Home | History | Annotate | Download | only in ext
      1 // Bitmap Allocator. -*- C++ -*-
      2 
      3 // Copyright (C) 2004-2013 Free Software Foundation, Inc.
      4 //
      5 // This file is part of the GNU ISO C++ Library.  This library is free
      6 // software; you can redistribute it and/or modify it under the
      7 // terms of the GNU General Public License as published by the
      8 // Free Software Foundation; either version 3, or (at your option)
      9 // any later version.
     10 
     11 // This library is distributed in the hope that it will be useful,
     12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14 // GNU General Public License for more details.
     15 
     16 // Under Section 7 of GPL version 3, you are granted additional
     17 // permissions described in the GCC Runtime Library Exception, version
     18 // 3.1, as published by the Free Software Foundation.
     19 
     20 // You should have received a copy of the GNU General Public License and
     21 // a copy of the GCC Runtime Library Exception along with this program;
     22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     23 // <http://www.gnu.org/licenses/>.
     24 
     25 /** @file ext/bitmap_allocator.h
     26  *  This file is a GNU extension to the Standard C++ Library.
     27  */
     28 
     29 #ifndef _BITMAP_ALLOCATOR_H
     30 #define _BITMAP_ALLOCATOR_H 1
     31 
     32 #include <utility> // For std::pair.
     33 #include <bits/functexcept.h> // For __throw_bad_alloc().
     34 #include <functional> // For greater_equal, and less_equal.
     35 #include <new> // For operator new.
     36 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
     37 #include <ext/concurrence.h>
     38 #include <bits/move.h>
     39 
     40 /** @brief The constant in the expression below is the alignment
     41  * required in bytes.
     42  */
     43 #define _BALLOC_ALIGN_BYTES 8
     44 
     45 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
     46 {
     47   using std::size_t;
     48   using std::ptrdiff_t;
     49 
     50   namespace __detail
     51   {
     52   _GLIBCXX_BEGIN_NAMESPACE_VERSION
     53     /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
     54      *
     55      *  @brief  __mini_vector<> is a stripped down version of the
     56      *  full-fledged std::vector<>.
     57      *
     58      *  It is to be used only for built-in types or PODs. Notable
     59      *  differences are:
     60      *
     61      *  1. Not all accessor functions are present.
     62      *  2. Used ONLY for PODs.
     63      *  3. No Allocator template argument. Uses ::operator new() to get
     64      *  memory, and ::operator delete() to free it.
     65      *  Caveat: The dtor does NOT free the memory allocated, so this a
     66      *  memory-leaking vector!
     67      */
     68     template<typename _Tp>
     69       class __mini_vector
     70       {
     71 	__mini_vector(const __mini_vector&);
     72 	__mini_vector& operator=(const __mini_vector&);
     73 
     74       public:
     75 	typedef _Tp value_type;
     76 	typedef _Tp* pointer;
     77 	typedef _Tp& reference;
     78 	typedef const _Tp& const_reference;
     79 	typedef size_t size_type;
     80 	typedef ptrdiff_t difference_type;
     81 	typedef pointer iterator;
     82 
     83       private:
     84 	pointer _M_start;
     85 	pointer _M_finish;
     86 	pointer _M_end_of_storage;
     87 
     88 	size_type
     89 	_M_space_left() const throw()
     90 	{ return _M_end_of_storage - _M_finish; }
     91 
     92 	pointer
     93 	allocate(size_type __n)
     94 	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
     95 
     96 	void
     97 	deallocate(pointer __p, size_type)
     98 	{ ::operator delete(__p); }
     99 
    100       public:
    101 	// Members used: size(), push_back(), pop_back(),
    102 	// insert(iterator, const_reference), erase(iterator),
    103 	// begin(), end(), back(), operator[].
    104 
    105 	__mini_vector()
    106         : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
    107 
    108 	size_type
    109 	size() const throw()
    110 	{ return _M_finish - _M_start; }
    111 
    112 	iterator
    113 	begin() const throw()
    114 	{ return this->_M_start; }
    115 
    116 	iterator
    117 	end() const throw()
    118 	{ return this->_M_finish; }
    119 
    120 	reference
    121 	back() const throw()
    122 	{ return *(this->end() - 1); }
    123 
    124 	reference
    125 	operator[](const size_type __pos) const throw()
    126 	{ return this->_M_start[__pos]; }
    127 
    128 	void
    129 	insert(iterator __pos, const_reference __x);
    130 
    131 	void
    132 	push_back(const_reference __x)
    133 	{
    134 	  if (this->_M_space_left())
    135 	    {
    136 	      *this->end() = __x;
    137 	      ++this->_M_finish;
    138 	    }
    139 	  else
    140 	    this->insert(this->end(), __x);
    141 	}
    142 
    143 	void
    144 	pop_back() throw()
    145 	{ --this->_M_finish; }
    146 
    147 	void
    148 	erase(iterator __pos) throw();
    149 
    150 	void
    151 	clear() throw()
    152 	{ this->_M_finish = this->_M_start; }
    153       };
    154 
    155     // Out of line function definitions.
    156     template<typename _Tp>
    157       void __mini_vector<_Tp>::
    158       insert(iterator __pos, const_reference __x)
    159       {
    160 	if (this->_M_space_left())
    161 	  {
    162 	    size_type __to_move = this->_M_finish - __pos;
    163 	    iterator __dest = this->end();
    164 	    iterator __src = this->end() - 1;
    165 
    166 	    ++this->_M_finish;
    167 	    while (__to_move)
    168 	      {
    169 		*__dest = *__src;
    170 		--__dest; --__src; --__to_move;
    171 	      }
    172 	    *__pos = __x;
    173 	  }
    174 	else
    175 	  {
    176 	    size_type __new_size = this->size() ? this->size() * 2 : 1;
    177 	    iterator __new_start = this->allocate(__new_size);
    178 	    iterator __first = this->begin();
    179 	    iterator __start = __new_start;
    180 	    while (__first != __pos)
    181 	      {
    182 		*__start = *__first;
    183 		++__start; ++__first;
    184 	      }
    185 	    *__start = __x;
    186 	    ++__start;
    187 	    while (__first != this->end())
    188 	      {
    189 		*__start = *__first;
    190 		++__start; ++__first;
    191 	      }
    192 	    if (this->_M_start)
    193 	      this->deallocate(this->_M_start, this->size());
    194 
    195 	    this->_M_start = __new_start;
    196 	    this->_M_finish = __start;
    197 	    this->_M_end_of_storage = this->_M_start + __new_size;
    198 	  }
    199       }
    200 
    201     template<typename _Tp>
    202       void __mini_vector<_Tp>::
    203       erase(iterator __pos) throw()
    204       {
    205 	while (__pos + 1 != this->end())
    206 	  {
    207 	    *__pos = __pos[1];
    208 	    ++__pos;
    209 	  }
    210 	--this->_M_finish;
    211       }
    212 
    213 
    214     template<typename _Tp>
    215       struct __mv_iter_traits
    216       {
    217 	typedef typename _Tp::value_type value_type;
    218 	typedef typename _Tp::difference_type difference_type;
    219       };
    220 
    221     template<typename _Tp>
    222       struct __mv_iter_traits<_Tp*>
    223       {
    224 	typedef _Tp value_type;
    225 	typedef ptrdiff_t difference_type;
    226       };
    227 
    228     enum
    229       {
    230 	bits_per_byte = 8,
    231 	bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
    232       };
    233 
    234     template<typename _ForwardIterator, typename _Tp, typename _Compare>
    235       _ForwardIterator
    236       __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
    237 		    const _Tp& __val, _Compare __comp)
    238       {
    239 	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
    240 	  _DistanceType;
    241 
    242 	_DistanceType __len = __last - __first;
    243 	_DistanceType __half;
    244 	_ForwardIterator __middle;
    245 
    246 	while (__len > 0)
    247 	  {
    248 	    __half = __len >> 1;
    249 	    __middle = __first;
    250 	    __middle += __half;
    251 	    if (__comp(*__middle, __val))
    252 	      {
    253 		__first = __middle;
    254 		++__first;
    255 		__len = __len - __half - 1;
    256 	      }
    257 	    else
    258 	      __len = __half;
    259 	  }
    260 	return __first;
    261       }
    262 
    263     /** @brief The number of Blocks pointed to by the address pair
    264      *  passed to the function.
    265      */
    266     template<typename _AddrPair>
    267       inline size_t
    268       __num_blocks(_AddrPair __ap)
    269       { return (__ap.second - __ap.first) + 1; }
    270 
    271     /** @brief The number of Bit-maps pointed to by the address pair
    272      *  passed to the function.
    273      */
    274     template<typename _AddrPair>
    275       inline size_t
    276       __num_bitmaps(_AddrPair __ap)
    277       { return __num_blocks(__ap) / size_t(bits_per_block); }
    278 
    279     // _Tp should be a pointer type.
    280     template<typename _Tp>
    281       class _Inclusive_between
    282       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
    283       {
    284 	typedef _Tp pointer;
    285 	pointer _M_ptr_value;
    286 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
    287 
    288       public:
    289 	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
    290 	{ }
    291 
    292 	bool
    293 	operator()(_Block_pair __bp) const throw()
    294 	{
    295 	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
    296 	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
    297 	    return true;
    298 	  else
    299 	    return false;
    300 	}
    301       };
    302 
    303     // Used to pass a Functor to functions by reference.
    304     template<typename _Functor>
    305       class _Functor_Ref
    306       : public std::unary_function<typename _Functor::argument_type,
    307 				   typename _Functor::result_type>
    308       {
    309 	_Functor& _M_fref;
    310 
    311       public:
    312 	typedef typename _Functor::argument_type argument_type;
    313 	typedef typename _Functor::result_type result_type;
    314 
    315 	_Functor_Ref(_Functor& __fref) : _M_fref(__fref)
    316 	{ }
    317 
    318 	result_type
    319 	operator()(argument_type __arg)
    320 	{ return _M_fref(__arg); }
    321       };
    322 
    323     /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
    324      *
    325      *  @brief  The class which acts as a predicate for applying the
    326      *  first-fit memory allocation policy for the bitmap allocator.
    327      */
    328     // _Tp should be a pointer type, and _Alloc is the Allocator for
    329     // the vector.
    330     template<typename _Tp>
    331       class _Ffit_finder
    332       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
    333       {
    334 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
    335 	typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
    336 	typedef typename _BPVector::difference_type _Counter_type;
    337 
    338 	size_t* _M_pbitmap;
    339 	_Counter_type _M_data_offset;
    340 
    341       public:
    342 	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
    343 	{ }
    344 
    345 	bool
    346 	operator()(_Block_pair __bp) throw()
    347 	{
    348 	  // Set the _rover to the last physical location bitmap,
    349 	  // which is the bitmap which belongs to the first free
    350 	  // block. Thus, the bitmaps are in exact reverse order of
    351 	  // the actual memory layout. So, we count down the bitmaps,
    352 	  // which is the same as moving up the memory.
    353 
    354 	  // If the used count stored at the start of the Bit Map headers
    355 	  // is equal to the number of Objects that the current Block can
    356 	  // store, then there is definitely no space for another single
    357 	  // object, so just return false.
    358 	  _Counter_type __diff = __detail::__num_bitmaps(__bp);
    359 
    360 	  if (*(reinterpret_cast<size_t*>
    361 		(__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
    362 	    return false;
    363 
    364 	  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
    365 
    366 	  for (_Counter_type __i = 0; __i < __diff; ++__i)
    367 	    {
    368 	      _M_data_offset = __i;
    369 	      if (*__rover)
    370 		{
    371 		  _M_pbitmap = __rover;
    372 		  return true;
    373 		}
    374 	      --__rover;
    375 	    }
    376 	  return false;
    377 	}
    378 
    379 	size_t*
    380 	_M_get() const throw()
    381 	{ return _M_pbitmap; }
    382 
    383 	_Counter_type
    384 	_M_offset() const throw()
    385 	{ return _M_data_offset * size_t(bits_per_block); }
    386       };
    387 
    388     /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
    389      *
    390      *  @brief  The bitmap counter which acts as the bitmap
    391      *  manipulator, and manages the bit-manipulation functions and
    392      *  the searching and identification functions on the bit-map.
    393      */
    394     // _Tp should be a pointer type.
    395     template<typename _Tp>
    396       class _Bitmap_counter
    397       {
    398 	typedef typename
    399 	__detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
    400 	typedef typename _BPVector::size_type _Index_type;
    401 	typedef _Tp pointer;
    402 
    403 	_BPVector& _M_vbp;
    404 	size_t* _M_curr_bmap;
    405 	size_t* _M_last_bmap_in_block;
    406 	_Index_type _M_curr_index;
    407 
    408       public:
    409 	// Use the 2nd parameter with care. Make sure that such an
    410 	// entry exists in the vector before passing that particular
    411 	// index to this ctor.
    412 	_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
    413 	{ this->_M_reset(__index); }
    414 
    415 	void
    416 	_M_reset(long __index = -1) throw()
    417 	{
    418 	  if (__index == -1)
    419 	    {
    420 	      _M_curr_bmap = 0;
    421 	      _M_curr_index = static_cast<_Index_type>(-1);
    422 	      return;
    423 	    }
    424 
    425 	  _M_curr_index = __index;
    426 	  _M_curr_bmap = reinterpret_cast<size_t*>
    427 	    (_M_vbp[_M_curr_index].first) - 1;
    428 
    429 	  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
    430 
    431 	  _M_last_bmap_in_block = _M_curr_bmap
    432 	    - ((_M_vbp[_M_curr_index].second
    433 		- _M_vbp[_M_curr_index].first + 1)
    434 	       / size_t(bits_per_block) - 1);
    435 	}
    436 
    437 	// Dangerous Function! Use with extreme care. Pass to this
    438 	// function ONLY those values that are known to be correct,
    439 	// otherwise this will mess up big time.
    440 	void
    441 	_M_set_internal_bitmap(size_t* __new_internal_marker) throw()
    442 	{ _M_curr_bmap = __new_internal_marker; }
    443 
    444 	bool
    445 	_M_finished() const throw()
    446 	{ return(_M_curr_bmap == 0); }
    447 
    448 	_Bitmap_counter&
    449 	operator++() throw()
    450 	{
    451 	  if (_M_curr_bmap == _M_last_bmap_in_block)
    452 	    {
    453 	      if (++_M_curr_index == _M_vbp.size())
    454 		_M_curr_bmap = 0;
    455 	      else
    456 		this->_M_reset(_M_curr_index);
    457 	    }
    458 	  else
    459 	    --_M_curr_bmap;
    460 	  return *this;
    461 	}
    462 
    463 	size_t*
    464 	_M_get() const throw()
    465 	{ return _M_curr_bmap; }
    466 
    467 	pointer
    468 	_M_base() const throw()
    469 	{ return _M_vbp[_M_curr_index].first; }
    470 
    471 	_Index_type
    472 	_M_offset() const throw()
    473 	{
    474 	  return size_t(bits_per_block)
    475 	    * ((reinterpret_cast<size_t*>(this->_M_base())
    476 		- _M_curr_bmap) - 1);
    477 	}
    478 
    479 	_Index_type
    480 	_M_where() const throw()
    481 	{ return _M_curr_index; }
    482       };
    483 
    484     /** @brief  Mark a memory address as allocated by re-setting the
    485      *  corresponding bit in the bit-map.
    486      */
    487     inline void
    488     __bit_allocate(size_t* __pbmap, size_t __pos) throw()
    489     {
    490       size_t __mask = 1 << __pos;
    491       __mask = ~__mask;
    492       *__pbmap &= __mask;
    493     }
    494 
    495     /** @brief  Mark a memory address as free by setting the
    496      *  corresponding bit in the bit-map.
    497      */
    498     inline void
    499     __bit_free(size_t* __pbmap, size_t __pos) throw()
    500     {
    501       size_t __mask = 1 << __pos;
    502       *__pbmap |= __mask;
    503     }
    504 
    505   _GLIBCXX_END_NAMESPACE_VERSION
    506   } // namespace __detail
    507 
    508 _GLIBCXX_BEGIN_NAMESPACE_VERSION
    509 
    510   /** @brief  Generic Version of the bsf instruction.
    511    */
    512   inline size_t
    513   _Bit_scan_forward(size_t __num)
    514   { return static_cast<size_t>(__builtin_ctzl(__num)); }
    515 
    516   /** @class  free_list bitmap_allocator.h bitmap_allocator.h
    517    *
    518    *  @brief  The free list class for managing chunks of memory to be
    519    *  given to and returned by the bitmap_allocator.
    520    */
    521   class free_list
    522   {
    523   public:
    524     typedef size_t* 				value_type;
    525     typedef __detail::__mini_vector<value_type> vector_type;
    526     typedef vector_type::iterator 		iterator;
    527     typedef __mutex				__mutex_type;
    528 
    529   private:
    530     struct _LT_pointer_compare
    531     {
    532       bool
    533       operator()(const size_t* __pui,
    534 		 const size_t __cui) const throw()
    535       { return *__pui < __cui; }
    536     };
    537 
    538 #if defined __GTHREADS
    539     __mutex_type&
    540     _M_get_mutex()
    541     {
    542       static __mutex_type _S_mutex;
    543       return _S_mutex;
    544     }
    545 #endif
    546 
    547     vector_type&
    548     _M_get_free_list()
    549     {
    550       static vector_type _S_free_list;
    551       return _S_free_list;
    552     }
    553 
    554     /** @brief  Performs validation of memory based on their size.
    555      *
    556      *  @param  __addr The pointer to the memory block to be
    557      *  validated.
    558      *
    559      *  Validates the memory block passed to this function and
    560      *  appropriately performs the action of managing the free list of
    561      *  blocks by adding this block to the free list or deleting this
    562      *  or larger blocks from the free list.
    563      */
    564     void
    565     _M_validate(size_t* __addr) throw()
    566     {
    567       vector_type& __free_list = _M_get_free_list();
    568       const vector_type::size_type __max_size = 64;
    569       if (__free_list.size() >= __max_size)
    570 	{
    571 	  // Ok, the threshold value has been reached.  We determine
    572 	  // which block to remove from the list of free blocks.
    573 	  if (*__addr >= *__free_list.back())
    574 	    {
    575 	      // Ok, the new block is greater than or equal to the
    576 	      // last block in the list of free blocks. We just free
    577 	      // the new block.
    578 	      ::operator delete(static_cast<void*>(__addr));
    579 	      return;
    580 	    }
    581 	  else
    582 	    {
    583 	      // Deallocate the last block in the list of free lists,
    584 	      // and insert the new one in its correct position.
    585 	      ::operator delete(static_cast<void*>(__free_list.back()));
    586 	      __free_list.pop_back();
    587 	    }
    588 	}
    589 
    590       // Just add the block to the list of free lists unconditionally.
    591       iterator __temp = __detail::__lower_bound
    592 	(__free_list.begin(), __free_list.end(),
    593 	 *__addr, _LT_pointer_compare());
    594 
    595       // We may insert the new free list before _temp;
    596       __free_list.insert(__temp, __addr);
    597     }
    598 
    599     /** @brief  Decides whether the wastage of memory is acceptable for
    600      *  the current memory request and returns accordingly.
    601      *
    602      *  @param __block_size The size of the block available in the free
    603      *  list.
    604      *
    605      *  @param __required_size The required size of the memory block.
    606      *
    607      *  @return true if the wastage incurred is acceptable, else returns
    608      *  false.
    609      */
    610     bool
    611     _M_should_i_give(size_t __block_size,
    612 		     size_t __required_size) throw()
    613     {
    614       const size_t __max_wastage_percentage = 36;
    615       if (__block_size >= __required_size &&
    616 	  (((__block_size - __required_size) * 100 / __block_size)
    617 	   < __max_wastage_percentage))
    618 	return true;
    619       else
    620 	return false;
    621     }
    622 
    623   public:
    624     /** @brief This function returns the block of memory to the
    625      *  internal free list.
    626      *
    627      *  @param  __addr The pointer to the memory block that was given
    628      *  by a call to the _M_get function.
    629      */
    630     inline void
    631     _M_insert(size_t* __addr) throw()
    632     {
    633 #if defined __GTHREADS
    634       __scoped_lock __bfl_lock(_M_get_mutex());
    635 #endif
    636       // Call _M_validate to decide what should be done with
    637       // this particular free list.
    638       this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
    639       // See discussion as to why this is 1!
    640     }
    641 
    642     /** @brief  This function gets a block of memory of the specified
    643      *  size from the free list.
    644      *
    645      *  @param  __sz The size in bytes of the memory required.
    646      *
    647      *  @return  A pointer to the new memory block of size at least
    648      *  equal to that requested.
    649      */
    650     size_t*
    651     _M_get(size_t __sz) throw(std::bad_alloc);
    652 
    653     /** @brief  This function just clears the internal Free List, and
    654      *  gives back all the memory to the OS.
    655      */
    656     void
    657     _M_clear();
    658   };
    659 
    660 
    661   // Forward declare the class.
    662   template<typename _Tp>
    663     class bitmap_allocator;
    664 
    665   // Specialize for void:
    666   template<>
    667     class bitmap_allocator<void>
    668     {
    669     public:
    670       typedef void*       pointer;
    671       typedef const void* const_pointer;
    672 
    673       // Reference-to-void members are impossible.
    674       typedef void  value_type;
    675       template<typename _Tp1>
    676         struct rebind
    677 	{
    678 	  typedef bitmap_allocator<_Tp1> other;
    679 	};
    680     };
    681 
    682   /**
    683    * @brief Bitmap Allocator, primary template.
    684    * @ingroup allocators
    685    */
    686   template<typename _Tp>
    687     class bitmap_allocator : private free_list
    688     {
    689     public:
    690       typedef size_t    		size_type;
    691       typedef ptrdiff_t 		difference_type;
    692       typedef _Tp*        		pointer;
    693       typedef const _Tp*  		const_pointer;
    694       typedef _Tp&        		reference;
    695       typedef const _Tp&  		const_reference;
    696       typedef _Tp         		value_type;
    697       typedef free_list::__mutex_type 	__mutex_type;
    698 
    699       template<typename _Tp1>
    700         struct rebind
    701 	{
    702 	  typedef bitmap_allocator<_Tp1> other;
    703 	};
    704 
    705 #if __cplusplus >= 201103L
    706       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    707       // 2103. propagate_on_container_move_assignment
    708       typedef std::true_type propagate_on_container_move_assignment;
    709 #endif
    710 
    711     private:
    712       template<size_t _BSize, size_t _AlignSize>
    713         struct aligned_size
    714 	{
    715 	  enum
    716 	    {
    717 	      modulus = _BSize % _AlignSize,
    718 	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
    719 	    };
    720 	};
    721 
    722       struct _Alloc_block
    723       {
    724 	char __M_unused[aligned_size<sizeof(value_type),
    725 			_BALLOC_ALIGN_BYTES>::value];
    726       };
    727 
    728 
    729       typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
    730 
    731       typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
    732       typedef typename _BPVector::iterator _BPiter;
    733 
    734       template<typename _Predicate>
    735         static _BPiter
    736         _S_find(_Predicate __p)
    737         {
    738 	  _BPiter __first = _S_mem_blocks.begin();
    739 	  while (__first != _S_mem_blocks.end() && !__p(*__first))
    740 	    ++__first;
    741 	  return __first;
    742 	}
    743 
    744 #if defined _GLIBCXX_DEBUG
    745       // Complexity: O(lg(N)). Where, N is the number of block of size
    746       // sizeof(value_type).
    747       void
    748       _S_check_for_free_blocks() throw()
    749       {
    750 	typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
    751 	_BPiter __bpi = _S_find(_FFF());
    752 
    753 	_GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
    754       }
    755 #endif
    756 
    757       /** @brief  Responsible for exponentially growing the internal
    758        *  memory pool.
    759        *
    760        *  @throw  std::bad_alloc. If memory can not be allocated.
    761        *
    762        *  Complexity: O(1), but internally depends upon the
    763        *  complexity of the function free_list::_M_get. The part where
    764        *  the bitmap headers are written has complexity: O(X),where X
    765        *  is the number of blocks of size sizeof(value_type) within
    766        *  the newly acquired block. Having a tight bound.
    767        */
    768       void
    769       _S_refill_pool() throw(std::bad_alloc)
    770       {
    771 #if defined _GLIBCXX_DEBUG
    772 	_S_check_for_free_blocks();
    773 #endif
    774 
    775 	const size_t __num_bitmaps = (_S_block_size
    776 				      / size_t(__detail::bits_per_block));
    777 	const size_t __size_to_allocate = sizeof(size_t)
    778 	  + _S_block_size * sizeof(_Alloc_block)
    779 	  + __num_bitmaps * sizeof(size_t);
    780 
    781 	size_t* __temp =
    782 	  reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
    783 	*__temp = 0;
    784 	++__temp;
    785 
    786 	// The Header information goes at the Beginning of the Block.
    787 	_Block_pair __bp =
    788 	  std::make_pair(reinterpret_cast<_Alloc_block*>
    789 			 (__temp + __num_bitmaps),
    790 			 reinterpret_cast<_Alloc_block*>
    791 			 (__temp + __num_bitmaps)
    792 			 + _S_block_size - 1);
    793 
    794 	// Fill the Vector with this information.
    795 	_S_mem_blocks.push_back(__bp);
    796 
    797 	for (size_t __i = 0; __i < __num_bitmaps; ++__i)
    798 	  __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
    799 
    800 	_S_block_size *= 2;
    801       }
    802 
    803       static _BPVector _S_mem_blocks;
    804       static size_t _S_block_size;
    805       static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
    806       static typename _BPVector::size_type _S_last_dealloc_index;
    807 #if defined __GTHREADS
    808       static __mutex_type _S_mut;
    809 #endif
    810 
    811     public:
    812 
    813       /** @brief  Allocates memory for a single object of size
    814        *  sizeof(_Tp).
    815        *
    816        *  @throw  std::bad_alloc. If memory can not be allocated.
    817        *
    818        *  Complexity: Worst case complexity is O(N), but that
    819        *  is hardly ever hit. If and when this particular case is
    820        *  encountered, the next few cases are guaranteed to have a
    821        *  worst case complexity of O(1)!  That's why this function
    822        *  performs very well on average. You can consider this
    823        *  function to have a complexity referred to commonly as:
    824        *  Amortized Constant time.
    825        */
    826       pointer
    827       _M_allocate_single_object() throw(std::bad_alloc)
    828       {
    829 #if defined __GTHREADS
    830 	__scoped_lock __bit_lock(_S_mut);
    831 #endif
    832 
    833 	// The algorithm is something like this: The last_request
    834 	// variable points to the last accessed Bit Map. When such a
    835 	// condition occurs, we try to find a free block in the
    836 	// current bitmap, or succeeding bitmaps until the last bitmap
    837 	// is reached. If no free block turns up, we resort to First
    838 	// Fit method.
    839 
    840 	// WARNING: Do not re-order the condition in the while
    841 	// statement below, because it relies on C++'s short-circuit
    842 	// evaluation. The return from _S_last_request->_M_get() will
    843 	// NOT be dereference able if _S_last_request->_M_finished()
    844 	// returns true. This would inevitably lead to a NULL pointer
    845 	// dereference if tinkered with.
    846 	while (_S_last_request._M_finished() == false
    847 	       && (*(_S_last_request._M_get()) == 0))
    848 	  _S_last_request.operator++();
    849 
    850 	if (__builtin_expect(_S_last_request._M_finished() == true, false))
    851 	  {
    852 	    // Fall Back to First Fit algorithm.
    853 	    typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
    854 	    _FFF __fff;
    855 	    _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
    856 
    857 	    if (__bpi != _S_mem_blocks.end())
    858 	      {
    859 		// Search was successful. Ok, now mark the first bit from
    860 		// the right as 0, meaning Allocated. This bit is obtained
    861 		// by calling _M_get() on __fff.
    862 		size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
    863 		__detail::__bit_allocate(__fff._M_get(), __nz_bit);
    864 
    865 		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
    866 
    867 		// Now, get the address of the bit we marked as allocated.
    868 		pointer __ret = reinterpret_cast<pointer>
    869 		  (__bpi->first + __fff._M_offset() + __nz_bit);
    870 		size_t* __puse_count =
    871 		  reinterpret_cast<size_t*>
    872 		  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
    873 
    874 		++(*__puse_count);
    875 		return __ret;
    876 	      }
    877 	    else
    878 	      {
    879 		// Search was unsuccessful. We Add more memory to the
    880 		// pool by calling _S_refill_pool().
    881 		_S_refill_pool();
    882 
    883 		// _M_Reset the _S_last_request structure to the first
    884 		// free block's bit map.
    885 		_S_last_request._M_reset(_S_mem_blocks.size() - 1);
    886 
    887 		// Now, mark that bit as allocated.
    888 	      }
    889 	  }
    890 
    891 	// _S_last_request holds a pointer to a valid bit map, that
    892 	// points to a free block in memory.
    893 	size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
    894 	__detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
    895 
    896 	pointer __ret = reinterpret_cast<pointer>
    897 	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
    898 
    899 	size_t* __puse_count = reinterpret_cast<size_t*>
    900 	  (_S_mem_blocks[_S_last_request._M_where()].first)
    901 	  - (__detail::
    902 	     __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
    903 
    904 	++(*__puse_count);
    905 	return __ret;
    906       }
    907 
    908       /** @brief  Deallocates memory that belongs to a single object of
    909        *  size sizeof(_Tp).
    910        *
    911        *  Complexity: O(lg(N)), but the worst case is not hit
    912        *  often!  This is because containers usually deallocate memory
    913        *  close to each other and this case is handled in O(1) time by
    914        *  the deallocate function.
    915        */
    916       void
    917       _M_deallocate_single_object(pointer __p) throw()
    918       {
    919 #if defined __GTHREADS
    920 	__scoped_lock __bit_lock(_S_mut);
    921 #endif
    922 	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
    923 
    924 	typedef typename _BPVector::iterator _Iterator;
    925 	typedef typename _BPVector::difference_type _Difference_type;
    926 
    927 	_Difference_type __diff;
    928 	long __displacement;
    929 
    930 	_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
    931 
    932 	__detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
    933 	if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
    934 	  {
    935 	    _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
    936 				  <= _S_mem_blocks.size() - 1);
    937 
    938 	    // Initial Assumption was correct!
    939 	    __diff = _S_last_dealloc_index;
    940 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
    941 	  }
    942 	else
    943 	  {
    944 	    _Iterator _iter = _S_find(__ibt);
    945 
    946 	    _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
    947 
    948 	    __diff = _iter - _S_mem_blocks.begin();
    949 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
    950 	    _S_last_dealloc_index = __diff;
    951 	  }
    952 
    953 	// Get the position of the iterator that has been found.
    954 	const size_t __rotate = (__displacement
    955 				 % size_t(__detail::bits_per_block));
    956 	size_t* __bitmapC =
    957 	  reinterpret_cast<size_t*>
    958 	  (_S_mem_blocks[__diff].first) - 1;
    959 	__bitmapC -= (__displacement / size_t(__detail::bits_per_block));
    960 
    961 	__detail::__bit_free(__bitmapC, __rotate);
    962 	size_t* __puse_count = reinterpret_cast<size_t*>
    963 	  (_S_mem_blocks[__diff].first)
    964 	  - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
    965 
    966 	_GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
    967 
    968 	--(*__puse_count);
    969 
    970 	if (__builtin_expect(*__puse_count == 0, false))
    971 	  {
    972 	    _S_block_size /= 2;
    973 
    974 	    // We can safely remove this block.
    975 	    // _Block_pair __bp = _S_mem_blocks[__diff];
    976 	    this->_M_insert(__puse_count);
    977 	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
    978 
    979 	    // Reset the _S_last_request variable to reflect the
    980 	    // erased block. We do this to protect future requests
    981 	    // after the last block has been removed from a particular
    982 	    // memory Chunk, which in turn has been returned to the
    983 	    // free list, and hence had been erased from the vector,
    984 	    // so the size of the vector gets reduced by 1.
    985 	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
    986 	      _S_last_request._M_reset(__diff);
    987 
    988 	    // If the Index into the vector of the region of memory
    989 	    // that might hold the next address that will be passed to
    990 	    // deallocated may have been invalidated due to the above
    991 	    // erase procedure being called on the vector, hence we
    992 	    // try to restore this invariant too.
    993 	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
    994 	      {
    995 		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
    996 		_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
    997 	      }
    998 	  }
    999       }
   1000 
   1001     public:
   1002       bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
   1003       { }
   1004 
   1005       bitmap_allocator(const bitmap_allocator&) _GLIBCXX_USE_NOEXCEPT
   1006       { }
   1007 
   1008       template<typename _Tp1>
   1009         bitmap_allocator(const bitmap_allocator<_Tp1>&) _GLIBCXX_USE_NOEXCEPT
   1010         { }
   1011 
   1012       ~bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
   1013       { }
   1014 
   1015       pointer
   1016       allocate(size_type __n)
   1017       {
   1018 	if (__n > this->max_size())
   1019 	  std::__throw_bad_alloc();
   1020 
   1021 	if (__builtin_expect(__n == 1, true))
   1022 	  return this->_M_allocate_single_object();
   1023 	else
   1024 	  {
   1025 	    const size_type __b = __n * sizeof(value_type);
   1026 	    return reinterpret_cast<pointer>(::operator new(__b));
   1027 	  }
   1028       }
   1029 
   1030       pointer
   1031       allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
   1032       { return allocate(__n); }
   1033 
   1034       void
   1035       deallocate(pointer __p, size_type __n) throw()
   1036       {
   1037 	if (__builtin_expect(__p != 0, true))
   1038 	  {
   1039 	    if (__builtin_expect(__n == 1, true))
   1040 	      this->_M_deallocate_single_object(__p);
   1041 	    else
   1042 	      ::operator delete(__p);
   1043 	  }
   1044       }
   1045 
   1046       pointer
   1047       address(reference __r) const _GLIBCXX_NOEXCEPT
   1048       { return std::__addressof(__r); }
   1049 
   1050       const_pointer
   1051       address(const_reference __r) const _GLIBCXX_NOEXCEPT
   1052       { return std::__addressof(__r); }
   1053 
   1054       size_type
   1055       max_size() const _GLIBCXX_USE_NOEXCEPT
   1056       { return size_type(-1) / sizeof(value_type); }
   1057 
   1058 #if __cplusplus >= 201103L
   1059       template<typename _Up, typename... _Args>
   1060         void
   1061         construct(_Up* __p, _Args&&... __args)
   1062 	{ ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
   1063 
   1064       template<typename _Up>
   1065         void
   1066         destroy(_Up* __p)
   1067         { __p->~_Up(); }
   1068 #else
   1069       void
   1070       construct(pointer __p, const_reference __data)
   1071       { ::new((void *)__p) value_type(__data); }
   1072 
   1073       void
   1074       destroy(pointer __p)
   1075       { __p->~value_type(); }
   1076 #endif
   1077     };
   1078 
   1079   template<typename _Tp1, typename _Tp2>
   1080     bool
   1081     operator==(const bitmap_allocator<_Tp1>&,
   1082 	       const bitmap_allocator<_Tp2>&) throw()
   1083     { return true; }
   1084 
   1085   template<typename _Tp1, typename _Tp2>
   1086     bool
   1087     operator!=(const bitmap_allocator<_Tp1>&,
   1088 	       const bitmap_allocator<_Tp2>&) throw()
   1089   { return false; }
   1090 
   1091   // Static member definitions.
   1092   template<typename _Tp>
   1093     typename bitmap_allocator<_Tp>::_BPVector
   1094     bitmap_allocator<_Tp>::_S_mem_blocks;
   1095 
   1096   template<typename _Tp>
   1097     size_t bitmap_allocator<_Tp>::_S_block_size =
   1098     2 * size_t(__detail::bits_per_block);
   1099 
   1100   template<typename _Tp>
   1101     typename bitmap_allocator<_Tp>::_BPVector::size_type
   1102     bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
   1103 
   1104   template<typename _Tp>
   1105     __detail::_Bitmap_counter
   1106       <typename bitmap_allocator<_Tp>::_Alloc_block*>
   1107     bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
   1108 
   1109 #if defined __GTHREADS
   1110   template<typename _Tp>
   1111     typename bitmap_allocator<_Tp>::__mutex_type
   1112     bitmap_allocator<_Tp>::_S_mut;
   1113 #endif
   1114 
   1115 _GLIBCXX_END_NAMESPACE_VERSION
   1116 } // namespace __gnu_cxx
   1117 
   1118 #endif
   1119 
   1120