shl GPR, 4) - Remove the first N elements.
    308 //
    309 // (trunc GPR, 4) - Truncate after the first N elements.
    310 //
    311 // (rotl GPR, 1) - Rotate N places to the left.
    312 //
    313 // (rotr GPR, 1) - Rotate N places to the right.
    314 //
    315 // (decimate GPR, 2) - Pick every N'th element, starting with the first.
    316 //
    317 // (interleave A, B, ...) - Interleave the elements from each argument list.
    318 //
    319 // All of these operators work on ordered sets, not lists. That means
    320 // duplicates are removed from sub-expressions.
    321 
    322 // Set operators. The rest is defined in TargetSelectionDAG.td.
    323 def sequence;
    324 def decimate;
    325 def interleave;
    326 
    327 // RegisterTuples - Automatically generate super-registers by forming tuples of
    328 // sub-registers. This is useful for modeling register sequence constraints
    329 // with pseudo-registers that are larger than the architectural registers.
    330 //
    331 // The sub-register lists are zipped together:
    332 //
    333 //   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
    334 //
    335 // Generates the same registers as:
    336 //
    337 //   let SubRegIndices = [sube, subo] in {
    338 //     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
    339 //     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
    340 //   }
    341 //
    342 // The generated pseudo-registers inherit super-classes and fields from their
    343 // first sub-register. Most fields from the Register class are inferred, and
    344 // the AsmName and Dwarf numbers are cleared.
    345 //
    346 // RegisterTuples instances can be used in other set operations to form
    347 // register classes and so on. This is the only way of using the generated
    348 // registers.
    349 class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
    350   // SubRegs - N lists of registers to be zipped up. Super-registers are
    351   // synthesized from the first element of each SubRegs list, the second
    352   // element and so on.
    353   list<dag> SubRegs = Regs;
    354 
    355   // SubRegIndices - N SubRegIndex instances. This provides the names of the
    356   // sub-registers in the synthesized super-registers.
    357   list<SubRegIndex> SubRegIndices = Indices;
    358 }
    359 
    360 
    361 //===----------------------------------------------------------------------===//
    362 // DwarfRegNum - This class provides a mapping of the llvm register enumeration
    363 // to the register numbering used by gcc and gdb.  These values are used by a
    364 // debug information writer to describe where values may be located during
    365 // execution.
    366 class DwarfRegNum<list<int> Numbers> {
    367   // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
    368   // These values can be determined by locating the <target>.h file in the
    369   // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
    370   // order of these names correspond to the enumeration used by gcc.  A value of
    371   // -1 indicates that the gcc number is undefined and -2 that register number
    372   // is invalid for this mode/flavour.
    373   list<int> DwarfNumbers = Numbers;
    374 }
    375 
    376 // DwarfRegAlias - This class declares that a given register uses the same dwarf
    377 // numbers as another one. This is useful for making it clear that the two
    378 // registers do have the same number. It also lets us build a mapping
    379 // from dwarf register number to llvm register.
    380 class DwarfRegAlias<Register reg> {
    381       Register DwarfAlias = reg;
    382 }
    383 
    384 //===----------------------------------------------------------------------===//
    385 // Pull in the common support for scheduling
    386 //
    387 include "llvm/Target/TargetSchedule.td"
    388 
    389 class Predicate; // Forward def
    390 
    391 //===----------------------------------------------------------------------===//
    392 // Instruction set description - These classes correspond to the C++ classes in
    393 // the Target/TargetInstrInfo.h file.
    394 //
    395 class Instruction {
    396   string Namespace = "";
    397 
    398   dag OutOperandList;       // An dag containing the MI def operand list.
    399   dag InOperandList;        // An dag containing the MI use operand list.
    400   string AsmString = "";    // The .s format to print the instruction with.
    401 
    402   // Pattern - Set to the DAG pattern for this instruction, if we know of one,
    403   // otherwise, uninitialized.
    404   list<dag> Pattern;
    405 
    406   // The follow state will eventually be inferred automatically from the
    407   // instruction pattern.
    408 
    409   list<Register> Uses = []; // Default to using no non-operand registers
    410   list<Register> Defs = []; // Default to modifying no non-operand registers
    411 
    412   // Predicates - List of predicates which will be turned into isel matching
    413   // code.
    414   list<Predicate> Predicates = [];
    415 
    416   // Size - Size of encoded instruction, or zero if the size cannot be determined
    417   // from the opcode.
    418   int Size = 0;
    419 
    420   // DecoderNamespace - The "namespace" in which this instruction exists, on
    421   // targets like ARM which multiple ISA namespaces exist.
    422   string DecoderNamespace = "";
    423 
    424   // Code size, for instruction selection.
    425   // FIXME: What does this actually mean?
    426   int CodeSize = 0;
    427 
    428   // Added complexity passed onto matching pattern.
    429   int AddedComplexity  = 0;
    430 
    431   // These bits capture information about the high-level semantics of the
    432   // instruction.
    433   bit isReturn     = 0;     // Is this instruction a return instruction?
    434   bit isBranch     = 0;     // Is this instruction a branch instruction?
    435   bit isIndirectBranch = 0; // Is this instruction an indirect branch?
    436   bit isCompare    = 0;     // Is this instruction a comparison instruction?
    437   bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
    438   bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
    439   bit isSelect     = 0;     // Is this instruction a select instruction?
    440   bit isBarrier    = 0;     // Can control flow fall through this instruction?
    441   bit isCall       = 0;     // Is this instruction a call instruction?
    442   bit isAdd        = 0;     // Is this instruction an add instruction?
    443   bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
    444   bit mayLoad      = ?;     // Is it possible for this inst to read memory?
    445   bit mayStore     = ?;     // Is it possible for this inst to write memory?
    446   bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
    447   bit isCommutable = 0;     // Is this 3 operand instruction commutable?
    448   bit isTerminator = 0;     // Is this part of the terminator for a basic block?
    449   bit isReMaterializable = 0; // Is this instruction re-materializable?
    450   bit isPredicable = 0;     // Is this instruction predicable?
    451   bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
    452   bit usesCustomInserter = 0; // Pseudo instr needing special help.
    453   bit hasPostISelHook = 0;  // To be *adjusted* after isel by target hook.
    454   bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
    455   bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
    456   bit isConvergent = 0;     // Is this instruction convergent?
    457   bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
    458   bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
    459   bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
    460   bit isRegSequence = 0;    // Is this instruction a kind of reg sequence?
    461                             // If so, make sure to override
    462                             // TargetInstrInfo::getRegSequenceLikeInputs.
    463   bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
    464                             // If so, won't have encoding information for
    465                             // the [MC]CodeEmitter stuff.
    466   bit isExtractSubreg = 0;  // Is this instruction a kind of extract subreg?
    467                              // If so, make sure to override
    468                              // TargetInstrInfo::getExtractSubregLikeInputs.
    469   bit isInsertSubreg = 0;   // Is this instruction a kind of insert subreg?
    470                             // If so, make sure to override
    471                             // TargetInstrInfo::getInsertSubregLikeInputs.
    472 
    473   // Does the instruction have side effects that are not captured by any
    474   // operands of the instruction or other flags?
    475   bit hasSideEffects = ?;
    476 
    477   // Is this instruction a "real" instruction (with a distinct machine
    478   // encoding), or is it a pseudo instruction used for codegen modeling
    479   // purposes.
    480   // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
    481   // instructions can (and often do) still have encoding information
    482   // associated with them. Once we've migrated all of them over to true
    483   // pseudo-instructions that are lowered to real instructions prior to
    484   // the printer/emitter, we can remove this attribute and just use isPseudo.
    485   //
    486   // The intended use is:
    487   // isPseudo: Does not have encoding information and should be expanded,
    488   //   at the latest, during lowering to MCInst.
    489   //
    490   // isCodeGenOnly: Does have encoding information and can go through to the
    491   //   CodeEmitter unchanged, but duplicates a canonical instruction
    492   //   definition's encoding and should be ignored when constructing the
    493   //   assembler match tables.
    494   bit isCodeGenOnly = 0;
    495 
    496   // Is this instruction a pseudo instruction for use by the assembler parser.
    497   bit isAsmParserOnly = 0;
    498 
    499   // This instruction is not expected to be queried for scheduling latencies
    500   // and therefore needs no scheduling information even for a complete
    501   // scheduling model.
    502   bit hasNoSchedulingInfo = 0;
    503 
    504   InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
    505 
    506   // Scheduling information from TargetSchedule.td.
    507   list<SchedReadWrite> SchedRW;
    508 
    509   string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
    510 
    511   /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
    512   /// be encoded into the output machineinstr.
    513   string DisableEncoding = "";
    514 
    515   string PostEncoderMethod = "";
    516   string DecoderMethod = "";
    517 
    518   // Is the instruction decoder method able to completely determine if the
    519   // given instruction is valid or not. If the TableGen definition of the
    520   // instruction specifies bitpattern A??B where A and B are static bits, the
    521   // hasCompleteDecoder flag says whether the decoder method fully handles the
    522   // ?? space, i.e. if it is a final arbiter for the instruction validity.
    523   // If not then the decoder attempts to continue decoding when the decoder
    524   // method fails.
    525   //
    526   // This allows to handle situations where the encoding is not fully
    527   // orthogonal. Example:
    528   // * InstA with bitpattern 0b0000????,
    529   // * InstB with bitpattern 0b000000?? but the associated decoder method
    530   //   DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
    531   //
    532   // The decoder tries to decode a bitpattern that matches both InstA and
    533   // InstB bitpatterns first as InstB (because it is the most specific
    534   // encoding). In the default case (hasCompleteDecoder = 1), when
    535   // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
    536   // hasCompleteDecoder = 0 in InstB, the decoder is informed that
    537   // DecodeInstB() is not able to determine if all possible values of ?? are
    538   // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
    539   // decode the bitpattern as InstA too.
    540   bit hasCompleteDecoder = 1;
    541 
    542   /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
    543   bits<64> TSFlags = 0;
    544 
    545   ///@name Assembler Parser Support
    546   ///@{
    547 
    548   string AsmMatchConverter = "";
    549 
    550   /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
    551   /// two-operand matcher inst-alias for a three operand instruction.
    552   /// For example, the arm instruction "add r3, r3, r5" can be written
    553   /// as "add r3, r5". The constraint is of the same form as a tied-operand
    554   /// constraint. For example, "$Rn = $Rd".
    555   string TwoOperandAliasConstraint = "";
    556 
    557   /// Assembler variant name to use for this instruction. If specified then
    558   /// instruction will be presented only in MatchTable for this variant. If
    559   /// not specified then assembler variants will be determined based on
    560   /// AsmString
    561   string AsmVariantName = "";
    562 
    563   ///@}
    564 
    565   /// UseNamedOperandTable - If set, the operand indices of this instruction
    566   /// can be queried via the getNamedOperandIdx() function which is generated
    567   /// by TableGen.
    568   bit UseNamedOperandTable = 0;
    569 }
    570 
    571 /// PseudoInstExpansion - Expansion information for a pseudo-instruction.
    572 /// Which instruction it expands to and how the operands map from the
    573 /// pseudo.
    574 class PseudoInstExpansion<dag Result> {
    575   dag ResultInst = Result;     // The instruction to generate.
    576   bit isPseudo = 1;
    577 }
    578 
    579 /// Predicates - These are extra conditionals which are turned into instruction
    580 /// selector matching code. Currently each predicate is just a string.
    581 class Predicate<string cond> {
    582   string CondString = cond;
    583 
    584   /// AssemblerMatcherPredicate - If this feature can be used by the assembler
    585   /// matcher, this is true.  Targets should set this by inheriting their
    586   /// feature from the AssemblerPredicate class in addition to Predicate.
    587   bit AssemblerMatcherPredicate = 0;
    588 
    589   /// AssemblerCondString - Name of the subtarget feature being tested used
    590   /// as alternative condition string used for assembler matcher.
    591   /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
    592   ///      "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
    593   /// It can also list multiple features separated by ",".
    594   /// e.g. "ModeThumb,FeatureThumb2" is translated to
    595   ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
    596   string AssemblerCondString = "";
    597 
    598   /// PredicateName - User-level name to use for the predicate. Mainly for use
    599   /// in diagnostics such as missing feature errors in the asm matcher.
    600   string PredicateName = "";
    601 
    602   /// Setting this to '1' indicates that the predicate must be recomputed on
    603   /// every function change. Most predicates can leave this at '0'.
    604   ///
    605   /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
    606   bit RecomputePerFunction = 0;
    607 }
    608 
    609 /// NoHonorSignDependentRounding - This predicate is true if support for
    610 /// sign-dependent-rounding is not enabled.
    611 def NoHonorSignDependentRounding
    612  : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
    613 
    614 class Requires<list<Predicate> preds> {
    615   list<Predicate> Predicates = preds;
    616 }
    617 
    618 /// ops definition - This is just a simple marker used to identify the operand
    619 /// list for an instruction. outs and ins are identical both syntactically and
    620 /// semantically; they are used to define def operands and use operands to
    621 /// improve readibility. This should be used like this:
    622 ///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
    623 def ops;
    624 def outs;
    625 def ins;
    626 
    627 /// variable_ops definition - Mark this instruction as taking a variable number
    628 /// of operands.
    629 def variable_ops;
    630 
    631 
    632 /// PointerLikeRegClass - Values that are designed to have pointer width are
    633 /// derived from this.  TableGen treats the register class as having a symbolic
    634 /// type that it doesn't know, and resolves the actual regclass to use by using
    635 /// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
    636 class PointerLikeRegClass<int Kind> {
    637   int RegClassKind = Kind;
    638 }
    639 
    640 
    641 /// ptr_rc definition - Mark this operand as being a pointer value whose
    642 /// register class is resolved dynamically via a callback to TargetInstrInfo.
    643 /// FIXME: We should probably change this to a class which contain a list of
    644 /// flags. But currently we have but one flag.
    645 def ptr_rc : PointerLikeRegClass<0>;
    646 
    647 /// unknown definition - Mark this operand as being of unknown type, causing
    648 /// it to be resolved by inference in the context it is used.
    649 class unknown_class;
    650 def unknown : unknown_class;
    651 
    652 /// AsmOperandClass - Representation for the kinds of operands which the target
    653 /// specific parser can create and the assembly matcher may need to distinguish.
    654 ///
    655 /// Operand classes are used to define the order in which instructions are
    656 /// matched, to ensure that the instruction which gets matched for any
    657 /// particular list of operands is deterministic.
    658 ///
    659 /// The target specific parser must be able to classify a parsed operand into a
    660 /// unique class which does not partially overlap with any other classes. It can
    661 /// match a subset of some other class, in which case the super class field
    662 /// should be defined.
    663 class AsmOperandClass {
    664   /// The name to use for this class, which should be usable as an enum value.
    665   string Name = ?;
    666 
    667   /// The super classes of this operand.
    668   list<AsmOperandClass> SuperClasses = [];
    669 
    670   /// The name of the method on the target specific operand to call to test
    671   /// whether the operand is an instance of this class. If not set, this will
    672   /// default to "isFoo", where Foo is the AsmOperandClass name. The method
    673   /// signature should be:
    674   ///   bool isFoo() const;
    675   string PredicateMethod = ?;
    676 
    677   /// The name of the method on the target specific operand to call to add the
    678   /// target specific operand to an MCInst. If not set, this will default to
    679   /// "addFooOperands", where Foo is the AsmOperandClass name. The method
    680   /// signature should be:
    681   ///   void addFooOperands(MCInst &Inst, unsigned N) const;
    682   string RenderMethod = ?;
    683 
    684   /// The name of the method on the target specific operand to call to custom
    685   /// handle the operand parsing. This is useful when the operands do not relate
    686   /// to immediates or registers and are very instruction specific (as flags to
    687   /// set in a processor register, coprocessor number, ...).
    688   string ParserMethod = ?;
    689 
    690   // The diagnostic type to present when referencing this operand in a
    691   // match failure error message. By default, use a generic "invalid operand"
    692   // diagnostic. The target AsmParser maps these codes to text.
    693   string DiagnosticType = "";
    694 
    695   /// A diagnostic message to emit when an invalid value is provided for this
    696   /// operand.
    697   string DiagnosticString = "";
    698 
    699   /// Set to 1 if this operand is optional and not always required. Typically,
    700   /// the AsmParser will emit an error when it finishes parsing an
    701   /// instruction if it hasn't matched all the operands yet.  However, this
    702   /// error will be suppressed if all of the remaining unmatched operands are
    703   /// marked as IsOptional.
    704   ///
    705   /// Optional arguments must be at the end of the operand list.
    706   bit IsOptional = 0;
    707 
    708   /// The name of the method on the target specific asm parser that returns the
    709   /// default operand for this optional operand. This method is only used if
    710   /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
    711   /// where Foo is the AsmOperandClass name. The method signature should be:
    712   ///   std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
    713   string DefaultMethod = ?;
    714 }
    715 
    716 def ImmAsmOperand : AsmOperandClass {
    717   let Name = "Imm";
    718 }
    719 
    720 /// Operand Types - These provide the built-in operand types that may be used
    721 /// by a target.  Targets can optionally provide their own operand types as
    722 /// needed, though this should not be needed for RISC targets.
    723 class Operand<ValueType ty> : DAGOperand {
    724   ValueType Type = ty;
    725   string PrintMethod = "printOperand";
    726   string EncoderMethod = "";
    727   bit hasCompleteDecoder = 1;
    728   string OperandType = "OPERAND_UNKNOWN";
    729   dag MIOperandInfo = (ops);
    730 
    731   // MCOperandPredicate - Optionally, a code fragment operating on
    732   // const MCOperand &MCOp, and returning a bool, to indicate if
    733   // the value of MCOp is valid for the specific subclass of Operand
    734   code MCOperandPredicate;
    735 
    736   // ParserMatchClass - The "match class" that operands of this type fit
    737   // in. Match classes are used to define the order in which instructions are
    738   // match, to ensure that which instructions gets matched is deterministic.
    739   //
    740   // The target specific parser must be able to classify an parsed operand into
    741   // a unique class, which does not partially overlap with any other classes. It
    742   // can match a subset of some other class, in which case the AsmOperandClass
    743   // should declare the other operand as one of its super classes.
    744   AsmOperandClass ParserMatchClass = ImmAsmOperand;
    745 }
    746 
    747 class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
    748   : DAGOperand {
    749   // RegClass - The register class of the operand.
    750   RegisterClass RegClass = regclass;
    751   // PrintMethod - The target method to call to print register operands of
    752   // this type. The method normally will just use an alt-name index to look
    753   // up the name to print. Default to the generic printOperand().
    754   string PrintMethod = pm;
    755 
    756   // EncoderMethod - The target method name to call to encode this register
    757   // operand.
    758   string EncoderMethod = "";
    759 
    760   // ParserMatchClass - The "match class" that operands of this type fit
    761   // in. Match classes are used to define the order in which instructions are
    762   // match, to ensure that which instructions gets matched is deterministic.
    763   //
    764   // The target specific parser must be able to classify an parsed operand into
    765   // a unique class, which does not partially overlap with any other classes. It
    766   // can match a subset of some other class, in which case the AsmOperandClass
    767   // should declare the other operand as one of its super classes.
    768   AsmOperandClass ParserMatchClass;
    769 
    770   string OperandType = "OPERAND_REGISTER";
    771 }
    772 
    773 let OperandType = "OPERAND_IMMEDIATE" in {
    774 def i1imm  : Operand<i1>;
    775 def i8imm  : Operand<i8>;
    776 def i16imm : Operand<i16>;
    777 def i32imm : Operand<i32>;
    778 def i64imm : Operand<i64>;
    779 
    780 def f32imm : Operand<f32>;
    781 def f64imm : Operand<f64>;
    782 }
    783 
    784 // Register operands for generic instructions don't have an MVT, but do have
    785 // constraints linking the operands (e.g. all operands of a G_ADD must
    786 // have the same LLT).
    787 class TypedOperand<string Ty> : Operand<untyped> {
    788   let OperandType = Ty;
    789 }
    790 
    791 def type0 : TypedOperand<"OPERAND_GENERIC_0">;
    792 def type1 : TypedOperand<"OPERAND_GENERIC_1">;
    793 def type2 : TypedOperand<"OPERAND_GENERIC_2">;
    794 def type3 : TypedOperand<"OPERAND_GENERIC_3">;
    795 def type4 : TypedOperand<"OPERAND_GENERIC_4">;
    796 def type5 : TypedOperand<"OPERAND_GENERIC_5">;
    797 
    798 /// zero_reg definition - Special node to stand for the zero register.
    799 ///
    800 def zero_reg;
    801 
    802 /// All operands which the MC layer classifies as predicates should inherit from
    803 /// this class in some manner. This is already handled for the most commonly
    804 /// used PredicateOperand, but may be useful in other circumstances.
    805 class PredicateOp;
    806 
    807 /// OperandWithDefaultOps - This Operand class can be used as the parent class
    808 /// for an Operand that needs to be initialized with a default value if
    809 /// no value is supplied in a pattern.  This class can be used to simplify the
    810 /// pattern definitions for instructions that have target specific flags
    811 /// encoded as immediate operands.
    812 class OperandWithDefaultOps<ValueType ty, dag defaultops>
    813   : Operand<ty> {
    814   dag DefaultOps = defaultops;
    815 }
    816 
    817 /// PredicateOperand - This can be used to define a predicate operand for an
    818 /// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
    819 /// AlwaysVal specifies the value of this predicate when set to "always
    820 /// execute".
    821 class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
    822   : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
    823   let MIOperandInfo = OpTypes;
    824 }
    825 
    826 /// OptionalDefOperand - This is used to define a optional definition operand
    827 /// for an instruction. DefaultOps is the register the operand represents if
    828 /// none is supplied, e.g. zero_reg.
    829 class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
    830   : OperandWithDefaultOps<ty, defaultops> {
    831   let MIOperandInfo = OpTypes;
    832 }
    833 
    834 
    835 // InstrInfo - This class should only be instantiated once to provide parameters
    836 // which are global to the target machine.
    837 //
    838 class InstrInfo {
    839   // Target can specify its instructions in either big or little-endian formats.
    840   // For instance, while both Sparc and PowerPC are big-endian platforms, the
    841   // Sparc manual specifies its instructions in the format [31..0] (big), while
    842   // PowerPC specifies them using the format [0..31] (little).
    843   bit isLittleEndianEncoding = 0;
    844 
    845   // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
    846   // by default, and TableGen will infer their value from the instruction
    847   // pattern when possible.
    848   //
    849   // Normally, TableGen will issue an error it it can't infer the value of a
    850   // property that hasn't been set explicitly. When guessInstructionProperties
    851   // is set, it will guess a safe value instead.
    852   //
    853   // This option is a temporary migration help. It will go away.
    854   bit guessInstructionProperties = 1;
    855 
    856   // TableGen's instruction encoder generator has support for matching operands
    857   // to bit-field variables both by name and by position. While matching by
    858   // name is preferred, this is currently not possible for complex operands,
    859   // and some targets still reply on the positional encoding rules. When
    860   // generating a decoder for such targets, the positional encoding rules must
    861   // be used by the decoder generator as well.
    862   //
    863   // This option is temporary; it will go away once the TableGen decoder
    864   // generator has better support for complex operands and targets have
    865   // migrated away from using positionally encoded operands.
    866   bit decodePositionallyEncodedOperands = 0;
    867 
    868   // When set, this indicates that there will be no overlap between those
    869   // operands that are matched by ordering (positional operands) and those
    870   // matched by name.
    871   //
    872   // This option is temporary; it will go away once the TableGen decoder
    873   // generator has better support for complex operands and targets have
    874   // migrated away from using positionally encoded operands.
    875   bit noNamedPositionallyEncodedOperands = 0;
    876 }
    877 
    878 // Standard Pseudo Instructions.
    879 // This list must match TargetOpcodes.h and CodeGenTarget.cpp.
    880 // Only these instructions are allowed in the TargetOpcode namespace.
    881 let isCodeGenOnly = 1, isPseudo = 1, hasNoSchedulingInfo = 1,
    882     Namespace = "TargetOpcode" in {
    883 def PHI : Instruction {
    884   let OutOperandList = (outs unknown:$dst);
    885   let InOperandList = (ins variable_ops);
    886   let AsmString = "PHINODE";
    887 }
    888 def INLINEASM : Instruction {
    889   let OutOperandList = (outs);
    890   let InOperandList = (ins variable_ops);
    891   let AsmString = "";
    892   let hasSideEffects = 0;  // Note side effect is encoded in an operand.
    893 }
    894 def CFI_INSTRUCTION : Instruction {
    895   let OutOperandList = (outs);
    896   let InOperandList = (ins i32imm:$id);
    897   let AsmString = "";
    898   let hasCtrlDep = 1;
    899   let isNotDuplicable = 1;
    900 }
    901 def EH_LABEL : Instruction {
    902   let OutOperandList = (outs);
    903   let InOperandList = (ins i32imm:$id);
    904   let AsmString = "";
    905   let hasCtrlDep = 1;
    906   let isNotDuplicable = 1;
    907 }
    908 def GC_LABEL : Instruction {
    909   let OutOperandList = (outs);
    910   let InOperandList = (ins i32imm:$id);
    911   let AsmString = "";
    912   let hasCtrlDep = 1;
    913   let isNotDuplicable = 1;
    914 }
    915 def ANNOTATION_LABEL : Instruction {
    916   let OutOperandList = (outs);
    917   let InOperandList = (ins i32imm:$id);
    918   let AsmString = "";
    919   let hasCtrlDep = 1;
    920   let isNotDuplicable = 1;
    921 }
    922 def KILL : Instruction {
    923   let OutOperandList = (outs);
    924   let InOperandList = (ins variable_ops);
    925   let AsmString = "";
    926   let hasSideEffects = 0;
    927 }
    928 def EXTRACT_SUBREG : Instruction {
    929   let OutOperandList = (outs unknown:$dst);
    930   let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
    931   let AsmString = "";
    932   let hasSideEffects = 0;
    933 }
    934 def INSERT_SUBREG : Instruction {
    935   let OutOperandList = (outs unknown:$dst);
    936   let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
    937   let AsmString = "";
    938   let hasSideEffects = 0;
    939   let Constraints = "$supersrc = $dst";
    940 }
    941 def IMPLICIT_DEF : Instruction {
    942   let OutOperandList = (outs unknown:$dst);
    943   let InOperandList = (ins);
    944   let AsmString = "";
    945   let hasSideEffects = 0;
    946   let isReMaterializable = 1;
    947   let isAsCheapAsAMove = 1;
    948 }
    949 def SUBREG_TO_REG : Instruction {
    950   let OutOperandList = (outs unknown:$dst);
    951   let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
    952   let AsmString = "";
    953   let hasSideEffects = 0;
    954 }
    955 def COPY_TO_REGCLASS : Instruction {
    956   let OutOperandList = (outs unknown:$dst);
    957   let InOperandList = (ins unknown:$src, i32imm:$regclass);
    958   let AsmString = "";
    959   let hasSideEffects = 0;
    960   let isAsCheapAsAMove = 1;
    961 }
    962 def DBG_VALUE : Instruction {
    963   let OutOperandList = (outs);
    964   let InOperandList = (ins variable_ops);
    965   let AsmString = "DBG_VALUE";
    966   let hasSideEffects = 0;
    967 }
    968 def REG_SEQUENCE : Instruction {
    969   let OutOperandList = (outs unknown:$dst);
    970   let InOperandList = (ins unknown:$supersrc, variable_ops);
    971   let AsmString = "";
    972   let hasSideEffects = 0;
    973   let isAsCheapAsAMove = 1;
    974 }
    975 def COPY : Instruction {
    976   let OutOperandList = (outs unknown:$dst);
    977   let InOperandList = (ins unknown:$src);
    978   let AsmString = "";
    979   let hasSideEffects = 0;
    980   let isAsCheapAsAMove = 1;
    981   let hasNoSchedulingInfo = 0;
    982 }
    983 def BUNDLE : Instruction {
    984   let OutOperandList = (outs);
    985   let InOperandList = (ins variable_ops);
    986   let AsmString = "BUNDLE";
    987 }
    988 def LIFETIME_START : Instruction {
    989   let OutOperandList = (outs);
    990   let InOperandList = (ins i32imm:$id);
    991   let AsmString = "LIFETIME_START";
    992   let hasSideEffects = 0;
    993 }
    994 def LIFETIME_END : Instruction {
    995   let OutOperandList = (outs);
    996   let InOperandList = (ins i32imm:$id);
    997   let AsmString = "LIFETIME_END";
    998   let hasSideEffects = 0;
    999 }
   1000 def STACKMAP : Instruction {
   1001   let OutOperandList = (outs);
   1002   let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
   1003   let isCall = 1;
   1004   let mayLoad = 1;
   1005   let usesCustomInserter = 1;
   1006 }
   1007 def PATCHPOINT : Instruction {
   1008   let OutOperandList = (outs unknown:$dst);
   1009   let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
   1010                        i32imm:$nargs, i32imm:$cc, variable_ops);
   1011   let isCall = 1;
   1012   let mayLoad = 1;
   1013   let usesCustomInserter = 1;
   1014 }
   1015 def STATEPOINT : Instruction {
   1016   let OutOperandList = (outs);
   1017   let InOperandList = (ins variable_ops);
   1018   let usesCustomInserter = 1;
   1019   let mayLoad = 1;
   1020   let mayStore = 1;
   1021   let hasSideEffects = 1;
   1022   let isCall = 1;
   1023 }
   1024 def LOAD_STACK_GUARD : Instruction {
   1025   let OutOperandList = (outs ptr_rc:$dst);
   1026   let InOperandList = (ins);
   1027   let mayLoad = 1;
   1028   bit isReMaterializable = 1;
   1029   let hasSideEffects = 0;
   1030   bit isPseudo = 1;
   1031 }
   1032 def LOCAL_ESCAPE : Instruction {
   1033   // This instruction is really just a label. It has to be part of the chain so
   1034   // that it doesn't get dropped from the DAG, but it produces nothing and has
   1035   // no side effects.
   1036   let OutOperandList = (outs);
   1037   let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
   1038   let hasSideEffects = 0;
   1039   let hasCtrlDep = 1;
   1040 }
   1041 def FAULTING_OP : Instruction {
   1042   let OutOperandList = (outs unknown:$dst);
   1043   let InOperandList = (ins variable_ops);
   1044   let usesCustomInserter = 1;
   1045   let mayLoad = 1;
   1046   let mayStore = 1;
   1047   let isTerminator = 1;
   1048   let isBranch = 1;
   1049 }
   1050 def PATCHABLE_OP : Instruction {
   1051   let OutOperandList = (outs unknown:$dst);
   1052   let InOperandList = (ins variable_ops);
   1053   let usesCustomInserter = 1;
   1054   let mayLoad = 1;
   1055   let mayStore = 1;
   1056   let hasSideEffects = 1;
   1057 }
   1058 def PATCHABLE_FUNCTION_ENTER : Instruction {
   1059   let OutOperandList = (outs);
   1060   let InOperandList = (ins);
   1061   let AsmString = "# XRay Function Enter.";
   1062   let usesCustomInserter = 1;
   1063   let hasSideEffects = 0;
   1064 }
   1065 def PATCHABLE_RET : Instruction {
   1066   let OutOperandList = (outs unknown:$dst);
   1067   let InOperandList = (ins variable_ops);
   1068   let AsmString = "# XRay Function Patchable RET.";
   1069   let usesCustomInserter = 1;
   1070   let hasSideEffects = 1;
   1071   let isTerminator = 1;
   1072   let isReturn = 1;
   1073 }
   1074 def PATCHABLE_FUNCTION_EXIT : Instruction {
   1075   let OutOperandList = (outs);
   1076   let InOperandList = (ins);
   1077   let AsmString = "# XRay Function Exit.";
   1078   let usesCustomInserter = 1;
   1079   let hasSideEffects = 0; // FIXME: is this correct?
   1080   let isReturn = 0; // Original return instruction will follow
   1081 }
   1082 def PATCHABLE_TAIL_CALL : Instruction {
   1083   let OutOperandList = (outs unknown:$dst);
   1084   let InOperandList = (ins variable_ops);
   1085   let AsmString = "# XRay Tail Call Exit.";
   1086   let usesCustomInserter = 1;
   1087   let hasSideEffects = 1;
   1088   let isReturn = 1;
   1089 }
   1090 def PATCHABLE_EVENT_CALL : Instruction {
   1091   let OutOperandList = (outs);
   1092   let InOperandList = (ins ptr_rc:$event, i8imm:$size);
   1093   let AsmString = "# XRay Custom Event Log.";
   1094   let usesCustomInserter = 1;
   1095   let isCall = 1;
   1096   let mayLoad = 1;
   1097   let mayStore = 1;
   1098   let hasSideEffects = 1;
   1099 }
   1100 def FENTRY_CALL : Instruction {
   1101   let OutOperandList = (outs unknown:$dst);
   1102   let InOperandList = (ins variable_ops);
   1103   let AsmString = "# FEntry call";
   1104   let usesCustomInserter = 1;
   1105   let mayLoad = 1;
   1106   let mayStore = 1;
   1107   let hasSideEffects = 1;
   1108 }
   1109 
   1110 // Generic opcodes used in GlobalISel.
   1111 include "llvm/Target/GenericOpcodes.td"
   1112 
   1113 }
   1114 
   1115 //===----------------------------------------------------------------------===//
   1116 // AsmParser - This class can be implemented by targets that wish to implement
   1117 // .s file parsing.
   1118 //
   1119 // Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
   1120 // syntax on X86 for example).
   1121 //
   1122 class AsmParser {
   1123   // AsmParserClassName - This specifies the suffix to use for the asmparser
   1124   // class.  Generated AsmParser classes are always prefixed with the target
   1125   // name.
   1126   string AsmParserClassName  = "AsmParser";
   1127 
   1128   // AsmParserInstCleanup - If non-empty, this is the name of a custom member
   1129   // function of the AsmParser class to call on every matched instruction.
   1130   // This can be used to perform target specific instruction post-processing.
   1131   string AsmParserInstCleanup  = "";
   1132 
   1133   // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
   1134   // written register name matcher
   1135   bit ShouldEmitMatchRegisterName = 1;
   1136 
   1137   // Set to true if the target needs a generated 'alternative register name'
   1138   // matcher.
   1139   //
   1140   // This generates a function which can be used to lookup registers from
   1141   // their aliases. This function will fail when called on targets where
   1142   // several registers share the same alias (i.e. not a 1:1 mapping).
   1143   bit ShouldEmitMatchRegisterAltName = 0;
   1144 
   1145   // HasMnemonicFirst - Set to false if target instructions don't always
   1146   // start with a mnemonic as the first token.
   1147   bit HasMnemonicFirst = 1;
   1148 
   1149   // ReportMultipleNearMisses -
   1150   // When 0, the assembly matcher reports an error for one encoding or operand
   1151   // that did not match the parsed instruction.
   1152   // When 1, the assmebly matcher returns a list of encodings that were close
   1153   // to matching the parsed instruction, so to allow more detailed error
   1154   // messages.
   1155   bit ReportMultipleNearMisses = 0;
   1156 }
   1157 def DefaultAsmParser : AsmParser;
   1158 
   1159 //===----------------------------------------------------------------------===//
   1160 // AsmParserVariant - Subtargets can have multiple different assembly parsers
   1161 // (e.g. AT&T vs Intel syntax on X86 for example). This class can be
   1162 // implemented by targets to describe such variants.
   1163 //
   1164 class AsmParserVariant {
   1165   // Variant - AsmParsers can be of multiple different variants.  Variants are
   1166   // used to support targets that need to parser multiple formats for the
   1167   // assembly language.
   1168   int Variant = 0;
   1169 
   1170   // Name - The AsmParser variant name (e.g., AT&T vs Intel).
   1171   string Name = "";
   1172 
   1173   // CommentDelimiter - If given, the delimiter string used to recognize
   1174   // comments which are hard coded in the .td assembler strings for individual
   1175   // instructions.
   1176   string CommentDelimiter = "";
   1177 
   1178   // RegisterPrefix - If given, the token prefix which indicates a register
   1179   // token. This is used by the matcher to automatically recognize hard coded
   1180   // register tokens as constrained registers, instead of tokens, for the
   1181   // purposes of matching.
   1182   string RegisterPrefix = "";
   1183 
   1184   // TokenizingCharacters - Characters that are standalone tokens
   1185   string TokenizingCharacters = "[]*!";
   1186 
   1187   // SeparatorCharacters - Characters that are not tokens
   1188   string SeparatorCharacters = " \t,";
   1189 
   1190   // BreakCharacters - Characters that start new identifiers
   1191   string BreakCharacters = "";
   1192 }
   1193 def DefaultAsmParserVariant : AsmParserVariant;
   1194 
   1195 /// AssemblerPredicate - This is a Predicate that can be used when the assembler
   1196 /// matches instructions and aliases.
   1197 class AssemblerPredicate<string cond, string name = ""> {
   1198   bit AssemblerMatcherPredicate = 1;
   1199   string AssemblerCondString = cond;
   1200   string PredicateName = name;
   1201 }
   1202 
   1203 /// TokenAlias - This class allows targets to define assembler token
   1204 /// operand aliases. That is, a token literal operand which is equivalent
   1205 /// to another, canonical, token literal. For example, ARM allows:
   1206 ///   vmov.u32 s4, #0  -> vmov.i32, #0
   1207 /// 'u32' is a more specific designator for the 32-bit integer type specifier
   1208 /// and is legal for any instruction which accepts 'i32' as a datatype suffix.
   1209 ///   def : TokenAlias<".u32", ".i32">;
   1210 ///
   1211 /// This works by marking the match class of 'From' as a subclass of the
   1212 /// match class of 'To'.
   1213 class TokenAlias<string From, string To> {
   1214   string FromToken = From;
   1215   string ToToken = To;
   1216 }
   1217 
   1218 /// MnemonicAlias - This class allows targets to define assembler mnemonic
   1219 /// aliases.  This should be used when all forms of one mnemonic are accepted
   1220 /// with a different mnemonic.  For example, X86 allows:
   1221 ///   sal %al, 1    -> shl %al, 1
   1222 ///   sal %ax, %cl  -> shl %ax, %cl
   1223 ///   sal %eax, %cl -> shl %eax, %cl
   1224 /// etc.  Though "sal" is accepted with many forms, all of them are directly
   1225 /// translated to a shl, so it can be handled with (in the case of X86, it
   1226 /// actually has one for each suffix as well):
   1227 ///   def : MnemonicAlias<"sal", "shl">;
   1228 ///
   1229 /// Mnemonic aliases are mapped before any other translation in the match phase,
   1230 /// and do allow Requires predicates, e.g.:
   1231 ///
   1232 ///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
   1233 ///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
   1234 ///
   1235 /// Mnemonic aliases can also be constrained to specific variants, e.g.:
   1236 ///
   1237 ///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
   1238 ///
   1239 /// If no variant (e.g., "att" or "intel") is specified then the alias is
   1240 /// applied unconditionally.
   1241 class MnemonicAlias<string From, string To, string VariantName = ""> {
   1242   string FromMnemonic = From;
   1243   string ToMnemonic = To;
   1244   string AsmVariantName = VariantName;
   1245 
   1246   // Predicates - Predicates that must be true for this remapping to happen.
   1247   list<Predicate> Predicates = [];
   1248 }
   1249 
   1250 /// InstAlias - This defines an alternate assembly syntax that is allowed to
   1251 /// match an instruction that has a different (more canonical) assembly
   1252 /// representation.
   1253 class InstAlias<string Asm, dag Result, int Emit = 1> {
   1254   string AsmString = Asm;      // The .s format to match the instruction with.
   1255   dag ResultInst = Result;     // The MCInst to generate.
   1256 
   1257   // This determines which order the InstPrinter detects aliases for
   1258   // printing. A larger value makes the alias more likely to be
   1259   // emitted. The Instruction's own definition is notionally 0.5, so 0
   1260   // disables printing and 1 enables it if there are no conflicting aliases.
   1261   int EmitPriority = Emit;
   1262 
   1263   // Predicates - Predicates that must be true for this to match.
   1264   list<Predicate> Predicates = [];
   1265 
   1266   // If the instruction specified in Result has defined an AsmMatchConverter
   1267   // then setting this to 1 will cause the alias to use the AsmMatchConverter
   1268   // function when converting the OperandVector into an MCInst instead of the
   1269   // function that is generated by the dag Result.
   1270   // Setting this to 0 will cause the alias to ignore the Result instruction's
   1271   // defined AsmMatchConverter and instead use the function generated by the
   1272   // dag Result.
   1273   bit UseInstAsmMatchConverter = 1;
   1274 
   1275   // Assembler variant name to use for this alias. If not specified then
   1276   // assembler variants will be determined based on AsmString
   1277   string AsmVariantName = "";
   1278 }
   1279 
   1280 //===----------------------------------------------------------------------===//
   1281 // AsmWriter - This class can be implemented by targets that need to customize
   1282 // the format of the .s file writer.
   1283 //
   1284 // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
   1285 // on X86 for example).
   1286 //
   1287 class AsmWriter {
   1288   // AsmWriterClassName - This specifies the suffix to use for the asmwriter
   1289   // class.  Generated AsmWriter classes are always prefixed with the target
   1290   // name.
   1291   string AsmWriterClassName  = "InstPrinter";
   1292 
   1293   // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
   1294   // the various print methods.
   1295   // FIXME: Remove after all ports are updated.
   1296   int PassSubtarget = 0;
   1297 
   1298   // Variant - AsmWriters can be of multiple different variants.  Variants are
   1299   // used to support targets that need to emit assembly code in ways that are
   1300   // mostly the same for different targets, but have minor differences in
   1301   // syntax.  If the asmstring contains {|} characters in them, this integer
   1302   // will specify which alternative to use.  For example "{x|y|z}" with Variant
   1303   // == 1, will expand to "y".
   1304   int Variant = 0;
   1305 }
   1306 def DefaultAsmWriter : AsmWriter;
   1307 
   1308 
   1309 //===----------------------------------------------------------------------===//
   1310 // Target - This class contains the "global" target information
   1311 //
   1312 class Target {
   1313   // InstructionSet - Instruction set description for this target.
   1314   InstrInfo InstructionSet;
   1315 
   1316   // AssemblyParsers - The AsmParser instances available for this target.
   1317   list<AsmParser> AssemblyParsers = [DefaultAsmParser];
   1318 
   1319   /// AssemblyParserVariants - The AsmParserVariant instances available for
   1320   /// this target.
   1321   list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
   1322 
   1323   // AssemblyWriters - The AsmWriter instances available for this target.
   1324   list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
   1325 }
   1326 
   1327 //===----------------------------------------------------------------------===//
   1328 // SubtargetFeature - A characteristic of the chip set.
   1329 //
   1330 class SubtargetFeature<string n, string a,  string v, string d,
   1331                        list<SubtargetFeature> i = []> {
   1332   // Name - Feature name.  Used by command line (-mattr=) to determine the
   1333   // appropriate target chip.
   1334   //
   1335   string Name = n;
   1336 
   1337   // Attribute - Attribute to be set by feature.
   1338   //
   1339   string Attribute = a;
   1340 
   1341   // Value - Value the attribute to be set to by feature.
   1342   //
   1343   string Value = v;
   1344 
   1345   // Desc - Feature description.  Used by command line (-mattr=) to display help
   1346   // information.
   1347   //
   1348   string Desc = d;
   1349 
   1350   // Implies - Features that this feature implies are present. If one of those
   1351   // features isn't set, then this one shouldn't be set either.
   1352   //
   1353   list<SubtargetFeature> Implies = i;
   1354 }
   1355 
   1356 /// Specifies a Subtarget feature that this instruction is deprecated on.
   1357 class Deprecated<SubtargetFeature dep> {
   1358   SubtargetFeature DeprecatedFeatureMask = dep;
   1359 }
   1360 
   1361 /// A custom predicate used to determine if an instruction is
   1362 /// deprecated or not.
   1363 class ComplexDeprecationPredicate<string dep> {
   1364   string ComplexDeprecationPredicate = dep;
   1365 }
   1366 
   1367 //===----------------------------------------------------------------------===//
   1368 // Processor chip sets - These values represent each of the chip sets supported
   1369 // by the scheduler.  Each Processor definition requires corresponding
   1370 // instruction itineraries.
   1371 //
   1372 class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
   1373   // Name - Chip set name.  Used by command line (-mcpu=) to determine the
   1374   // appropriate target chip.
   1375   //
   1376   string Name = n;
   1377 
   1378   // SchedModel - The machine model for scheduling and instruction cost.
   1379   //
   1380   SchedMachineModel SchedModel = NoSchedModel;
   1381 
   1382   // ProcItin - The scheduling information for the target processor.
   1383   //
   1384   ProcessorItineraries ProcItin = pi;
   1385 
   1386   // Features - list of
   1387   list<SubtargetFeature> Features = f;
   1388 }
   1389 
   1390 // ProcessorModel allows subtargets to specify the more general
   1391 // SchedMachineModel instead if a ProcessorItinerary. Subtargets will
   1392 // gradually move to this newer form.
   1393 //
   1394 // Although this class always passes NoItineraries to the Processor
   1395 // class, the SchedMachineModel may still define valid Itineraries.
   1396 class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
   1397   : Processor<n, NoItineraries, f> {
   1398   let SchedModel = m;
   1399 }
   1400 
   1401 //===----------------------------------------------------------------------===//
   1402 // InstrMapping - This class is used to create mapping tables to relate
   1403 // instructions with each other based on the values specified in RowFields,
   1404 // ColFields, KeyCol and ValueCols.
   1405 //
   1406 class InstrMapping {
   1407   // FilterClass - Used to limit search space only to the instructions that
   1408   // define the relationship modeled by this InstrMapping record.
   1409   string FilterClass;
   1410 
   1411   // RowFields - List of fields/attributes that should be same for all the
   1412   // instructions in a row of the relation table. Think of this as a set of
   1413   // properties shared by all the instructions related by this relationship
   1414   // model and is used to categorize instructions into subgroups. For instance,
   1415   // if we want to define a relation that maps 'Add' instruction to its
   1416   // predicated forms, we can define RowFields like this:
   1417   //
   1418   // let RowFields = BaseOp
   1419   // All add instruction predicated/non-predicated will have to set their BaseOp
   1420   // to the same value.
   1421   //
   1422   // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
   1423   // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
   1424   // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
   1425   list<string> RowFields = [];
   1426 
   1427   // List of fields/attributes that are same for all the instructions
   1428   // in a column of the relation table.
   1429   // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
   1430   // based on the 'predSense' values. All the instruction in a specific
   1431   // column have the same value and it is fixed for the column according
   1432   // to the values set in 'ValueCols'.
   1433   list<string> ColFields = [];
   1434 
   1435   // Values for the fields/attributes listed in 'ColFields'.
   1436   // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
   1437   // that models this relation) should be non-predicated.
   1438   // In the example above, 'Add' is the key instruction.
   1439   list<string> KeyCol = [];
   1440 
   1441   // List of values for the fields/attributes listed in 'ColFields', one for
   1442   // each column in the relation table.
   1443   //
   1444   // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
   1445   // table. First column requires all the instructions to have predSense
   1446   // set to 'true' and second column requires it to be 'false'.
   1447   list<list<string> > ValueCols = [];
   1448 }
   1449 
   1450 //===----------------------------------------------------------------------===//
   1451 // Pull in the common support for calling conventions.
   1452 //
   1453 include "llvm/Target/TargetCallingConv.td"
   1454 
   1455 //===----------------------------------------------------------------------===//
   1456 // Pull in the common support for DAG isel generation.
   1457 //
   1458 include "llvm/Target/TargetSelectionDAG.td"
   1459 
   1460 //===----------------------------------------------------------------------===//
   1461 // Pull in the common support for Global ISel register bank info generation.
   1462 //
   1463 include "llvm/Target/GlobalISel/RegisterBank.td"
   1464 
   1465 //===----------------------------------------------------------------------===//
   1466 // Pull in the common support for DAG isel generation.
   1467 //
   1468 include "llvm/Target/GlobalISel/Target.td"
   1469 
   1470 //===----------------------------------------------------------------------===//
   1471 // Pull in the common support for the Global ISel DAG-based selector generation.
   1472 //
   1473 include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
   1474