Home | History | Annotate | Download | only in tr1
      1 // Internal policy header for TR1 unordered_set and unordered_map -*- C++ -*-
      2 
      3 // Copyright (C) 2010-2013 Free Software Foundation, Inc.
      4 //
      5 // This file is part of the GNU ISO C++ Library.  This library is free
      6 // software; you can redistribute it and/or modify it under the
      7 // terms of the GNU General Public License as published by the
      8 // Free Software Foundation; either version 3, or (at your option)
      9 // any later version.
     10 
     11 // This library is distributed in the hope that it will be useful,
     12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14 // GNU General Public License for more details.
     15 
     16 // Under Section 7 of GPL version 3, you are granted additional
     17 // permissions described in the GCC Runtime Library Exception, version
     18 // 3.1, as published by the Free Software Foundation.
     19 
     20 // You should have received a copy of the GNU General Public License and
     21 // a copy of the GCC Runtime Library Exception along with this program;
     22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     23 // <http://www.gnu.org/licenses/>.
     24 
     25 /** @file tr1/hashtable_policy.h
     26  *  This is an internal header file, included by other library headers.
     27  *  Do not attempt to use it directly.
     28  *  @headername{tr1/unordered_map, tr1/unordered_set}
     29  */
     30 
     31 namespace std _GLIBCXX_VISIBILITY(default)
     32 {
     33 namespace tr1
     34 {
     35 namespace __detail
     36 {
     37 _GLIBCXX_BEGIN_NAMESPACE_VERSION
     38 
     39   // Helper function: return distance(first, last) for forward
     40   // iterators, or 0 for input iterators.
     41   template<class _Iterator>
     42     inline typename std::iterator_traits<_Iterator>::difference_type
     43     __distance_fw(_Iterator __first, _Iterator __last,
     44 		  std::input_iterator_tag)
     45     { return 0; }
     46 
     47   template<class _Iterator>
     48     inline typename std::iterator_traits<_Iterator>::difference_type
     49     __distance_fw(_Iterator __first, _Iterator __last,
     50 		  std::forward_iterator_tag)
     51     { return std::distance(__first, __last); }
     52 
     53   template<class _Iterator>
     54     inline typename std::iterator_traits<_Iterator>::difference_type
     55     __distance_fw(_Iterator __first, _Iterator __last)
     56     {
     57       typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
     58       return __distance_fw(__first, __last, _Tag());
     59     }
     60 
     61   // Auxiliary types used for all instantiations of _Hashtable: nodes
     62   // and iterators.
     63 
     64   // Nodes, used to wrap elements stored in the hash table.  A policy
     65   // template parameter of class template _Hashtable controls whether
     66   // nodes also store a hash code. In some cases (e.g. strings) this
     67   // may be a performance win.
     68   template<typename _Value, bool __cache_hash_code>
     69     struct _Hash_node;
     70 
     71   template<typename _Value>
     72     struct _Hash_node<_Value, true>
     73     {
     74       _Value       _M_v;
     75       std::size_t  _M_hash_code;
     76       _Hash_node*  _M_next;
     77     };
     78 
     79   template<typename _Value>
     80     struct _Hash_node<_Value, false>
     81     {
     82       _Value       _M_v;
     83       _Hash_node*  _M_next;
     84     };
     85 
     86   // Local iterators, used to iterate within a bucket but not between
     87   // buckets.
     88   template<typename _Value, bool __cache>
     89     struct _Node_iterator_base
     90     {
     91       _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
     92       : _M_cur(__p) { }
     93 
     94       void
     95       _M_incr()
     96       { _M_cur = _M_cur->_M_next; }
     97 
     98       _Hash_node<_Value, __cache>*  _M_cur;
     99     };
    100 
    101   template<typename _Value, bool __cache>
    102     inline bool
    103     operator==(const _Node_iterator_base<_Value, __cache>& __x,
    104 	       const _Node_iterator_base<_Value, __cache>& __y)
    105     { return __x._M_cur == __y._M_cur; }
    106 
    107   template<typename _Value, bool __cache>
    108     inline bool
    109     operator!=(const _Node_iterator_base<_Value, __cache>& __x,
    110 	       const _Node_iterator_base<_Value, __cache>& __y)
    111     { return __x._M_cur != __y._M_cur; }
    112 
    113   template<typename _Value, bool __constant_iterators, bool __cache>
    114     struct _Node_iterator
    115     : public _Node_iterator_base<_Value, __cache>
    116     {
    117       typedef _Value                                   value_type;
    118       typedef typename
    119       __gnu_cxx::__conditional_type<__constant_iterators,
    120 				    const _Value*, _Value*>::__type
    121                                                        pointer;
    122       typedef typename
    123       __gnu_cxx::__conditional_type<__constant_iterators,
    124 				    const _Value&, _Value&>::__type
    125                                                        reference;
    126       typedef std::ptrdiff_t                           difference_type;
    127       typedef std::forward_iterator_tag                iterator_category;
    128 
    129       _Node_iterator()
    130       : _Node_iterator_base<_Value, __cache>(0) { }
    131 
    132       explicit
    133       _Node_iterator(_Hash_node<_Value, __cache>* __p)
    134       : _Node_iterator_base<_Value, __cache>(__p) { }
    135 
    136       reference
    137       operator*() const
    138       { return this->_M_cur->_M_v; }
    139 
    140       pointer
    141       operator->() const
    142       { return std::__addressof(this->_M_cur->_M_v); }
    143 
    144       _Node_iterator&
    145       operator++()
    146       {
    147 	this->_M_incr();
    148 	return *this;
    149       }
    150 
    151       _Node_iterator
    152       operator++(int)
    153       {
    154 	_Node_iterator __tmp(*this);
    155 	this->_M_incr();
    156 	return __tmp;
    157       }
    158     };
    159 
    160   template<typename _Value, bool __constant_iterators, bool __cache>
    161     struct _Node_const_iterator
    162     : public _Node_iterator_base<_Value, __cache>
    163     {
    164       typedef _Value                                   value_type;
    165       typedef const _Value*                            pointer;
    166       typedef const _Value&                            reference;
    167       typedef std::ptrdiff_t                           difference_type;
    168       typedef std::forward_iterator_tag                iterator_category;
    169 
    170       _Node_const_iterator()
    171       : _Node_iterator_base<_Value, __cache>(0) { }
    172 
    173       explicit
    174       _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
    175       : _Node_iterator_base<_Value, __cache>(__p) { }
    176 
    177       _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
    178 			   __cache>& __x)
    179       : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
    180 
    181       reference
    182       operator*() const
    183       { return this->_M_cur->_M_v; }
    184 
    185       pointer
    186       operator->() const
    187       { return std::__addressof(this->_M_cur->_M_v); }
    188 
    189       _Node_const_iterator&
    190       operator++()
    191       {
    192 	this->_M_incr();
    193 	return *this;
    194       }
    195 
    196       _Node_const_iterator
    197       operator++(int)
    198       {
    199 	_Node_const_iterator __tmp(*this);
    200 	this->_M_incr();
    201 	return __tmp;
    202       }
    203     };
    204 
    205   template<typename _Value, bool __cache>
    206     struct _Hashtable_iterator_base
    207     {
    208       _Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
    209 			       _Hash_node<_Value, __cache>** __bucket)
    210       : _M_cur_node(__node), _M_cur_bucket(__bucket) { }
    211 
    212       void
    213       _M_incr()
    214       {
    215 	_M_cur_node = _M_cur_node->_M_next;
    216 	if (!_M_cur_node)
    217 	  _M_incr_bucket();
    218       }
    219 
    220       void
    221       _M_incr_bucket();
    222 
    223       _Hash_node<_Value, __cache>*   _M_cur_node;
    224       _Hash_node<_Value, __cache>**  _M_cur_bucket;
    225     };
    226 
    227   // Global iterators, used for arbitrary iteration within a hash
    228   // table.  Larger and more expensive than local iterators.
    229   template<typename _Value, bool __cache>
    230     void
    231     _Hashtable_iterator_base<_Value, __cache>::
    232     _M_incr_bucket()
    233     {
    234       ++_M_cur_bucket;
    235 
    236       // This loop requires the bucket array to have a non-null sentinel.
    237       while (!*_M_cur_bucket)
    238 	++_M_cur_bucket;
    239       _M_cur_node = *_M_cur_bucket;
    240     }
    241 
    242   template<typename _Value, bool __cache>
    243     inline bool
    244     operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
    245 	       const _Hashtable_iterator_base<_Value, __cache>& __y)
    246     { return __x._M_cur_node == __y._M_cur_node; }
    247 
    248   template<typename _Value, bool __cache>
    249     inline bool
    250     operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
    251 	       const _Hashtable_iterator_base<_Value, __cache>& __y)
    252     { return __x._M_cur_node != __y._M_cur_node; }
    253 
    254   template<typename _Value, bool __constant_iterators, bool __cache>
    255     struct _Hashtable_iterator
    256     : public _Hashtable_iterator_base<_Value, __cache>
    257     {
    258       typedef _Value                                   value_type;
    259       typedef typename
    260       __gnu_cxx::__conditional_type<__constant_iterators,
    261 				    const _Value*, _Value*>::__type
    262                                                        pointer;
    263       typedef typename
    264       __gnu_cxx::__conditional_type<__constant_iterators,
    265 				    const _Value&, _Value&>::__type
    266                                                        reference;
    267       typedef std::ptrdiff_t                           difference_type;
    268       typedef std::forward_iterator_tag                iterator_category;
    269 
    270       _Hashtable_iterator()
    271       : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
    272 
    273       _Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
    274 			  _Hash_node<_Value, __cache>** __b)
    275       : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
    276 
    277       explicit
    278       _Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
    279       : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
    280 
    281       reference
    282       operator*() const
    283       { return this->_M_cur_node->_M_v; }
    284 
    285       pointer
    286       operator->() const
    287       { return std::__addressof(this->_M_cur_node->_M_v); }
    288 
    289       _Hashtable_iterator&
    290       operator++()
    291       {
    292 	this->_M_incr();
    293 	return *this;
    294       }
    295 
    296       _Hashtable_iterator
    297       operator++(int)
    298       {
    299 	_Hashtable_iterator __tmp(*this);
    300 	this->_M_incr();
    301 	return __tmp;
    302       }
    303     };
    304 
    305   template<typename _Value, bool __constant_iterators, bool __cache>
    306     struct _Hashtable_const_iterator
    307     : public _Hashtable_iterator_base<_Value, __cache>
    308     {
    309       typedef _Value                                   value_type;
    310       typedef const _Value*                            pointer;
    311       typedef const _Value&                            reference;
    312       typedef std::ptrdiff_t                           difference_type;
    313       typedef std::forward_iterator_tag                iterator_category;
    314 
    315       _Hashtable_const_iterator()
    316       : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
    317 
    318       _Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
    319 				_Hash_node<_Value, __cache>** __b)
    320       : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
    321 
    322       explicit
    323       _Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
    324       : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
    325 
    326       _Hashtable_const_iterator(const _Hashtable_iterator<_Value,
    327 				__constant_iterators, __cache>& __x)
    328       : _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
    329 						  __x._M_cur_bucket) { }
    330 
    331       reference
    332       operator*() const
    333       { return this->_M_cur_node->_M_v; }
    334 
    335       pointer
    336       operator->() const
    337       { return std::__addressof(this->_M_cur_node->_M_v); }
    338 
    339       _Hashtable_const_iterator&
    340       operator++()
    341       {
    342 	this->_M_incr();
    343 	return *this;
    344       }
    345 
    346       _Hashtable_const_iterator
    347       operator++(int)
    348       {
    349 	_Hashtable_const_iterator __tmp(*this);
    350 	this->_M_incr();
    351 	return __tmp;
    352       }
    353     };
    354 
    355 
    356   // Many of class template _Hashtable's template parameters are policy
    357   // classes.  These are defaults for the policies.
    358 
    359   // Default range hashing function: use division to fold a large number
    360   // into the range [0, N).
    361   struct _Mod_range_hashing
    362   {
    363     typedef std::size_t first_argument_type;
    364     typedef std::size_t second_argument_type;
    365     typedef std::size_t result_type;
    366 
    367     result_type
    368     operator()(first_argument_type __num, second_argument_type __den) const
    369     { return __num % __den; }
    370   };
    371 
    372   // Default ranged hash function H.  In principle it should be a
    373   // function object composed from objects of type H1 and H2 such that
    374   // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
    375   // h1 and h2.  So instead we'll just use a tag to tell class template
    376   // hashtable to do that composition.
    377   struct _Default_ranged_hash { };
    378 
    379   // Default value for rehash policy.  Bucket size is (usually) the
    380   // smallest prime that keeps the load factor small enough.
    381   struct _Prime_rehash_policy
    382   {
    383     _Prime_rehash_policy(float __z = 1.0)
    384     : _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
    385 
    386     float
    387     max_load_factor() const
    388     { return _M_max_load_factor; }
    389 
    390     // Return a bucket size no smaller than n.
    391     std::size_t
    392     _M_next_bkt(std::size_t __n) const;
    393 
    394     // Return a bucket count appropriate for n elements
    395     std::size_t
    396     _M_bkt_for_elements(std::size_t __n) const;
    397 
    398     // __n_bkt is current bucket count, __n_elt is current element count,
    399     // and __n_ins is number of elements to be inserted.  Do we need to
    400     // increase bucket count?  If so, return make_pair(true, n), where n
    401     // is the new bucket count.  If not, return make_pair(false, 0).
    402     std::pair<bool, std::size_t>
    403     _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
    404 		   std::size_t __n_ins) const;
    405 
    406     enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
    407 
    408     float                _M_max_load_factor;
    409     float                _M_growth_factor;
    410     mutable std::size_t  _M_next_resize;
    411   };
    412 
    413   extern const unsigned long __prime_list[];
    414 
    415   // XXX This is a hack.  There's no good reason for any of
    416   // _Prime_rehash_policy's member functions to be inline.
    417 
    418   // Return a prime no smaller than n.
    419   inline std::size_t
    420   _Prime_rehash_policy::
    421   _M_next_bkt(std::size_t __n) const
    422   {
    423     const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
    424 						+ _S_n_primes, __n);
    425     _M_next_resize =
    426       static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
    427     return *__p;
    428   }
    429 
    430   // Return the smallest prime p such that alpha p >= n, where alpha
    431   // is the load factor.
    432   inline std::size_t
    433   _Prime_rehash_policy::
    434   _M_bkt_for_elements(std::size_t __n) const
    435   {
    436     const float __min_bkts = __n / _M_max_load_factor;
    437     const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
    438 						+ _S_n_primes, __min_bkts);
    439     _M_next_resize =
    440       static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
    441     return *__p;
    442   }
    443 
    444   // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
    445   // If p > __n_bkt, return make_pair(true, p); otherwise return
    446   // make_pair(false, 0).  In principle this isn't very different from
    447   // _M_bkt_for_elements.
    448 
    449   // The only tricky part is that we're caching the element count at
    450   // which we need to rehash, so we don't have to do a floating-point
    451   // multiply for every insertion.
    452 
    453   inline std::pair<bool, std::size_t>
    454   _Prime_rehash_policy::
    455   _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
    456 		 std::size_t __n_ins) const
    457   {
    458     if (__n_elt + __n_ins > _M_next_resize)
    459       {
    460 	float __min_bkts = ((float(__n_ins) + float(__n_elt))
    461 			    / _M_max_load_factor);
    462 	if (__min_bkts > __n_bkt)
    463 	  {
    464 	    __min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
    465 	    const unsigned long* __p =
    466 	      std::lower_bound(__prime_list, __prime_list + _S_n_primes,
    467 			       __min_bkts);
    468 	    _M_next_resize = static_cast<std::size_t>
    469 	      (__builtin_ceil(*__p * _M_max_load_factor));
    470 	    return std::make_pair(true, *__p);
    471 	  }
    472 	else
    473 	  {
    474 	    _M_next_resize = static_cast<std::size_t>
    475 	      (__builtin_ceil(__n_bkt * _M_max_load_factor));
    476 	    return std::make_pair(false, 0);
    477 	  }
    478       }
    479     else
    480       return std::make_pair(false, 0);
    481   }
    482 
    483   // Base classes for std::tr1::_Hashtable.  We define these base
    484   // classes because in some cases we want to do different things
    485   // depending on the value of a policy class.  In some cases the
    486   // policy class affects which member functions and nested typedefs
    487   // are defined; we handle that by specializing base class templates.
    488   // Several of the base class templates need to access other members
    489   // of class template _Hashtable, so we use the "curiously recurring
    490   // template pattern" for them.
    491 
    492   // class template _Map_base.  If the hashtable has a value type of the
    493   // form pair<T1, T2> and a key extraction policy that returns the
    494   // first part of the pair, the hashtable gets a mapped_type typedef.
    495   // If it satisfies those criteria and also has unique keys, then it
    496   // also gets an operator[].
    497   template<typename _Key, typename _Value, typename _Ex, bool __unique,
    498 	   typename _Hashtable>
    499     struct _Map_base { };
    500 
    501   template<typename _Key, typename _Pair, typename _Hashtable>
    502     struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
    503     {
    504       typedef typename _Pair::second_type mapped_type;
    505     };
    506 
    507   template<typename _Key, typename _Pair, typename _Hashtable>
    508     struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
    509     {
    510       typedef typename _Pair::second_type mapped_type;
    511 
    512       mapped_type&
    513       operator[](const _Key& __k);
    514     };
    515 
    516   template<typename _Key, typename _Pair, typename _Hashtable>
    517     typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
    518 		       true, _Hashtable>::mapped_type&
    519     _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
    520     operator[](const _Key& __k)
    521     {
    522       _Hashtable* __h = static_cast<_Hashtable*>(this);
    523       typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
    524       std::size_t __n = __h->_M_bucket_index(__k, __code,
    525 					     __h->_M_bucket_count);
    526 
    527       typename _Hashtable::_Node* __p =
    528 	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
    529       if (!__p)
    530 	return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
    531 				     __n, __code)->second;
    532       return (__p->_M_v).second;
    533     }
    534 
    535   // class template _Rehash_base.  Give hashtable the max_load_factor
    536   // functions iff the rehash policy is _Prime_rehash_policy.
    537   template<typename _RehashPolicy, typename _Hashtable>
    538     struct _Rehash_base { };
    539 
    540   template<typename _Hashtable>
    541     struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
    542     {
    543       float
    544       max_load_factor() const
    545       {
    546 	const _Hashtable* __this = static_cast<const _Hashtable*>(this);
    547 	return __this->__rehash_policy().max_load_factor();
    548       }
    549 
    550       void
    551       max_load_factor(float __z)
    552       {
    553 	_Hashtable* __this = static_cast<_Hashtable*>(this);
    554 	__this->__rehash_policy(_Prime_rehash_policy(__z));
    555       }
    556     };
    557 
    558   // Class template _Hash_code_base.  Encapsulates two policy issues that
    559   // aren't quite orthogonal.
    560   //   (1) the difference between using a ranged hash function and using
    561   //       the combination of a hash function and a range-hashing function.
    562   //       In the former case we don't have such things as hash codes, so
    563   //       we have a dummy type as placeholder.
    564   //   (2) Whether or not we cache hash codes.  Caching hash codes is
    565   //       meaningless if we have a ranged hash function.
    566   // We also put the key extraction and equality comparison function
    567   // objects here, for convenience.
    568 
    569   // Primary template: unused except as a hook for specializations.
    570   template<typename _Key, typename _Value,
    571 	   typename _ExtractKey, typename _Equal,
    572 	   typename _H1, typename _H2, typename _Hash,
    573 	   bool __cache_hash_code>
    574     struct _Hash_code_base;
    575 
    576   // Specialization: ranged hash function, no caching hash codes.  H1
    577   // and H2 are provided but ignored.  We define a dummy hash code type.
    578   template<typename _Key, typename _Value,
    579 	   typename _ExtractKey, typename _Equal,
    580 	   typename _H1, typename _H2, typename _Hash>
    581     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
    582 			   _Hash, false>
    583     {
    584     protected:
    585       _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
    586 		      const _H1&, const _H2&, const _Hash& __h)
    587       : _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
    588 
    589       typedef void* _Hash_code_type;
    590 
    591       _Hash_code_type
    592       _M_hash_code(const _Key& __key) const
    593       { return 0; }
    594 
    595       std::size_t
    596       _M_bucket_index(const _Key& __k, _Hash_code_type,
    597 		      std::size_t __n) const
    598       { return _M_ranged_hash(__k, __n); }
    599 
    600       std::size_t
    601       _M_bucket_index(const _Hash_node<_Value, false>* __p,
    602 		      std::size_t __n) const
    603       { return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
    604 
    605       bool
    606       _M_compare(const _Key& __k, _Hash_code_type,
    607 		 _Hash_node<_Value, false>* __n) const
    608       { return _M_eq(__k, _M_extract(__n->_M_v)); }
    609 
    610       void
    611       _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
    612       { }
    613 
    614       void
    615       _M_copy_code(_Hash_node<_Value, false>*,
    616 		   const _Hash_node<_Value, false>*) const
    617       { }
    618 
    619       void
    620       _M_swap(_Hash_code_base& __x)
    621       {
    622 	std::swap(_M_extract, __x._M_extract);
    623 	std::swap(_M_eq, __x._M_eq);
    624 	std::swap(_M_ranged_hash, __x._M_ranged_hash);
    625       }
    626 
    627     protected:
    628       _ExtractKey  _M_extract;
    629       _Equal       _M_eq;
    630       _Hash        _M_ranged_hash;
    631     };
    632 
    633 
    634   // No specialization for ranged hash function while caching hash codes.
    635   // That combination is meaningless, and trying to do it is an error.
    636 
    637 
    638   // Specialization: ranged hash function, cache hash codes.  This
    639   // combination is meaningless, so we provide only a declaration
    640   // and no definition.
    641   template<typename _Key, typename _Value,
    642 	   typename _ExtractKey, typename _Equal,
    643 	   typename _H1, typename _H2, typename _Hash>
    644     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
    645 			   _Hash, true>;
    646 
    647   // Specialization: hash function and range-hashing function, no
    648   // caching of hash codes.  H is provided but ignored.  Provides
    649   // typedef and accessor required by TR1.
    650   template<typename _Key, typename _Value,
    651 	   typename _ExtractKey, typename _Equal,
    652 	   typename _H1, typename _H2>
    653     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
    654 			   _Default_ranged_hash, false>
    655     {
    656       typedef _H1 hasher;
    657 
    658       hasher
    659       hash_function() const
    660       { return _M_h1; }
    661 
    662     protected:
    663       _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
    664 		      const _H1& __h1, const _H2& __h2,
    665 		      const _Default_ranged_hash&)
    666       : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
    667 
    668       typedef std::size_t _Hash_code_type;
    669 
    670       _Hash_code_type
    671       _M_hash_code(const _Key& __k) const
    672       { return _M_h1(__k); }
    673 
    674       std::size_t
    675       _M_bucket_index(const _Key&, _Hash_code_type __c,
    676 		      std::size_t __n) const
    677       { return _M_h2(__c, __n); }
    678 
    679       std::size_t
    680       _M_bucket_index(const _Hash_node<_Value, false>* __p,
    681 		      std::size_t __n) const
    682       { return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
    683 
    684       bool
    685       _M_compare(const _Key& __k, _Hash_code_type,
    686 		 _Hash_node<_Value, false>* __n) const
    687       { return _M_eq(__k, _M_extract(__n->_M_v)); }
    688 
    689       void
    690       _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
    691       { }
    692 
    693       void
    694       _M_copy_code(_Hash_node<_Value, false>*,
    695 		   const _Hash_node<_Value, false>*) const
    696       { }
    697 
    698       void
    699       _M_swap(_Hash_code_base& __x)
    700       {
    701 	std::swap(_M_extract, __x._M_extract);
    702 	std::swap(_M_eq, __x._M_eq);
    703 	std::swap(_M_h1, __x._M_h1);
    704 	std::swap(_M_h2, __x._M_h2);
    705       }
    706 
    707     protected:
    708       _ExtractKey  _M_extract;
    709       _Equal       _M_eq;
    710       _H1          _M_h1;
    711       _H2          _M_h2;
    712     };
    713 
    714   // Specialization: hash function and range-hashing function,
    715   // caching hash codes.  H is provided but ignored.  Provides
    716   // typedef and accessor required by TR1.
    717   template<typename _Key, typename _Value,
    718 	   typename _ExtractKey, typename _Equal,
    719 	   typename _H1, typename _H2>
    720     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
    721 			   _Default_ranged_hash, true>
    722     {
    723       typedef _H1 hasher;
    724 
    725       hasher
    726       hash_function() const
    727       { return _M_h1; }
    728 
    729     protected:
    730       _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
    731 		      const _H1& __h1, const _H2& __h2,
    732 		      const _Default_ranged_hash&)
    733       : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
    734 
    735       typedef std::size_t _Hash_code_type;
    736 
    737       _Hash_code_type
    738       _M_hash_code(const _Key& __k) const
    739       { return _M_h1(__k); }
    740 
    741       std::size_t
    742       _M_bucket_index(const _Key&, _Hash_code_type __c,
    743 		      std::size_t __n) const
    744       { return _M_h2(__c, __n); }
    745 
    746       std::size_t
    747       _M_bucket_index(const _Hash_node<_Value, true>* __p,
    748 		      std::size_t __n) const
    749       { return _M_h2(__p->_M_hash_code, __n); }
    750 
    751       bool
    752       _M_compare(const _Key& __k, _Hash_code_type __c,
    753 		 _Hash_node<_Value, true>* __n) const
    754       { return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
    755 
    756       void
    757       _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
    758       { __n->_M_hash_code = __c; }
    759 
    760       void
    761       _M_copy_code(_Hash_node<_Value, true>* __to,
    762 		   const _Hash_node<_Value, true>* __from) const
    763       { __to->_M_hash_code = __from->_M_hash_code; }
    764 
    765       void
    766       _M_swap(_Hash_code_base& __x)
    767       {
    768 	std::swap(_M_extract, __x._M_extract);
    769 	std::swap(_M_eq, __x._M_eq);
    770 	std::swap(_M_h1, __x._M_h1);
    771 	std::swap(_M_h2, __x._M_h2);
    772       }
    773 
    774     protected:
    775       _ExtractKey  _M_extract;
    776       _Equal       _M_eq;
    777       _H1          _M_h1;
    778       _H2          _M_h2;
    779     };
    780 _GLIBCXX_END_NAMESPACE_VERSION
    781 } // namespace __detail
    782 }
    783 }
    784