Home | History | Annotate | Download | only in tr1
      1 // Special functions -*- C++ -*-
      2 
      3 // Copyright (C) 2006-2013 Free Software Foundation, Inc.
      4 //
      5 // This file is part of the GNU ISO C++ Library.  This library is free
      6 // software; you can redistribute it and/or modify it under the
      7 // terms of the GNU General Public License as published by the
      8 // Free Software Foundation; either version 3, or (at your option)
      9 // any later version.
     10 //
     11 // This library is distributed in the hope that it will be useful,
     12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14 // GNU General Public License for more details.
     15 //
     16 // Under Section 7 of GPL version 3, you are granted additional
     17 // permissions described in the GCC Runtime Library Exception, version
     18 // 3.1, as published by the Free Software Foundation.
     19 
     20 // You should have received a copy of the GNU General Public License and
     21 // a copy of the GCC Runtime Library Exception along with this program;
     22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     23 // <http://www.gnu.org/licenses/>.
     24 
     25 /** @file tr1/bessel_function.tcc
     26  *  This is an internal header file, included by other library headers.
     27  *  Do not attempt to use it directly. @headername{tr1/cmath}
     28  */
     29 
     30 //
     31 // ISO C++ 14882 TR1: 5.2  Special functions
     32 //
     33 
     34 // Written by Edward Smith-Rowland.
     35 //
     36 // References:
     37 //   (1) Handbook of Mathematical Functions,
     38 //       ed. Milton Abramowitz and Irene A. Stegun,
     39 //       Dover Publications,
     40 //       Section 9, pp. 355-434, Section 10 pp. 435-478
     41 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
     42 //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
     43 //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
     44 //       2nd ed, pp. 240-245
     45 
     46 #ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
     47 #define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1
     48 
     49 #include "special_function_util.h"
     50 
     51 namespace std _GLIBCXX_VISIBILITY(default)
     52 {
     53 namespace tr1
     54 {
     55   // [5.2] Special functions
     56 
     57   // Implementation-space details.
     58   namespace __detail
     59   {
     60   _GLIBCXX_BEGIN_NAMESPACE_VERSION
     61 
     62     /**
     63      *   @brief Compute the gamma functions required by the Temme series
     64      *          expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$.
     65      *   @f[
     66      *     \Gamma_1 = \frac{1}{2\mu}
     67      *                [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
     68      *   @f]
     69      *   and
     70      *   @f[
     71      *     \Gamma_2 = \frac{1}{2}
     72      *                [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
     73      *   @f]
     74      *   where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$.
     75      *   is the nearest integer to @f$ \nu @f$.
     76      *   The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
     77      *   are returned as well.
     78      * 
     79      *   The accuracy requirements on this are exquisite.
     80      *
     81      *   @param __mu     The input parameter of the gamma functions.
     82      *   @param __gam1   The output function \f$ \Gamma_1(\mu) \f$
     83      *   @param __gam2   The output function \f$ \Gamma_2(\mu) \f$
     84      *   @param __gampl  The output function \f$ \Gamma(1 + \mu) \f$
     85      *   @param __gammi  The output function \f$ \Gamma(1 - \mu) \f$
     86      */
     87     template <typename _Tp>
     88     void
     89     __gamma_temme(_Tp __mu,
     90                   _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
     91     {
     92 #if _GLIBCXX_USE_C99_MATH_TR1
     93       __gampl = _Tp(1) / std::tr1::tgamma(_Tp(1) + __mu);
     94       __gammi = _Tp(1) / std::tr1::tgamma(_Tp(1) - __mu);
     95 #else
     96       __gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
     97       __gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
     98 #endif
     99 
    100       if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
    101         __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
    102       else
    103         __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);
    104 
    105       __gam2 = (__gammi + __gampl) / (_Tp(2));
    106 
    107       return;
    108     }
    109 
    110 
    111     /**
    112      *   @brief  Compute the Bessel @f$ J_\nu(x) @f$ and Neumann
    113      *           @f$ N_\nu(x) @f$ functions and their first derivatives
    114      *           @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively.
    115      *           These four functions are computed together for numerical
    116      *           stability.
    117      *
    118      *   @param  __nu  The order of the Bessel functions.
    119      *   @param  __x   The argument of the Bessel functions.
    120      *   @param  __Jnu  The output Bessel function of the first kind.
    121      *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
    122      *   @param  __Jpnu  The output derivative of the Bessel function of the first kind.
    123      *   @param  __Npnu  The output derivative of the Neumann function.
    124      */
    125     template <typename _Tp>
    126     void
    127     __bessel_jn(_Tp __nu, _Tp __x,
    128                 _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
    129     {
    130       if (__x == _Tp(0))
    131         {
    132           if (__nu == _Tp(0))
    133             {
    134               __Jnu = _Tp(1);
    135               __Jpnu = _Tp(0);
    136             }
    137           else if (__nu == _Tp(1))
    138             {
    139               __Jnu = _Tp(0);
    140               __Jpnu = _Tp(0.5L);
    141             }
    142           else
    143             {
    144               __Jnu = _Tp(0);
    145               __Jpnu = _Tp(0);
    146             }
    147           __Nnu = -std::numeric_limits<_Tp>::infinity();
    148           __Npnu = std::numeric_limits<_Tp>::infinity();
    149           return;
    150         }
    151 
    152       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    153       //  When the multiplier is N i.e.
    154       //  fp_min = N * min()
    155       //  Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)!
    156       //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min();
    157       const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min());
    158       const int __max_iter = 15000;
    159       const _Tp __x_min = _Tp(2);
    160 
    161       const int __nl = (__x < __x_min
    162                     ? static_cast<int>(__nu + _Tp(0.5L))
    163                     : std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L))));
    164 
    165       const _Tp __mu = __nu - __nl;
    166       const _Tp __mu2 = __mu * __mu;
    167       const _Tp __xi = _Tp(1) / __x;
    168       const _Tp __xi2 = _Tp(2) * __xi;
    169       _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
    170       int __isign = 1;
    171       _Tp __h = __nu * __xi;
    172       if (__h < __fp_min)
    173         __h = __fp_min;
    174       _Tp __b = __xi2 * __nu;
    175       _Tp __d = _Tp(0);
    176       _Tp __c = __h;
    177       int __i;
    178       for (__i = 1; __i <= __max_iter; ++__i)
    179         {
    180           __b += __xi2;
    181           __d = __b - __d;
    182           if (std::abs(__d) < __fp_min)
    183             __d = __fp_min;
    184           __c = __b - _Tp(1) / __c;
    185           if (std::abs(__c) < __fp_min)
    186             __c = __fp_min;
    187           __d = _Tp(1) / __d;
    188           const _Tp __del = __c * __d;
    189           __h *= __del;
    190           if (__d < _Tp(0))
    191             __isign = -__isign;
    192           if (std::abs(__del - _Tp(1)) < __eps)
    193             break;
    194         }
    195       if (__i > __max_iter)
    196         std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "
    197                                        "try asymptotic expansion."));
    198       _Tp __Jnul = __isign * __fp_min;
    199       _Tp __Jpnul = __h * __Jnul;
    200       _Tp __Jnul1 = __Jnul;
    201       _Tp __Jpnu1 = __Jpnul;
    202       _Tp __fact = __nu * __xi;
    203       for ( int __l = __nl; __l >= 1; --__l )
    204         {
    205           const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
    206           __fact -= __xi;
    207           __Jpnul = __fact * __Jnutemp - __Jnul;
    208           __Jnul = __Jnutemp;
    209         }
    210       if (__Jnul == _Tp(0))
    211         __Jnul = __eps;
    212       _Tp __f= __Jpnul / __Jnul;
    213       _Tp __Nmu, __Nnu1, __Npmu, __Jmu;
    214       if (__x < __x_min)
    215         {
    216           const _Tp __x2 = __x / _Tp(2);
    217           const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
    218           _Tp __fact = (std::abs(__pimu) < __eps
    219                       ? _Tp(1) : __pimu / std::sin(__pimu));
    220           _Tp __d = -std::log(__x2);
    221           _Tp __e = __mu * __d;
    222           _Tp __fact2 = (std::abs(__e) < __eps
    223                        ? _Tp(1) : std::sinh(__e) / __e);
    224           _Tp __gam1, __gam2, __gampl, __gammi;
    225           __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
    226           _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
    227                    * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
    228           __e = std::exp(__e);
    229           _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
    230           _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
    231           const _Tp __pimu2 = __pimu / _Tp(2);
    232           _Tp __fact3 = (std::abs(__pimu2) < __eps
    233                        ? _Tp(1) : std::sin(__pimu2) / __pimu2 );
    234           _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
    235           _Tp __c = _Tp(1);
    236           __d = -__x2 * __x2;
    237           _Tp __sum = __ff + __r * __q;
    238           _Tp __sum1 = __p;
    239           for (__i = 1; __i <= __max_iter; ++__i)
    240             {
    241               __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
    242               __c *= __d / _Tp(__i);
    243               __p /= _Tp(__i) - __mu;
    244               __q /= _Tp(__i) + __mu;
    245               const _Tp __del = __c * (__ff + __r * __q);
    246               __sum += __del; 
    247               const _Tp __del1 = __c * __p - __i * __del;
    248               __sum1 += __del1;
    249               if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
    250                 break;
    251             }
    252           if ( __i > __max_iter )
    253             std::__throw_runtime_error(__N("Bessel y series failed to converge "
    254                                            "in __bessel_jn."));
    255           __Nmu = -__sum;
    256           __Nnu1 = -__sum1 * __xi2;
    257           __Npmu = __mu * __xi * __Nmu - __Nnu1;
    258           __Jmu = __w / (__Npmu - __f * __Nmu);
    259         }
    260       else
    261         {
    262           _Tp __a = _Tp(0.25L) - __mu2;
    263           _Tp __q = _Tp(1);
    264           _Tp __p = -__xi / _Tp(2);
    265           _Tp __br = _Tp(2) * __x;
    266           _Tp __bi = _Tp(2);
    267           _Tp __fact = __a * __xi / (__p * __p + __q * __q);
    268           _Tp __cr = __br + __q * __fact;
    269           _Tp __ci = __bi + __p * __fact;
    270           _Tp __den = __br * __br + __bi * __bi;
    271           _Tp __dr = __br / __den;
    272           _Tp __di = -__bi / __den;
    273           _Tp __dlr = __cr * __dr - __ci * __di;
    274           _Tp __dli = __cr * __di + __ci * __dr;
    275           _Tp __temp = __p * __dlr - __q * __dli;
    276           __q = __p * __dli + __q * __dlr;
    277           __p = __temp;
    278           int __i;
    279           for (__i = 2; __i <= __max_iter; ++__i)
    280             {
    281               __a += _Tp(2 * (__i - 1));
    282               __bi += _Tp(2);
    283               __dr = __a * __dr + __br;
    284               __di = __a * __di + __bi;
    285               if (std::abs(__dr) + std::abs(__di) < __fp_min)
    286                 __dr = __fp_min;
    287               __fact = __a / (__cr * __cr + __ci * __ci);
    288               __cr = __br + __cr * __fact;
    289               __ci = __bi - __ci * __fact;
    290               if (std::abs(__cr) + std::abs(__ci) < __fp_min)
    291                 __cr = __fp_min;
    292               __den = __dr * __dr + __di * __di;
    293               __dr /= __den;
    294               __di /= -__den;
    295               __dlr = __cr * __dr - __ci * __di;
    296               __dli = __cr * __di + __ci * __dr;
    297               __temp = __p * __dlr - __q * __dli;
    298               __q = __p * __dli + __q * __dlr;
    299               __p = __temp;
    300               if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
    301                 break;
    302           }
    303           if (__i > __max_iter)
    304             std::__throw_runtime_error(__N("Lentz's method failed "
    305                                            "in __bessel_jn."));
    306           const _Tp __gam = (__p - __f) / __q;
    307           __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
    308 #if _GLIBCXX_USE_C99_MATH_TR1
    309           __Jmu = std::tr1::copysign(__Jmu, __Jnul);
    310 #else
    311           if (__Jmu * __Jnul < _Tp(0))
    312             __Jmu = -__Jmu;
    313 #endif
    314           __Nmu = __gam * __Jmu;
    315           __Npmu = (__p + __q / __gam) * __Nmu;
    316           __Nnu1 = __mu * __xi * __Nmu - __Npmu;
    317       }
    318       __fact = __Jmu / __Jnul;
    319       __Jnu = __fact * __Jnul1;
    320       __Jpnu = __fact * __Jpnu1;
    321       for (__i = 1; __i <= __nl; ++__i)
    322         {
    323           const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
    324           __Nmu = __Nnu1;
    325           __Nnu1 = __Nnutemp;
    326         }
    327       __Nnu = __Nmu;
    328       __Npnu = __nu * __xi * __Nmu - __Nnu1;
    329 
    330       return;
    331     }
    332 
    333 
    334     /**
    335      *   @brief This routine computes the asymptotic cylindrical Bessel
    336      *          and Neumann functions of order nu: \f$ J_{\nu} \f$,
    337      *          \f$ N_{\nu} \f$.
    338      *
    339      *   References:
    340      *    (1) Handbook of Mathematical Functions,
    341      *        ed. Milton Abramowitz and Irene A. Stegun,
    342      *        Dover Publications,
    343      *        Section 9 p. 364, Equations 9.2.5-9.2.10
    344      *
    345      *   @param  __nu  The order of the Bessel functions.
    346      *   @param  __x   The argument of the Bessel functions.
    347      *   @param  __Jnu  The output Bessel function of the first kind.
    348      *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
    349      */
    350     template <typename _Tp>
    351     void
    352     __cyl_bessel_jn_asymp(_Tp __nu, _Tp __x, _Tp & __Jnu, _Tp & __Nnu)
    353     {
    354       const _Tp __mu   = _Tp(4) * __nu * __nu;
    355       const _Tp __mum1 = __mu - _Tp(1);
    356       const _Tp __mum9 = __mu - _Tp(9);
    357       const _Tp __mum25 = __mu - _Tp(25);
    358       const _Tp __mum49 = __mu - _Tp(49);
    359       const _Tp __xx = _Tp(64) * __x * __x;
    360       const _Tp __P = _Tp(1) - __mum1 * __mum9 / (_Tp(2) * __xx)
    361                     * (_Tp(1) - __mum25 * __mum49 / (_Tp(12) * __xx));
    362       const _Tp __Q = __mum1 / (_Tp(8) * __x)
    363                     * (_Tp(1) - __mum9 * __mum25 / (_Tp(6) * __xx));
    364 
    365       const _Tp __chi = __x - (__nu + _Tp(0.5L))
    366                             * __numeric_constants<_Tp>::__pi_2();
    367       const _Tp __c = std::cos(__chi);
    368       const _Tp __s = std::sin(__chi);
    369 
    370       const _Tp __coef = std::sqrt(_Tp(2)
    371                              / (__numeric_constants<_Tp>::__pi() * __x));
    372       __Jnu = __coef * (__c * __P - __s * __Q);
    373       __Nnu = __coef * (__s * __P + __c * __Q);
    374 
    375       return;
    376     }
    377 
    378 
    379     /**
    380      *   @brief This routine returns the cylindrical Bessel functions
    381      *          of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$
    382      *          by series expansion.
    383      *
    384      *   The modified cylindrical Bessel function is:
    385      *   @f[
    386      *    Z_{\nu}(x) = \sum_{k=0}^{\infty}
    387      *              \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
    388      *   @f]
    389      *   where \f$ \sigma = +1 \f$ or\f$  -1 \f$ for
    390      *   \f$ Z = I \f$ or \f$ J \f$ respectively.
    391      * 
    392      *   See Abramowitz & Stegun, 9.1.10
    393      *       Abramowitz & Stegun, 9.6.7
    394      *    (1) Handbook of Mathematical Functions,
    395      *        ed. Milton Abramowitz and Irene A. Stegun,
    396      *        Dover Publications,
    397      *        Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
    398      *
    399      *   @param  __nu  The order of the Bessel function.
    400      *   @param  __x   The argument of the Bessel function.
    401      *   @param  __sgn  The sign of the alternate terms
    402      *                  -1 for the Bessel function of the first kind.
    403      *                  +1 for the modified Bessel function of the first kind.
    404      *   @return  The output Bessel function.
    405      */
    406     template <typename _Tp>
    407     _Tp
    408     __cyl_bessel_ij_series(_Tp __nu, _Tp __x, _Tp __sgn,
    409                            unsigned int __max_iter)
    410     {
    411       if (__x == _Tp(0))
    412 	return __nu == _Tp(0) ? _Tp(1) : _Tp(0);
    413 
    414       const _Tp __x2 = __x / _Tp(2);
    415       _Tp __fact = __nu * std::log(__x2);
    416 #if _GLIBCXX_USE_C99_MATH_TR1
    417       __fact -= std::tr1::lgamma(__nu + _Tp(1));
    418 #else
    419       __fact -= __log_gamma(__nu + _Tp(1));
    420 #endif
    421       __fact = std::exp(__fact);
    422       const _Tp __xx4 = __sgn * __x2 * __x2;
    423       _Tp __Jn = _Tp(1);
    424       _Tp __term = _Tp(1);
    425 
    426       for (unsigned int __i = 1; __i < __max_iter; ++__i)
    427         {
    428           __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
    429           __Jn += __term;
    430           if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
    431             break;
    432         }
    433 
    434       return __fact * __Jn;
    435     }
    436 
    437 
    438     /**
    439      *   @brief  Return the Bessel function of order \f$ \nu \f$:
    440      *           \f$ J_{\nu}(x) \f$.
    441      *
    442      *   The cylindrical Bessel function is:
    443      *   @f[
    444      *    J_{\nu}(x) = \sum_{k=0}^{\infty}
    445      *              \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
    446      *   @f]
    447      *
    448      *   @param  __nu  The order of the Bessel function.
    449      *   @param  __x   The argument of the Bessel function.
    450      *   @return  The output Bessel function.
    451      */
    452     template<typename _Tp>
    453     _Tp
    454     __cyl_bessel_j(_Tp __nu, _Tp __x)
    455     {
    456       if (__nu < _Tp(0) || __x < _Tp(0))
    457         std::__throw_domain_error(__N("Bad argument "
    458                                       "in __cyl_bessel_j."));
    459       else if (__isnan(__nu) || __isnan(__x))
    460         return std::numeric_limits<_Tp>::quiet_NaN();
    461       else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
    462         return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
    463       else if (__x > _Tp(1000))
    464         {
    465           _Tp __J_nu, __N_nu;
    466           __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
    467           return __J_nu;
    468         }
    469       else
    470         {
    471           _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
    472           __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
    473           return __J_nu;
    474         }
    475     }
    476 
    477 
    478     /**
    479      *   @brief  Return the Neumann function of order \f$ \nu \f$:
    480      *           \f$ N_{\nu}(x) \f$.
    481      *
    482      *   The Neumann function is defined by:
    483      *   @f[
    484      *      N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
    485      *                        {\sin \nu\pi}
    486      *   @f]
    487      *   where for integral \f$ \nu = n \f$ a limit is taken:
    488      *   \f$ lim_{\nu \to n} \f$.
    489      *
    490      *   @param  __nu  The order of the Neumann function.
    491      *   @param  __x   The argument of the Neumann function.
    492      *   @return  The output Neumann function.
    493      */
    494     template<typename _Tp>
    495     _Tp
    496     __cyl_neumann_n(_Tp __nu, _Tp __x)
    497     {
    498       if (__nu < _Tp(0) || __x < _Tp(0))
    499         std::__throw_domain_error(__N("Bad argument "
    500                                       "in __cyl_neumann_n."));
    501       else if (__isnan(__nu) || __isnan(__x))
    502         return std::numeric_limits<_Tp>::quiet_NaN();
    503       else if (__x > _Tp(1000))
    504         {
    505           _Tp __J_nu, __N_nu;
    506           __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
    507           return __N_nu;
    508         }
    509       else
    510         {
    511           _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
    512           __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
    513           return __N_nu;
    514         }
    515     }
    516 
    517 
    518     /**
    519      *   @brief  Compute the spherical Bessel @f$ j_n(x) @f$
    520      *           and Neumann @f$ n_n(x) @f$ functions and their first
    521      *           derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$
    522      *           respectively.
    523      *
    524      *   @param  __n  The order of the spherical Bessel function.
    525      *   @param  __x  The argument of the spherical Bessel function.
    526      *   @param  __j_n  The output spherical Bessel function.
    527      *   @param  __n_n  The output spherical Neumann function.
    528      *   @param  __jp_n The output derivative of the spherical Bessel function.
    529      *   @param  __np_n The output derivative of the spherical Neumann function.
    530      */
    531     template <typename _Tp>
    532     void
    533     __sph_bessel_jn(unsigned int __n, _Tp __x,
    534                     _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
    535     {
    536       const _Tp __nu = _Tp(__n) + _Tp(0.5L);
    537 
    538       _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
    539       __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
    540 
    541       const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
    542                          / std::sqrt(__x);
    543 
    544       __j_n = __factor * __J_nu;
    545       __n_n = __factor * __N_nu;
    546       __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
    547       __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);
    548 
    549       return;
    550     }
    551 
    552 
    553     /**
    554      *   @brief  Return the spherical Bessel function
    555      *           @f$ j_n(x) @f$ of order n.
    556      *
    557      *   The spherical Bessel function is defined by:
    558      *   @f[
    559      *    j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
    560      *   @f]
    561      *
    562      *   @param  __n  The order of the spherical Bessel function.
    563      *   @param  __x  The argument of the spherical Bessel function.
    564      *   @return  The output spherical Bessel function.
    565      */
    566     template <typename _Tp>
    567     _Tp
    568     __sph_bessel(unsigned int __n, _Tp __x)
    569     {
    570       if (__x < _Tp(0))
    571         std::__throw_domain_error(__N("Bad argument "
    572                                       "in __sph_bessel."));
    573       else if (__isnan(__x))
    574         return std::numeric_limits<_Tp>::quiet_NaN();
    575       else if (__x == _Tp(0))
    576         {
    577           if (__n == 0)
    578             return _Tp(1);
    579           else
    580             return _Tp(0);
    581         }
    582       else
    583         {
    584           _Tp __j_n, __n_n, __jp_n, __np_n;
    585           __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
    586           return __j_n;
    587         }
    588     }
    589 
    590 
    591     /**
    592      *   @brief  Return the spherical Neumann function
    593      *           @f$ n_n(x) @f$.
    594      *
    595      *   The spherical Neumann function is defined by:
    596      *   @f[
    597      *    n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
    598      *   @f]
    599      *
    600      *   @param  __n  The order of the spherical Neumann function.
    601      *   @param  __x  The argument of the spherical Neumann function.
    602      *   @return  The output spherical Neumann function.
    603      */
    604     template <typename _Tp>
    605     _Tp
    606     __sph_neumann(unsigned int __n, _Tp __x)
    607     {
    608       if (__x < _Tp(0))
    609         std::__throw_domain_error(__N("Bad argument "
    610                                       "in __sph_neumann."));
    611       else if (__isnan(__x))
    612         return std::numeric_limits<_Tp>::quiet_NaN();
    613       else if (__x == _Tp(0))
    614         return -std::numeric_limits<_Tp>::infinity();
    615       else
    616         {
    617           _Tp __j_n, __n_n, __jp_n, __np_n;
    618           __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
    619           return __n_n;
    620         }
    621     }
    622 
    623   _GLIBCXX_END_NAMESPACE_VERSION
    624   } // namespace std::tr1::__detail
    625 }
    626 }
    627 
    628 #endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
    629