Home | History | Annotate | Download | only in bits
      1 // Set implementation -*- C++ -*-
      2 
      3 // Copyright (C) 2001-2013 Free Software Foundation, Inc.
      4 //
      5 // This file is part of the GNU ISO C++ Library.  This library is free
      6 // software; you can redistribute it and/or modify it under the
      7 // terms of the GNU General Public License as published by the
      8 // Free Software Foundation; either version 3, or (at your option)
      9 // any later version.
     10 
     11 // This library is distributed in the hope that it will be useful,
     12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14 // GNU General Public License for more details.
     15 
     16 // Under Section 7 of GPL version 3, you are granted additional
     17 // permissions described in the GCC Runtime Library Exception, version
     18 // 3.1, as published by the Free Software Foundation.
     19 
     20 // You should have received a copy of the GNU General Public License and
     21 // a copy of the GCC Runtime Library Exception along with this program;
     22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     23 // <http://www.gnu.org/licenses/>.
     24 
     25 /*
     26  *
     27  * Copyright (c) 1994
     28  * Hewlett-Packard Company
     29  *
     30  * Permission to use, copy, modify, distribute and sell this software
     31  * and its documentation for any purpose is hereby granted without fee,
     32  * provided that the above copyright notice appear in all copies and
     33  * that both that copyright notice and this permission notice appear
     34  * in supporting documentation.  Hewlett-Packard Company makes no
     35  * representations about the suitability of this software for any
     36  * purpose.  It is provided "as is" without express or implied warranty.
     37  *
     38  *
     39  * Copyright (c) 1996,1997
     40  * Silicon Graphics Computer Systems, Inc.
     41  *
     42  * Permission to use, copy, modify, distribute and sell this software
     43  * and its documentation for any purpose is hereby granted without fee,
     44  * provided that the above copyright notice appear in all copies and
     45  * that both that copyright notice and this permission notice appear
     46  * in supporting documentation.  Silicon Graphics makes no
     47  * representations about the suitability of this software for any
     48  * purpose.  It is provided "as is" without express or implied warranty.
     49  */
     50 
     51 /** @file bits/stl_set.h
     52  *  This is an internal header file, included by other library headers.
     53  *  Do not attempt to use it directly. @headername{set}
     54  */
     55 
     56 #ifndef _STL_SET_H
     57 #define _STL_SET_H 1
     58 
     59 #include <bits/concept_check.h>
     60 #if __cplusplus >= 201103L
     61 #include <initializer_list>
     62 #endif
     63 
     64 namespace std _GLIBCXX_VISIBILITY(default)
     65 {
     66 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
     67 
     68   /**
     69    *  @brief A standard container made up of unique keys, which can be
     70    *  retrieved in logarithmic time.
     71    *
     72    *  @ingroup associative_containers
     73    *
     74    *  @tparam _Key  Type of key objects.
     75    *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
     76    *  @tparam _Alloc  Allocator type, defaults to allocator<_Key>.
     77    *
     78    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
     79    *  <a href="tables.html#66">reversible container</a>, and an
     80    *  <a href="tables.html#69">associative container</a> (using unique keys).
     81    *
     82    *  Sets support bidirectional iterators.
     83    *
     84    *  The private tree data is declared exactly the same way for set and
     85    *  multiset; the distinction is made entirely in how the tree functions are
     86    *  called (*_unique versus *_equal, same as the standard).
     87   */
     88   template<typename _Key, typename _Compare = std::less<_Key>,
     89 	   typename _Alloc = std::allocator<_Key> >
     90     class set
     91     {
     92       // concept requirements
     93       typedef typename _Alloc::value_type                   _Alloc_value_type;
     94       __glibcxx_class_requires(_Key, _SGIAssignableConcept)
     95       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
     96 				_BinaryFunctionConcept)
     97       __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept)
     98 
     99     public:
    100       // typedefs:
    101       //@{
    102       /// Public typedefs.
    103       typedef _Key     key_type;
    104       typedef _Key     value_type;
    105       typedef _Compare key_compare;
    106       typedef _Compare value_compare;
    107       typedef _Alloc   allocator_type;
    108       //@}
    109 
    110     private:
    111       typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type;
    112 
    113       typedef _Rb_tree<key_type, value_type, _Identity<value_type>,
    114 		       key_compare, _Key_alloc_type> _Rep_type;
    115       _Rep_type _M_t;  // Red-black tree representing set.
    116 
    117     public:
    118       //@{
    119       ///  Iterator-related typedefs.
    120       typedef typename _Key_alloc_type::pointer             pointer;
    121       typedef typename _Key_alloc_type::const_pointer       const_pointer;
    122       typedef typename _Key_alloc_type::reference           reference;
    123       typedef typename _Key_alloc_type::const_reference     const_reference;
    124       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    125       // DR 103. set::iterator is required to be modifiable,
    126       // but this allows modification of keys.
    127       typedef typename _Rep_type::const_iterator            iterator;
    128       typedef typename _Rep_type::const_iterator            const_iterator;
    129       typedef typename _Rep_type::const_reverse_iterator    reverse_iterator;
    130       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
    131       typedef typename _Rep_type::size_type                 size_type;
    132       typedef typename _Rep_type::difference_type           difference_type;
    133       //@}
    134 
    135       // allocation/deallocation
    136       /**
    137        *  @brief  Default constructor creates no elements.
    138        */
    139       set()
    140       : _M_t() { }
    141 
    142       /**
    143        *  @brief  Creates a %set with no elements.
    144        *  @param  __comp  Comparator to use.
    145        *  @param  __a  An allocator object.
    146        */
    147       explicit
    148       set(const _Compare& __comp,
    149 	  const allocator_type& __a = allocator_type())
    150       : _M_t(__comp, _Key_alloc_type(__a)) { }
    151 
    152       /**
    153        *  @brief  Builds a %set from a range.
    154        *  @param  __first  An input iterator.
    155        *  @param  __last  An input iterator.
    156        *
    157        *  Create a %set consisting of copies of the elements from
    158        *  [__first,__last).  This is linear in N if the range is
    159        *  already sorted, and NlogN otherwise (where N is
    160        *  distance(__first,__last)).
    161        */
    162       template<typename _InputIterator>
    163 	set(_InputIterator __first, _InputIterator __last)
    164 	: _M_t()
    165 	{ _M_t._M_insert_unique(__first, __last); }
    166 
    167       /**
    168        *  @brief  Builds a %set from a range.
    169        *  @param  __first  An input iterator.
    170        *  @param  __last  An input iterator.
    171        *  @param  __comp  A comparison functor.
    172        *  @param  __a  An allocator object.
    173        *
    174        *  Create a %set consisting of copies of the elements from
    175        *  [__first,__last).  This is linear in N if the range is
    176        *  already sorted, and NlogN otherwise (where N is
    177        *  distance(__first,__last)).
    178        */
    179       template<typename _InputIterator>
    180 	set(_InputIterator __first, _InputIterator __last,
    181 	    const _Compare& __comp,
    182 	    const allocator_type& __a = allocator_type())
    183 	: _M_t(__comp, _Key_alloc_type(__a))
    184         { _M_t._M_insert_unique(__first, __last); }
    185 
    186       /**
    187        *  @brief  %Set copy constructor.
    188        *  @param  __x  A %set of identical element and allocator types.
    189        *
    190        *  The newly-created %set uses a copy of the allocation object used
    191        *  by @a __x.
    192        */
    193       set(const set& __x)
    194       : _M_t(__x._M_t) { }
    195 
    196 #if __cplusplus >= 201103L
    197      /**
    198        *  @brief %Set move constructor
    199        *  @param __x  A %set of identical element and allocator types.
    200        *
    201        *  The newly-created %set contains the exact contents of @a x.
    202        *  The contents of @a x are a valid, but unspecified %set.
    203        */
    204       set(set&& __x)
    205       noexcept(is_nothrow_copy_constructible<_Compare>::value)
    206       : _M_t(std::move(__x._M_t)) { }
    207 
    208       /**
    209        *  @brief  Builds a %set from an initializer_list.
    210        *  @param  __l  An initializer_list.
    211        *  @param  __comp  A comparison functor.
    212        *  @param  __a  An allocator object.
    213        *
    214        *  Create a %set consisting of copies of the elements in the list.
    215        *  This is linear in N if the list is already sorted, and NlogN
    216        *  otherwise (where N is @a __l.size()).
    217        */
    218       set(initializer_list<value_type> __l,
    219 	  const _Compare& __comp = _Compare(),
    220 	  const allocator_type& __a = allocator_type())
    221       : _M_t(__comp, _Key_alloc_type(__a))
    222       { _M_t._M_insert_unique(__l.begin(), __l.end()); }
    223 #endif
    224 
    225       /**
    226        *  @brief  %Set assignment operator.
    227        *  @param  __x  A %set of identical element and allocator types.
    228        *
    229        *  All the elements of @a __x are copied, but unlike the copy
    230        *  constructor, the allocator object is not copied.
    231        */
    232       set&
    233       operator=(const set& __x)
    234       {
    235 	_M_t = __x._M_t;
    236 	return *this;
    237       }
    238 
    239 #if __cplusplus >= 201103L
    240       /**
    241        *  @brief %Set move assignment operator.
    242        *  @param __x  A %set of identical element and allocator types.
    243        *
    244        *  The contents of @a __x are moved into this %set (without copying).
    245        *  @a __x is a valid, but unspecified %set.
    246        */
    247       set&
    248       operator=(set&& __x)
    249       {
    250 	// NB: DR 1204.
    251 	// NB: DR 675.
    252 	this->clear();
    253 	this->swap(__x);
    254       	return *this;
    255       }
    256 
    257       /**
    258        *  @brief  %Set list assignment operator.
    259        *  @param  __l  An initializer_list.
    260        *
    261        *  This function fills a %set with copies of the elements in the
    262        *  initializer list @a __l.
    263        *
    264        *  Note that the assignment completely changes the %set and
    265        *  that the resulting %set's size is the same as the number
    266        *  of elements assigned.  Old data may be lost.
    267        */
    268       set&
    269       operator=(initializer_list<value_type> __l)
    270       {
    271 	this->clear();
    272 	this->insert(__l.begin(), __l.end());
    273 	return *this;
    274       }
    275 #endif
    276 
    277       // accessors:
    278 
    279       ///  Returns the comparison object with which the %set was constructed.
    280       key_compare
    281       key_comp() const
    282       { return _M_t.key_comp(); }
    283       ///  Returns the comparison object with which the %set was constructed.
    284       value_compare
    285       value_comp() const
    286       { return _M_t.key_comp(); }
    287       ///  Returns the allocator object with which the %set was constructed.
    288       allocator_type
    289       get_allocator() const _GLIBCXX_NOEXCEPT
    290       { return allocator_type(_M_t.get_allocator()); }
    291 
    292       /**
    293        *  Returns a read-only (constant) iterator that points to the first
    294        *  element in the %set.  Iteration is done in ascending order according
    295        *  to the keys.
    296        */
    297       iterator
    298       begin() const _GLIBCXX_NOEXCEPT
    299       { return _M_t.begin(); }
    300 
    301       /**
    302        *  Returns a read-only (constant) iterator that points one past the last
    303        *  element in the %set.  Iteration is done in ascending order according
    304        *  to the keys.
    305        */
    306       iterator
    307       end() const _GLIBCXX_NOEXCEPT
    308       { return _M_t.end(); }
    309 
    310       /**
    311        *  Returns a read-only (constant) iterator that points to the last
    312        *  element in the %set.  Iteration is done in descending order according
    313        *  to the keys.
    314        */
    315       reverse_iterator
    316       rbegin() const _GLIBCXX_NOEXCEPT
    317       { return _M_t.rbegin(); }
    318 
    319       /**
    320        *  Returns a read-only (constant) reverse iterator that points to the
    321        *  last pair in the %set.  Iteration is done in descending order
    322        *  according to the keys.
    323        */
    324       reverse_iterator
    325       rend() const _GLIBCXX_NOEXCEPT
    326       { return _M_t.rend(); }
    327 
    328 #if __cplusplus >= 201103L
    329       /**
    330        *  Returns a read-only (constant) iterator that points to the first
    331        *  element in the %set.  Iteration is done in ascending order according
    332        *  to the keys.
    333        */
    334       iterator
    335       cbegin() const noexcept
    336       { return _M_t.begin(); }
    337 
    338       /**
    339        *  Returns a read-only (constant) iterator that points one past the last
    340        *  element in the %set.  Iteration is done in ascending order according
    341        *  to the keys.
    342        */
    343       iterator
    344       cend() const noexcept
    345       { return _M_t.end(); }
    346 
    347       /**
    348        *  Returns a read-only (constant) iterator that points to the last
    349        *  element in the %set.  Iteration is done in descending order according
    350        *  to the keys.
    351        */
    352       reverse_iterator
    353       crbegin() const noexcept
    354       { return _M_t.rbegin(); }
    355 
    356       /**
    357        *  Returns a read-only (constant) reverse iterator that points to the
    358        *  last pair in the %set.  Iteration is done in descending order
    359        *  according to the keys.
    360        */
    361       reverse_iterator
    362       crend() const noexcept
    363       { return _M_t.rend(); }
    364 #endif
    365 
    366       ///  Returns true if the %set is empty.
    367       bool
    368       empty() const _GLIBCXX_NOEXCEPT
    369       { return _M_t.empty(); }
    370 
    371       ///  Returns the size of the %set.
    372       size_type
    373       size() const _GLIBCXX_NOEXCEPT
    374       { return _M_t.size(); }
    375 
    376       ///  Returns the maximum size of the %set.
    377       size_type
    378       max_size() const _GLIBCXX_NOEXCEPT
    379       { return _M_t.max_size(); }
    380 
    381       /**
    382        *  @brief  Swaps data with another %set.
    383        *  @param  __x  A %set of the same element and allocator types.
    384        *
    385        *  This exchanges the elements between two sets in constant
    386        *  time.  (It is only swapping a pointer, an integer, and an
    387        *  instance of the @c Compare type (which itself is often
    388        *  stateless and empty), so it should be quite fast.)  Note
    389        *  that the global std::swap() function is specialized such
    390        *  that std::swap(s1,s2) will feed to this function.
    391        */
    392       void
    393       swap(set& __x)
    394       { _M_t.swap(__x._M_t); }
    395 
    396       // insert/erase
    397 #if __cplusplus >= 201103L
    398       /**
    399        *  @brief Attempts to build and insert an element into the %set.
    400        *  @param __args  Arguments used to generate an element.
    401        *  @return  A pair, of which the first element is an iterator that points
    402        *           to the possibly inserted element, and the second is a bool
    403        *           that is true if the element was actually inserted.
    404        *
    405        *  This function attempts to build and insert an element into the %set.
    406        *  A %set relies on unique keys and thus an element is only inserted if
    407        *  it is not already present in the %set.
    408        *
    409        *  Insertion requires logarithmic time.
    410        */
    411       template<typename... _Args>
    412 	std::pair<iterator, bool>
    413 	emplace(_Args&&... __args)
    414 	{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
    415 
    416       /**
    417        *  @brief Attempts to insert an element into the %set.
    418        *  @param  __pos  An iterator that serves as a hint as to where the
    419        *                element should be inserted.
    420        *  @param  __args  Arguments used to generate the element to be
    421        *                 inserted.
    422        *  @return An iterator that points to the element with key equivalent to
    423        *          the one generated from @a __args (may or may not be the
    424        *          element itself).
    425        *
    426        *  This function is not concerned about whether the insertion took place,
    427        *  and thus does not return a boolean like the single-argument emplace()
    428        *  does.  Note that the first parameter is only a hint and can
    429        *  potentially improve the performance of the insertion process.  A bad
    430        *  hint would cause no gains in efficiency.
    431        *
    432        *  For more on @a hinting, see:
    433        *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
    434        *
    435        *  Insertion requires logarithmic time (if the hint is not taken).
    436        */
    437       template<typename... _Args>
    438 	iterator
    439 	emplace_hint(const_iterator __pos, _Args&&... __args)
    440 	{
    441 	  return _M_t._M_emplace_hint_unique(__pos,
    442 					     std::forward<_Args>(__args)...);
    443 	}
    444 #endif
    445 
    446       /**
    447        *  @brief Attempts to insert an element into the %set.
    448        *  @param  __x  Element to be inserted.
    449        *  @return  A pair, of which the first element is an iterator that points
    450        *           to the possibly inserted element, and the second is a bool
    451        *           that is true if the element was actually inserted.
    452        *
    453        *  This function attempts to insert an element into the %set.  A %set
    454        *  relies on unique keys and thus an element is only inserted if it is
    455        *  not already present in the %set.
    456        *
    457        *  Insertion requires logarithmic time.
    458        */
    459       std::pair<iterator, bool>
    460       insert(const value_type& __x)
    461       {
    462 	std::pair<typename _Rep_type::iterator, bool> __p =
    463 	  _M_t._M_insert_unique(__x);
    464 	return std::pair<iterator, bool>(__p.first, __p.second);
    465       }
    466 
    467 #if __cplusplus >= 201103L
    468       std::pair<iterator, bool>
    469       insert(value_type&& __x)
    470       {
    471 	std::pair<typename _Rep_type::iterator, bool> __p =
    472 	  _M_t._M_insert_unique(std::move(__x));
    473 	return std::pair<iterator, bool>(__p.first, __p.second);
    474       }
    475 #endif
    476 
    477       /**
    478        *  @brief Attempts to insert an element into the %set.
    479        *  @param  __position  An iterator that serves as a hint as to where the
    480        *                    element should be inserted.
    481        *  @param  __x  Element to be inserted.
    482        *  @return An iterator that points to the element with key of
    483        *           @a __x (may or may not be the element passed in).
    484        *
    485        *  This function is not concerned about whether the insertion took place,
    486        *  and thus does not return a boolean like the single-argument insert()
    487        *  does.  Note that the first parameter is only a hint and can
    488        *  potentially improve the performance of the insertion process.  A bad
    489        *  hint would cause no gains in efficiency.
    490        *
    491        *  For more on @a hinting, see:
    492        *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
    493        *
    494        *  Insertion requires logarithmic time (if the hint is not taken).
    495        */
    496       iterator
    497       insert(const_iterator __position, const value_type& __x)
    498       { return _M_t._M_insert_unique_(__position, __x); }
    499 
    500 #if __cplusplus >= 201103L
    501       iterator
    502       insert(const_iterator __position, value_type&& __x)
    503       { return _M_t._M_insert_unique_(__position, std::move(__x)); }
    504 #endif
    505 
    506       /**
    507        *  @brief A template function that attempts to insert a range
    508        *  of elements.
    509        *  @param  __first  Iterator pointing to the start of the range to be
    510        *                   inserted.
    511        *  @param  __last  Iterator pointing to the end of the range.
    512        *
    513        *  Complexity similar to that of the range constructor.
    514        */
    515       template<typename _InputIterator>
    516 	void
    517 	insert(_InputIterator __first, _InputIterator __last)
    518 	{ _M_t._M_insert_unique(__first, __last); }
    519 
    520 #if __cplusplus >= 201103L
    521       /**
    522        *  @brief Attempts to insert a list of elements into the %set.
    523        *  @param  __l  A std::initializer_list<value_type> of elements
    524        *               to be inserted.
    525        *
    526        *  Complexity similar to that of the range constructor.
    527        */
    528       void
    529       insert(initializer_list<value_type> __l)
    530       { this->insert(__l.begin(), __l.end()); }
    531 #endif
    532 
    533 #if __cplusplus >= 201103L
    534       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    535       // DR 130. Associative erase should return an iterator.
    536       /**
    537        *  @brief Erases an element from a %set.
    538        *  @param  __position  An iterator pointing to the element to be erased.
    539        *  @return An iterator pointing to the element immediately following
    540        *          @a __position prior to the element being erased. If no such
    541        *          element exists, end() is returned.
    542        *
    543        *  This function erases an element, pointed to by the given iterator,
    544        *  from a %set.  Note that this function only erases the element, and
    545        *  that if the element is itself a pointer, the pointed-to memory is not
    546        *  touched in any way.  Managing the pointer is the user's
    547        *  responsibility.
    548        */
    549       _GLIBCXX_ABI_TAG_CXX11
    550       iterator
    551       erase(const_iterator __position)
    552       { return _M_t.erase(__position); }
    553 #else
    554       /**
    555        *  @brief Erases an element from a %set.
    556        *  @param  position  An iterator pointing to the element to be erased.
    557        *
    558        *  This function erases an element, pointed to by the given iterator,
    559        *  from a %set.  Note that this function only erases the element, and
    560        *  that if the element is itself a pointer, the pointed-to memory is not
    561        *  touched in any way.  Managing the pointer is the user's
    562        *  responsibility.
    563        */
    564       void
    565       erase(iterator __position)
    566       { _M_t.erase(__position); }
    567 #endif
    568 
    569       /**
    570        *  @brief Erases elements according to the provided key.
    571        *  @param  __x  Key of element to be erased.
    572        *  @return  The number of elements erased.
    573        *
    574        *  This function erases all the elements located by the given key from
    575        *  a %set.
    576        *  Note that this function only erases the element, and that if
    577        *  the element is itself a pointer, the pointed-to memory is not touched
    578        *  in any way.  Managing the pointer is the user's responsibility.
    579        */
    580       size_type
    581       erase(const key_type& __x)
    582       { return _M_t.erase(__x); }
    583 
    584 #if __cplusplus >= 201103L
    585       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    586       // DR 130. Associative erase should return an iterator.
    587       /**
    588        *  @brief Erases a [__first,__last) range of elements from a %set.
    589        *  @param  __first  Iterator pointing to the start of the range to be
    590        *                 erased.
    591 
    592        *  @param __last Iterator pointing to the end of the range to
    593        *  be erased.
    594        *  @return The iterator @a __last.
    595        *
    596        *  This function erases a sequence of elements from a %set.
    597        *  Note that this function only erases the element, and that if
    598        *  the element is itself a pointer, the pointed-to memory is not touched
    599        *  in any way.  Managing the pointer is the user's responsibility.
    600        */
    601       _GLIBCXX_ABI_TAG_CXX11
    602       iterator
    603       erase(const_iterator __first, const_iterator __last)
    604       { return _M_t.erase(__first, __last); }
    605 #else
    606       /**
    607        *  @brief Erases a [first,last) range of elements from a %set.
    608        *  @param  __first  Iterator pointing to the start of the range to be
    609        *                 erased.
    610        *  @param __last Iterator pointing to the end of the range to
    611        *  be erased.
    612        *
    613        *  This function erases a sequence of elements from a %set.
    614        *  Note that this function only erases the element, and that if
    615        *  the element is itself a pointer, the pointed-to memory is not touched
    616        *  in any way.  Managing the pointer is the user's responsibility.
    617        */
    618       void
    619       erase(iterator __first, iterator __last)
    620       { _M_t.erase(__first, __last); }
    621 #endif
    622 
    623       /**
    624        *  Erases all elements in a %set.  Note that this function only erases
    625        *  the elements, and that if the elements themselves are pointers, the
    626        *  pointed-to memory is not touched in any way.  Managing the pointer is
    627        *  the user's responsibility.
    628        */
    629       void
    630       clear() _GLIBCXX_NOEXCEPT
    631       { _M_t.clear(); }
    632 
    633       // set operations:
    634 
    635       /**
    636        *  @brief  Finds the number of elements.
    637        *  @param  __x  Element to located.
    638        *  @return  Number of elements with specified key.
    639        *
    640        *  This function only makes sense for multisets; for set the result will
    641        *  either be 0 (not present) or 1 (present).
    642        */
    643       size_type
    644       count(const key_type& __x) const
    645       { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
    646 
    647       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    648       // 214.  set::find() missing const overload
    649       //@{
    650       /**
    651        *  @brief Tries to locate an element in a %set.
    652        *  @param  __x  Element to be located.
    653        *  @return  Iterator pointing to sought-after element, or end() if not
    654        *           found.
    655        *
    656        *  This function takes a key and tries to locate the element with which
    657        *  the key matches.  If successful the function returns an iterator
    658        *  pointing to the sought after element.  If unsuccessful it returns the
    659        *  past-the-end ( @c end() ) iterator.
    660        */
    661       iterator
    662       find(const key_type& __x)
    663       { return _M_t.find(__x); }
    664 
    665       const_iterator
    666       find(const key_type& __x) const
    667       { return _M_t.find(__x); }
    668       //@}
    669 
    670       //@{
    671       /**
    672        *  @brief Finds the beginning of a subsequence matching given key.
    673        *  @param  __x  Key to be located.
    674        *  @return  Iterator pointing to first element equal to or greater
    675        *           than key, or end().
    676        *
    677        *  This function returns the first element of a subsequence of elements
    678        *  that matches the given key.  If unsuccessful it returns an iterator
    679        *  pointing to the first element that has a greater value than given key
    680        *  or end() if no such element exists.
    681        */
    682       iterator
    683       lower_bound(const key_type& __x)
    684       { return _M_t.lower_bound(__x); }
    685 
    686       const_iterator
    687       lower_bound(const key_type& __x) const
    688       { return _M_t.lower_bound(__x); }
    689       //@}
    690 
    691       //@{
    692       /**
    693        *  @brief Finds the end of a subsequence matching given key.
    694        *  @param  __x  Key to be located.
    695        *  @return Iterator pointing to the first element
    696        *          greater than key, or end().
    697        */
    698       iterator
    699       upper_bound(const key_type& __x)
    700       { return _M_t.upper_bound(__x); }
    701 
    702       const_iterator
    703       upper_bound(const key_type& __x) const
    704       { return _M_t.upper_bound(__x); }
    705       //@}
    706 
    707       //@{
    708       /**
    709        *  @brief Finds a subsequence matching given key.
    710        *  @param  __x  Key to be located.
    711        *  @return  Pair of iterators that possibly points to the subsequence
    712        *           matching given key.
    713        *
    714        *  This function is equivalent to
    715        *  @code
    716        *    std::make_pair(c.lower_bound(val),
    717        *                   c.upper_bound(val))
    718        *  @endcode
    719        *  (but is faster than making the calls separately).
    720        *
    721        *  This function probably only makes sense for multisets.
    722        */
    723       std::pair<iterator, iterator>
    724       equal_range(const key_type& __x)
    725       { return _M_t.equal_range(__x); }
    726 
    727       std::pair<const_iterator, const_iterator>
    728       equal_range(const key_type& __x) const
    729       { return _M_t.equal_range(__x); }
    730       //@}
    731 
    732       template<typename _K1, typename _C1, typename _A1>
    733 	friend bool
    734 	operator==(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
    735 
    736       template<typename _K1, typename _C1, typename _A1>
    737 	friend bool
    738 	operator<(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
    739     };
    740 
    741 
    742   /**
    743    *  @brief  Set equality comparison.
    744    *  @param  __x  A %set.
    745    *  @param  __y  A %set of the same type as @a x.
    746    *  @return  True iff the size and elements of the sets are equal.
    747    *
    748    *  This is an equivalence relation.  It is linear in the size of the sets.
    749    *  Sets are considered equivalent if their sizes are equal, and if
    750    *  corresponding elements compare equal.
    751   */
    752   template<typename _Key, typename _Compare, typename _Alloc>
    753     inline bool
    754     operator==(const set<_Key, _Compare, _Alloc>& __x,
    755 	       const set<_Key, _Compare, _Alloc>& __y)
    756     { return __x._M_t == __y._M_t; }
    757 
    758   /**
    759    *  @brief  Set ordering relation.
    760    *  @param  __x  A %set.
    761    *  @param  __y  A %set of the same type as @a x.
    762    *  @return  True iff @a __x is lexicographically less than @a __y.
    763    *
    764    *  This is a total ordering relation.  It is linear in the size of the
    765    *  maps.  The elements must be comparable with @c <.
    766    *
    767    *  See std::lexicographical_compare() for how the determination is made.
    768   */
    769   template<typename _Key, typename _Compare, typename _Alloc>
    770     inline bool
    771     operator<(const set<_Key, _Compare, _Alloc>& __x,
    772 	      const set<_Key, _Compare, _Alloc>& __y)
    773     { return __x._M_t < __y._M_t; }
    774 
    775   ///  Returns !(x == y).
    776   template<typename _Key, typename _Compare, typename _Alloc>
    777     inline bool
    778     operator!=(const set<_Key, _Compare, _Alloc>& __x,
    779 	       const set<_Key, _Compare, _Alloc>& __y)
    780     { return !(__x == __y); }
    781 
    782   ///  Returns y < x.
    783   template<typename _Key, typename _Compare, typename _Alloc>
    784     inline bool
    785     operator>(const set<_Key, _Compare, _Alloc>& __x,
    786 	      const set<_Key, _Compare, _Alloc>& __y)
    787     { return __y < __x; }
    788 
    789   ///  Returns !(y < x)
    790   template<typename _Key, typename _Compare, typename _Alloc>
    791     inline bool
    792     operator<=(const set<_Key, _Compare, _Alloc>& __x,
    793 	       const set<_Key, _Compare, _Alloc>& __y)
    794     { return !(__y < __x); }
    795 
    796   ///  Returns !(x < y)
    797   template<typename _Key, typename _Compare, typename _Alloc>
    798     inline bool
    799     operator>=(const set<_Key, _Compare, _Alloc>& __x,
    800 	       const set<_Key, _Compare, _Alloc>& __y)
    801     { return !(__x < __y); }
    802 
    803   /// See std::set::swap().
    804   template<typename _Key, typename _Compare, typename _Alloc>
    805     inline void
    806     swap(set<_Key, _Compare, _Alloc>& __x, set<_Key, _Compare, _Alloc>& __y)
    807     { __x.swap(__y); }
    808 
    809 _GLIBCXX_END_NAMESPACE_CONTAINER
    810 } //namespace std
    811 #endif /* _STL_SET_H */
    812