1 <!--{ 2 "Title": "The Go Programming Language Specification", 3 "Subtitle": "Version of February 1, 2018", 4 "Path": "/ref/spec" 5 }--> 6 7 <h2 id="Introduction">Introduction</h2> 8 9 <p> 10 This is a reference manual for the Go programming language. For 11 more information and other documents, see <a href="/">golang.org</a>. 12 </p> 13 14 <p> 15 Go is a general-purpose language designed with systems programming 16 in mind. It is strongly typed and garbage-collected and has explicit 17 support for concurrent programming. Programs are constructed from 18 <i>packages</i>, whose properties allow efficient management of 19 dependencies. 20 </p> 21 22 <p> 23 The grammar is compact and regular, allowing for easy analysis by 24 automatic tools such as integrated development environments. 25 </p> 26 27 <h2 id="Notation">Notation</h2> 28 <p> 29 The syntax is specified using Extended Backus-Naur Form (EBNF): 30 </p> 31 32 <pre class="grammar"> 33 Production = production_name "=" [ Expression ] "." . 34 Expression = Alternative { "|" Alternative } . 35 Alternative = Term { Term } . 36 Term = production_name | token [ "" token ] | Group | Option | Repetition . 37 Group = "(" Expression ")" . 38 Option = "[" Expression "]" . 39 Repetition = "{" Expression "}" . 40 </pre> 41 42 <p> 43 Productions are expressions constructed from terms and the following 44 operators, in increasing precedence: 45 </p> 46 <pre class="grammar"> 47 | alternation 48 () grouping 49 [] option (0 or 1 times) 50 {} repetition (0 to n times) 51 </pre> 52 53 <p> 54 Lower-case production names are used to identify lexical tokens. 55 Non-terminals are in CamelCase. Lexical tokens are enclosed in 56 double quotes <code>""</code> or back quotes <code>``</code>. 57 </p> 58 59 <p> 60 The form <code>a b</code> represents the set of characters from 61 <code>a</code> through <code>b</code> as alternatives. The horizontal 62 ellipsis <code></code> is also used elsewhere in the spec to informally denote various 63 enumerations or code snippets that are not further specified. The character <code></code> 64 (as opposed to the three characters <code>...</code>) is not a token of the Go 65 language. 66 </p> 67 68 <h2 id="Source_code_representation">Source code representation</h2> 69 70 <p> 71 Source code is Unicode text encoded in 72 <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not 73 canonicalized, so a single accented code point is distinct from the 74 same character constructed from combining an accent and a letter; 75 those are treated as two code points. For simplicity, this document 76 will use the unqualified term <i>character</i> to refer to a Unicode code point 77 in the source text. 78 </p> 79 <p> 80 Each code point is distinct; for instance, upper and lower case letters 81 are different characters. 82 </p> 83 <p> 84 Implementation restriction: For compatibility with other tools, a 85 compiler may disallow the NUL character (U+0000) in the source text. 86 </p> 87 <p> 88 Implementation restriction: For compatibility with other tools, a 89 compiler may ignore a UTF-8-encoded byte order mark 90 (U+FEFF) if it is the first Unicode code point in the source text. 91 A byte order mark may be disallowed anywhere else in the source. 92 </p> 93 94 <h3 id="Characters">Characters</h3> 95 96 <p> 97 The following terms are used to denote specific Unicode character classes: 98 </p> 99 <pre class="ebnf"> 100 newline = /* the Unicode code point U+000A */ . 101 unicode_char = /* an arbitrary Unicode code point except newline */ . 102 unicode_letter = /* a Unicode code point classified as "Letter" */ . 103 unicode_digit = /* a Unicode code point classified as "Number, decimal digit" */ . 104 </pre> 105 106 <p> 107 In <a href="http://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>, 108 Section 4.5 "General Category" defines a set of character categories. 109 Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo 110 as Unicode letters, and those in the Number category Nd as Unicode digits. 111 </p> 112 113 <h3 id="Letters_and_digits">Letters and digits</h3> 114 115 <p> 116 The underscore character <code>_</code> (U+005F) is considered a letter. 117 </p> 118 <pre class="ebnf"> 119 letter = unicode_letter | "_" . 120 decimal_digit = "0" "9" . 121 octal_digit = "0" "7" . 122 hex_digit = "0" "9" | "A" "F" | "a" "f" . 123 </pre> 124 125 <h2 id="Lexical_elements">Lexical elements</h2> 126 127 <h3 id="Comments">Comments</h3> 128 129 <p> 130 Comments serve as program documentation. There are two forms: 131 </p> 132 133 <ol> 134 <li> 135 <i>Line comments</i> start with the character sequence <code>//</code> 136 and stop at the end of the line. 137 </li> 138 <li> 139 <i>General comments</i> start with the character sequence <code>/*</code> 140 and stop with the first subsequent character sequence <code>*/</code>. 141 </li> 142 </ol> 143 144 <p> 145 A comment cannot start inside a <a href="#Rune_literals">rune</a> or 146 <a href="#String_literals">string literal</a>, or inside a comment. 147 A general comment containing no newlines acts like a space. 148 Any other comment acts like a newline. 149 </p> 150 151 <h3 id="Tokens">Tokens</h3> 152 153 <p> 154 Tokens form the vocabulary of the Go language. 155 There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators 156 and punctuation</i>, and <i>literals</i>. <i>White space</i>, formed from 157 spaces (U+0020), horizontal tabs (U+0009), 158 carriage returns (U+000D), and newlines (U+000A), 159 is ignored except as it separates tokens 160 that would otherwise combine into a single token. Also, a newline or end of file 161 may trigger the insertion of a <a href="#Semicolons">semicolon</a>. 162 While breaking the input into tokens, 163 the next token is the longest sequence of characters that form a 164 valid token. 165 </p> 166 167 <h3 id="Semicolons">Semicolons</h3> 168 169 <p> 170 The formal grammar uses semicolons <code>";"</code> as terminators in 171 a number of productions. Go programs may omit most of these semicolons 172 using the following two rules: 173 </p> 174 175 <ol> 176 <li> 177 When the input is broken into tokens, a semicolon is automatically inserted 178 into the token stream immediately after a line's final token if that token is 179 <ul> 180 <li>an 181 <a href="#Identifiers">identifier</a> 182 </li> 183 184 <li>an 185 <a href="#Integer_literals">integer</a>, 186 <a href="#Floating-point_literals">floating-point</a>, 187 <a href="#Imaginary_literals">imaginary</a>, 188 <a href="#Rune_literals">rune</a>, or 189 <a href="#String_literals">string</a> literal 190 </li> 191 192 <li>one of the <a href="#Keywords">keywords</a> 193 <code>break</code>, 194 <code>continue</code>, 195 <code>fallthrough</code>, or 196 <code>return</code> 197 </li> 198 199 <li>one of the <a href="#Operators_and_punctuation">operators and punctuation</a> 200 <code>++</code>, 201 <code>--</code>, 202 <code>)</code>, 203 <code>]</code>, or 204 <code>}</code> 205 </li> 206 </ul> 207 </li> 208 209 <li> 210 To allow complex statements to occupy a single line, a semicolon 211 may be omitted before a closing <code>")"</code> or <code>"}"</code>. 212 </li> 213 </ol> 214 215 <p> 216 To reflect idiomatic use, code examples in this document elide semicolons 217 using these rules. 218 </p> 219 220 221 <h3 id="Identifiers">Identifiers</h3> 222 223 <p> 224 Identifiers name program entities such as variables and types. 225 An identifier is a sequence of one or more letters and digits. 226 The first character in an identifier must be a letter. 227 </p> 228 <pre class="ebnf"> 229 identifier = letter { letter | unicode_digit } . 230 </pre> 231 <pre> 232 a 233 _x9 234 ThisVariableIsExported 235 236 </pre> 237 238 <p> 239 Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>. 240 </p> 241 242 243 <h3 id="Keywords">Keywords</h3> 244 245 <p> 246 The following keywords are reserved and may not be used as identifiers. 247 </p> 248 <pre class="grammar"> 249 break default func interface select 250 case defer go map struct 251 chan else goto package switch 252 const fallthrough if range type 253 continue for import return var 254 </pre> 255 256 <h3 id="Operators_and_punctuation">Operators and punctuation</h3> 257 258 <p> 259 The following character sequences represent <a href="#Operators">operators</a> 260 (including <a href="#assign_op">assignment operators</a>) and punctuation: 261 </p> 262 <pre class="grammar"> 263 + & += &= && == != ( ) 264 - | -= |= || < <= [ ] 265 * ^ *= ^= <- > >= { } 266 / << /= <<= ++ = := , ; 267 % >> %= >>= -- ! ... . : 268 &^ &^= 269 </pre> 270 271 <h3 id="Integer_literals">Integer literals</h3> 272 273 <p> 274 An integer literal is a sequence of digits representing an 275 <a href="#Constants">integer constant</a>. 276 An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or 277 <code>0X</code> for hexadecimal. In hexadecimal literals, letters 278 <code>a-f</code> and <code>A-F</code> represent values 10 through 15. 279 </p> 280 <pre class="ebnf"> 281 int_lit = decimal_lit | octal_lit | hex_lit . 282 decimal_lit = ( "1" "9" ) { decimal_digit } . 283 octal_lit = "0" { octal_digit } . 284 hex_lit = "0" ( "x" | "X" ) hex_digit { hex_digit } . 285 </pre> 286 287 <pre> 288 42 289 0600 290 0xBadFace 291 170141183460469231731687303715884105727 292 </pre> 293 294 <h3 id="Floating-point_literals">Floating-point literals</h3> 295 <p> 296 A floating-point literal is a decimal representation of a 297 <a href="#Constants">floating-point constant</a>. 298 It has an integer part, a decimal point, a fractional part, 299 and an exponent part. The integer and fractional part comprise 300 decimal digits; the exponent part is an <code>e</code> or <code>E</code> 301 followed by an optionally signed decimal exponent. One of the 302 integer part or the fractional part may be elided; one of the decimal 303 point or the exponent may be elided. 304 </p> 305 <pre class="ebnf"> 306 float_lit = decimals "." [ decimals ] [ exponent ] | 307 decimals exponent | 308 "." decimals [ exponent ] . 309 decimals = decimal_digit { decimal_digit } . 310 exponent = ( "e" | "E" ) [ "+" | "-" ] decimals . 311 </pre> 312 313 <pre> 314 0. 315 72.40 316 072.40 // == 72.40 317 2.71828 318 1.e+0 319 6.67428e-11 320 1E6 321 .25 322 .12345E+5 323 </pre> 324 325 <h3 id="Imaginary_literals">Imaginary literals</h3> 326 <p> 327 An imaginary literal is a decimal representation of the imaginary part of a 328 <a href="#Constants">complex constant</a>. 329 It consists of a 330 <a href="#Floating-point_literals">floating-point literal</a> 331 or decimal integer followed 332 by the lower-case letter <code>i</code>. 333 </p> 334 <pre class="ebnf"> 335 imaginary_lit = (decimals | float_lit) "i" . 336 </pre> 337 338 <pre> 339 0i 340 011i // == 11i 341 0.i 342 2.71828i 343 1.e+0i 344 6.67428e-11i 345 1E6i 346 .25i 347 .12345E+5i 348 </pre> 349 350 351 <h3 id="Rune_literals">Rune literals</h3> 352 353 <p> 354 A rune literal represents a <a href="#Constants">rune constant</a>, 355 an integer value identifying a Unicode code point. 356 A rune literal is expressed as one or more characters enclosed in single quotes, 357 as in <code>'x'</code> or <code>'\n'</code>. 358 Within the quotes, any character may appear except newline and unescaped single 359 quote. A single quoted character represents the Unicode value 360 of the character itself, 361 while multi-character sequences beginning with a backslash encode 362 values in various formats. 363 </p> 364 <p> 365 The simplest form represents the single character within the quotes; 366 since Go source text is Unicode characters encoded in UTF-8, multiple 367 UTF-8-encoded bytes may represent a single integer value. For 368 instance, the literal <code>'a'</code> holds a single byte representing 369 a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while 370 <code>''</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing 371 a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>. 372 </p> 373 <p> 374 Several backslash escapes allow arbitrary values to be encoded as 375 ASCII text. There are four ways to represent the integer value 376 as a numeric constant: <code>\x</code> followed by exactly two hexadecimal 377 digits; <code>\u</code> followed by exactly four hexadecimal digits; 378 <code>\U</code> followed by exactly eight hexadecimal digits, and a 379 plain backslash <code>\</code> followed by exactly three octal digits. 380 In each case the value of the literal is the value represented by 381 the digits in the corresponding base. 382 </p> 383 <p> 384 Although these representations all result in an integer, they have 385 different valid ranges. Octal escapes must represent a value between 386 0 and 255 inclusive. Hexadecimal escapes satisfy this condition 387 by construction. The escapes <code>\u</code> and <code>\U</code> 388 represent Unicode code points so within them some values are illegal, 389 in particular those above <code>0x10FFFF</code> and surrogate halves. 390 </p> 391 <p> 392 After a backslash, certain single-character escapes represent special values: 393 </p> 394 <pre class="grammar"> 395 \a U+0007 alert or bell 396 \b U+0008 backspace 397 \f U+000C form feed 398 \n U+000A line feed or newline 399 \r U+000D carriage return 400 \t U+0009 horizontal tab 401 \v U+000b vertical tab 402 \\ U+005c backslash 403 \' U+0027 single quote (valid escape only within rune literals) 404 \" U+0022 double quote (valid escape only within string literals) 405 </pre> 406 <p> 407 All other sequences starting with a backslash are illegal inside rune literals. 408 </p> 409 <pre class="ebnf"> 410 rune_lit = "'" ( unicode_value | byte_value ) "'" . 411 unicode_value = unicode_char | little_u_value | big_u_value | escaped_char . 412 byte_value = octal_byte_value | hex_byte_value . 413 octal_byte_value = `\` octal_digit octal_digit octal_digit . 414 hex_byte_value = `\` "x" hex_digit hex_digit . 415 little_u_value = `\` "u" hex_digit hex_digit hex_digit hex_digit . 416 big_u_value = `\` "U" hex_digit hex_digit hex_digit hex_digit 417 hex_digit hex_digit hex_digit hex_digit . 418 escaped_char = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) . 419 </pre> 420 421 <pre> 422 'a' 423 '' 424 '' 425 '\t' 426 '\000' 427 '\007' 428 '\377' 429 '\x07' 430 '\xff' 431 '\u12e4' 432 '\U00101234' 433 '\'' // rune literal containing single quote character 434 'aa' // illegal: too many characters 435 '\xa' // illegal: too few hexadecimal digits 436 '\0' // illegal: too few octal digits 437 '\uDFFF' // illegal: surrogate half 438 '\U00110000' // illegal: invalid Unicode code point 439 </pre> 440 441 442 <h3 id="String_literals">String literals</h3> 443 444 <p> 445 A string literal represents a <a href="#Constants">string constant</a> 446 obtained from concatenating a sequence of characters. There are two forms: 447 raw string literals and interpreted string literals. 448 </p> 449 <p> 450 Raw string literals are character sequences between back quotes, as in 451 <code>`foo`</code>. Within the quotes, any character may appear except 452 back quote. The value of a raw string literal is the 453 string composed of the uninterpreted (implicitly UTF-8-encoded) characters 454 between the quotes; 455 in particular, backslashes have no special meaning and the string may 456 contain newlines. 457 Carriage return characters ('\r') inside raw string literals 458 are discarded from the raw string value. 459 </p> 460 <p> 461 Interpreted string literals are character sequences between double 462 quotes, as in <code>"bar"</code>. 463 Within the quotes, any character may appear except newline and unescaped double quote. 464 The text between the quotes forms the 465 value of the literal, with backslash escapes interpreted as they 466 are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and 467 <code>\"</code> is legal), with the same restrictions. 468 The three-digit octal (<code>\</code><i>nnn</i>) 469 and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual 470 <i>bytes</i> of the resulting string; all other escapes represent 471 the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>. 472 Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent 473 a single byte of value <code>0xFF</code>=255, while <code></code>, 474 <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent 475 the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character 476 U+00FF. 477 </p> 478 479 <pre class="ebnf"> 480 string_lit = raw_string_lit | interpreted_string_lit . 481 raw_string_lit = "`" { unicode_char | newline } "`" . 482 interpreted_string_lit = `"` { unicode_value | byte_value } `"` . 483 </pre> 484 485 <pre> 486 `abc` // same as "abc" 487 `\n 488 \n` // same as "\\n\n\\n" 489 "\n" 490 "\"" // same as `"` 491 "Hello, world!\n" 492 "" 493 "\u65e5\U00008a9e" 494 "\xff\u00FF" 495 "\uD800" // illegal: surrogate half 496 "\U00110000" // illegal: invalid Unicode code point 497 </pre> 498 499 <p> 500 These examples all represent the same string: 501 </p> 502 503 <pre> 504 "" // UTF-8 input text 505 `` // UTF-8 input text as a raw literal 506 "\u65e5\u672c\u8a9e" // the explicit Unicode code points 507 "\U000065e5\U0000672c\U00008a9e" // the explicit Unicode code points 508 "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" // the explicit UTF-8 bytes 509 </pre> 510 511 <p> 512 If the source code represents a character as two code points, such as 513 a combining form involving an accent and a letter, the result will be 514 an error if placed in a rune literal (it is not a single code 515 point), and will appear as two code points if placed in a string 516 literal. 517 </p> 518 519 520 <h2 id="Constants">Constants</h2> 521 522 <p>There are <i>boolean constants</i>, 523 <i>rune constants</i>, 524 <i>integer constants</i>, 525 <i>floating-point constants</i>, <i>complex constants</i>, 526 and <i>string constants</i>. Rune, integer, floating-point, 527 and complex constants are 528 collectively called <i>numeric constants</i>. 529 </p> 530 531 <p> 532 A constant value is represented by a 533 <a href="#Rune_literals">rune</a>, 534 <a href="#Integer_literals">integer</a>, 535 <a href="#Floating-point_literals">floating-point</a>, 536 <a href="#Imaginary_literals">imaginary</a>, 537 or 538 <a href="#String_literals">string</a> literal, 539 an identifier denoting a constant, 540 a <a href="#Constant_expressions">constant expression</a>, 541 a <a href="#Conversions">conversion</a> with a result that is a constant, or 542 the result value of some built-in functions such as 543 <code>unsafe.Sizeof</code> applied to any value, 544 <code>cap</code> or <code>len</code> applied to 545 <a href="#Length_and_capacity">some expressions</a>, 546 <code>real</code> and <code>imag</code> applied to a complex constant 547 and <code>complex</code> applied to numeric constants. 548 The boolean truth values are represented by the predeclared constants 549 <code>true</code> and <code>false</code>. The predeclared identifier 550 <a href="#Iota">iota</a> denotes an integer constant. 551 </p> 552 553 <p> 554 In general, complex constants are a form of 555 <a href="#Constant_expressions">constant expression</a> 556 and are discussed in that section. 557 </p> 558 559 <p> 560 Numeric constants represent exact values of arbitrary precision and do not overflow. 561 Consequently, there are no constants denoting the IEEE-754 negative zero, infinity, 562 and not-a-number values. 563 </p> 564 565 <p> 566 Constants may be <a href="#Types">typed</a> or <i>untyped</i>. 567 Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>, 568 and certain <a href="#Constant_expressions">constant expressions</a> 569 containing only untyped constant operands are untyped. 570 </p> 571 572 <p> 573 A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a> 574 or <a href="#Conversions">conversion</a>, or implicitly when used in a 575 <a href="#Variable_declarations">variable declaration</a> or an 576 <a href="#Assignments">assignment</a> or as an 577 operand in an <a href="#Expressions">expression</a>. 578 It is an error if the constant value 579 cannot be <a href="#Representability">represented</a> as a value of the respective type. 580 </p> 581 582 <p> 583 An untyped constant has a <i>default type</i> which is the type to which the 584 constant is implicitly converted in contexts where a typed value is required, 585 for instance, in a <a href="#Short_variable_declarations">short variable declaration</a> 586 such as <code>i := 0</code> where there is no explicit type. 587 The default type of an untyped constant is <code>bool</code>, <code>rune</code>, 588 <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code> 589 respectively, depending on whether it is a boolean, rune, integer, floating-point, 590 complex, or string constant. 591 </p> 592 593 <p> 594 Implementation restriction: Although numeric constants have arbitrary 595 precision in the language, a compiler may implement them using an 596 internal representation with limited precision. That said, every 597 implementation must: 598 </p> 599 <ul> 600 <li>Represent integer constants with at least 256 bits.</li> 601 602 <li>Represent floating-point constants, including the parts of 603 a complex constant, with a mantissa of at least 256 bits 604 and a signed binary exponent of at least 16 bits.</li> 605 606 <li>Give an error if unable to represent an integer constant 607 precisely.</li> 608 609 <li>Give an error if unable to represent a floating-point or 610 complex constant due to overflow.</li> 611 612 <li>Round to the nearest representable constant if unable to 613 represent a floating-point or complex constant due to limits 614 on precision.</li> 615 </ul> 616 <p> 617 These requirements apply both to literal constants and to the result 618 of evaluating <a href="#Constant_expressions">constant 619 expressions</a>. 620 </p> 621 622 <h2 id="Variables">Variables</h2> 623 624 <p> 625 A variable is a storage location for holding a <i>value</i>. 626 The set of permissible values is determined by the 627 variable's <i><a href="#Types">type</a></i>. 628 </p> 629 630 <p> 631 A <a href="#Variable_declarations">variable declaration</a> 632 or, for function parameters and results, the signature 633 of a <a href="#Function_declarations">function declaration</a> 634 or <a href="#Function_literals">function literal</a> reserves 635 storage for a named variable. 636 637 Calling the built-in function <a href="#Allocation"><code>new</code></a> 638 or taking the address of a <a href="#Composite_literals">composite literal</a> 639 allocates storage for a variable at run time. 640 Such an anonymous variable is referred to via a (possibly implicit) 641 <a href="#Address_operators">pointer indirection</a>. 642 </p> 643 644 <p> 645 <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>, 646 and <a href="#Struct_types">struct</a> types have elements and fields that may 647 be <a href="#Address_operators">addressed</a> individually. Each such element 648 acts like a variable. 649 </p> 650 651 <p> 652 The <i>static type</i> (or just <i>type</i>) of a variable is the 653 type given in its declaration, the type provided in the 654 <code>new</code> call or composite literal, or the type of 655 an element of a structured variable. 656 Variables of interface type also have a distinct <i>dynamic type</i>, 657 which is the concrete type of the value assigned to the variable at run time 658 (unless the value is the predeclared identifier <code>nil</code>, 659 which has no type). 660 The dynamic type may vary during execution but values stored in interface 661 variables are always <a href="#Assignability">assignable</a> 662 to the static type of the variable. 663 </p> 664 665 <pre> 666 var x interface{} // x is nil and has static type interface{} 667 var v *T // v has value nil, static type *T 668 x = 42 // x has value 42 and dynamic type int 669 x = v // x has value (*T)(nil) and dynamic type *T 670 </pre> 671 672 <p> 673 A variable's value is retrieved by referring to the variable in an 674 <a href="#Expressions">expression</a>; it is the most recent value 675 <a href="#Assignments">assigned</a> to the variable. 676 If a variable has not yet been assigned a value, its value is the 677 <a href="#The_zero_value">zero value</a> for its type. 678 </p> 679 680 681 <h2 id="Types">Types</h2> 682 683 <p> 684 A type determines a set of values together with operations and methods specific 685 to those values. A type may be denoted by a <i>type name</i>, if it has one, 686 or specified using a <i>type literal</i>, which composes a type from existing types. 687 </p> 688 689 <pre class="ebnf"> 690 Type = TypeName | TypeLit | "(" Type ")" . 691 TypeName = identifier | QualifiedIdent . 692 TypeLit = ArrayType | StructType | PointerType | FunctionType | InterfaceType | 693 SliceType | MapType | ChannelType . 694 </pre> 695 696 <p> 697 The language <a href="#Predeclared_identifiers">predeclares</a> certain type names. 698 Others are introduced with <a href="#Type_declarations">type declarations</a>. 699 <i>Composite types</i>—array, struct, pointer, function, 700 interface, slice, map, and channel types—may be constructed using 701 type literals. 702 </p> 703 704 <p> 705 Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code> 706 is one of the predeclared boolean, numeric, or string types, or a type literal, 707 the corresponding underlying 708 type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type 709 is the underlying type of the type to which <code>T</code> refers in its 710 <a href="#Type_declarations">type declaration</a>. 711 </p> 712 713 <pre> 714 type ( 715 A1 = string 716 A2 = A1 717 ) 718 719 type ( 720 B1 string 721 B2 B1 722 B3 []B1 723 B4 B3 724 ) 725 </pre> 726 727 <p> 728 The underlying type of <code>string</code>, <code>A1</code>, <code>A2</code>, <code>B1</code>, 729 and <code>B2</code> is <code>string</code>. 730 The underlying type of <code>[]B1</code>, <code>B3</code>, and <code>B4</code> is <code>[]B1</code>. 731 </p> 732 733 <h3 id="Method_sets">Method sets</h3> 734 <p> 735 A type may have a <i>method set</i> associated with it. 736 The method set of an <a href="#Interface_types">interface type</a> is its interface. 737 The method set of any other type <code>T</code> consists of all 738 <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>. 739 The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code> 740 is the set of all methods declared with receiver <code>*T</code> or <code>T</code> 741 (that is, it also contains the method set of <code>T</code>). 742 Further rules apply to structs containing embedded fields, as described 743 in the section on <a href="#Struct_types">struct types</a>. 744 Any other type has an empty method set. 745 In a method set, each method must have a 746 <a href="#Uniqueness_of_identifiers">unique</a> 747 non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>. 748 </p> 749 750 <p> 751 The method set of a type determines the interfaces that the 752 type <a href="#Interface_types">implements</a> 753 and the methods that can be <a href="#Calls">called</a> 754 using a receiver of that type. 755 </p> 756 757 <h3 id="Boolean_types">Boolean types</h3> 758 759 <p> 760 A <i>boolean type</i> represents the set of Boolean truth values 761 denoted by the predeclared constants <code>true</code> 762 and <code>false</code>. The predeclared boolean type is <code>bool</code>; 763 it is a <a href="#Type_definitions">defined type</a>. 764 </p> 765 766 <h3 id="Numeric_types">Numeric types</h3> 767 768 <p> 769 A <i>numeric type</i> represents sets of integer or floating-point values. 770 The predeclared architecture-independent numeric types are: 771 </p> 772 773 <pre class="grammar"> 774 uint8 the set of all unsigned 8-bit integers (0 to 255) 775 uint16 the set of all unsigned 16-bit integers (0 to 65535) 776 uint32 the set of all unsigned 32-bit integers (0 to 4294967295) 777 uint64 the set of all unsigned 64-bit integers (0 to 18446744073709551615) 778 779 int8 the set of all signed 8-bit integers (-128 to 127) 780 int16 the set of all signed 16-bit integers (-32768 to 32767) 781 int32 the set of all signed 32-bit integers (-2147483648 to 2147483647) 782 int64 the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807) 783 784 float32 the set of all IEEE-754 32-bit floating-point numbers 785 float64 the set of all IEEE-754 64-bit floating-point numbers 786 787 complex64 the set of all complex numbers with float32 real and imaginary parts 788 complex128 the set of all complex numbers with float64 real and imaginary parts 789 790 byte alias for uint8 791 rune alias for int32 792 </pre> 793 794 <p> 795 The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using 796 <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>. 797 </p> 798 799 <p> 800 There is also a set of predeclared numeric types with implementation-specific sizes: 801 </p> 802 803 <pre class="grammar"> 804 uint either 32 or 64 bits 805 int same size as uint 806 uintptr an unsigned integer large enough to store the uninterpreted bits of a pointer value 807 </pre> 808 809 <p> 810 To avoid portability issues all numeric types are <a href="#Type_definitions">defined 811 types</a> and thus distinct except 812 <code>byte</code>, which is an <a href="#Alias_declarations">alias</a> for <code>uint8</code>, and 813 <code>rune</code>, which is an alias for <code>int32</code>. 814 Conversions 815 are required when different numeric types are mixed in an expression 816 or assignment. For instance, <code>int32</code> and <code>int</code> 817 are not the same type even though they may have the same size on a 818 particular architecture. 819 820 821 <h3 id="String_types">String types</h3> 822 823 <p> 824 A <i>string type</i> represents the set of string values. 825 A string value is a (possibly empty) sequence of bytes. 826 Strings are immutable: once created, 827 it is impossible to change the contents of a string. 828 The predeclared string type is <code>string</code>; 829 it is a <a href="#Type_definitions">defined type</a>. 830 </p> 831 832 <p> 833 The length of a string <code>s</code> (its size in bytes) can be discovered using 834 the built-in function <a href="#Length_and_capacity"><code>len</code></a>. 835 The length is a compile-time constant if the string is a constant. 836 A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a> 837 0 through <code>len(s)-1</code>. 838 It is illegal to take the address of such an element; if 839 <code>s[i]</code> is the <code>i</code>'th byte of a 840 string, <code>&s[i]</code> is invalid. 841 </p> 842 843 844 <h3 id="Array_types">Array types</h3> 845 846 <p> 847 An array is a numbered sequence of elements of a single 848 type, called the element type. 849 The number of elements is called the length and is never 850 negative. 851 </p> 852 853 <pre class="ebnf"> 854 ArrayType = "[" ArrayLength "]" ElementType . 855 ArrayLength = Expression . 856 ElementType = Type . 857 </pre> 858 859 <p> 860 The length is part of the array's type; it must evaluate to a 861 non-negative <a href="#Constants">constant</a> 862 <a href="#Representability">representable</a> by a value 863 of type <code>int</code>. 864 The length of array <code>a</code> can be discovered 865 using the built-in function <a href="#Length_and_capacity"><code>len</code></a>. 866 The elements can be addressed by integer <a href="#Index_expressions">indices</a> 867 0 through <code>len(a)-1</code>. 868 Array types are always one-dimensional but may be composed to form 869 multi-dimensional types. 870 </p> 871 872 <pre> 873 [32]byte 874 [2*N] struct { x, y int32 } 875 [1000]*float64 876 [3][5]int 877 [2][2][2]float64 // same as [2]([2]([2]float64)) 878 </pre> 879 880 <h3 id="Slice_types">Slice types</h3> 881 882 <p> 883 A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and 884 provides access to a numbered sequence of elements from that array. 885 A slice type denotes the set of all slices of arrays of its element type. 886 The value of an uninitialized slice is <code>nil</code>. 887 </p> 888 889 <pre class="ebnf"> 890 SliceType = "[" "]" ElementType . 891 </pre> 892 893 <p> 894 Like arrays, slices are indexable and have a length. The length of a 895 slice <code>s</code> can be discovered by the built-in function 896 <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during 897 execution. The elements can be addressed by integer <a href="#Index_expressions">indices</a> 898 0 through <code>len(s)-1</code>. The slice index of a 899 given element may be less than the index of the same element in the 900 underlying array. 901 </p> 902 <p> 903 A slice, once initialized, is always associated with an underlying 904 array that holds its elements. A slice therefore shares storage 905 with its array and with other slices of the same array; by contrast, 906 distinct arrays always represent distinct storage. 907 </p> 908 <p> 909 The array underlying a slice may extend past the end of the slice. 910 The <i>capacity</i> is a measure of that extent: it is the sum of 911 the length of the slice and the length of the array beyond the slice; 912 a slice of length up to that capacity can be created by 913 <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice. 914 The capacity of a slice <code>a</code> can be discovered using the 915 built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>. 916 </p> 917 918 <p> 919 A new, initialized slice value for a given element type <code>T</code> is 920 made using the built-in function 921 <a href="#Making_slices_maps_and_channels"><code>make</code></a>, 922 which takes a slice type 923 and parameters specifying the length and optionally the capacity. 924 A slice created with <code>make</code> always allocates a new, hidden array 925 to which the returned slice value refers. That is, executing 926 </p> 927 928 <pre> 929 make([]T, length, capacity) 930 </pre> 931 932 <p> 933 produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a> 934 it, so these two expressions are equivalent: 935 </p> 936 937 <pre> 938 make([]int, 50, 100) 939 new([100]int)[0:50] 940 </pre> 941 942 <p> 943 Like arrays, slices are always one-dimensional but may be composed to construct 944 higher-dimensional objects. 945 With arrays of arrays, the inner arrays are, by construction, always the same length; 946 however with slices of slices (or arrays of slices), the inner lengths may vary dynamically. 947 Moreover, the inner slices must be initialized individually. 948 </p> 949 950 <h3 id="Struct_types">Struct types</h3> 951 952 <p> 953 A struct is a sequence of named elements, called fields, each of which has a 954 name and a type. Field names may be specified explicitly (IdentifierList) or 955 implicitly (EmbeddedField). 956 Within a struct, non-<a href="#Blank_identifier">blank</a> field names must 957 be <a href="#Uniqueness_of_identifiers">unique</a>. 958 </p> 959 960 <pre class="ebnf"> 961 StructType = "struct" "{" { FieldDecl ";" } "}" . 962 FieldDecl = (IdentifierList Type | EmbeddedField) [ Tag ] . 963 EmbeddedField = [ "*" ] TypeName . 964 Tag = string_lit . 965 </pre> 966 967 <pre> 968 // An empty struct. 969 struct {} 970 971 // A struct with 6 fields. 972 struct { 973 x, y int 974 u float32 975 _ float32 // padding 976 A *[]int 977 F func() 978 } 979 </pre> 980 981 <p> 982 A field declared with a type but no explicit field name is called an <i>embedded field</i>. 983 An embedded field must be specified as 984 a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>, 985 and <code>T</code> itself may not be 986 a pointer type. The unqualified type name acts as the field name. 987 </p> 988 989 <pre> 990 // A struct with four embedded fields of types T1, *T2, P.T3 and *P.T4 991 struct { 992 T1 // field name is T1 993 *T2 // field name is T2 994 P.T3 // field name is T3 995 *P.T4 // field name is T4 996 x, y int // field names are x and y 997 } 998 </pre> 999 1000 <p> 1001 The following declaration is illegal because field names must be unique 1002 in a struct type: 1003 </p> 1004 1005 <pre> 1006 struct { 1007 T // conflicts with embedded field *T and *P.T 1008 *T // conflicts with embedded field T and *P.T 1009 *P.T // conflicts with embedded field T and *T 1010 } 1011 </pre> 1012 1013 <p> 1014 A field or <a href="#Method_declarations">method</a> <code>f</code> of an 1015 embedded field in a struct <code>x</code> is called <i>promoted</i> if 1016 <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes 1017 that field or method <code>f</code>. 1018 </p> 1019 1020 <p> 1021 Promoted fields act like ordinary fields 1022 of a struct except that they cannot be used as field names in 1023 <a href="#Composite_literals">composite literals</a> of the struct. 1024 </p> 1025 1026 <p> 1027 Given a struct type <code>S</code> and a <a href="#Type_definitions">defined type</a> 1028 <code>T</code>, promoted methods are included in the method set of the struct as follows: 1029 </p> 1030 <ul> 1031 <li> 1032 If <code>S</code> contains an embedded field <code>T</code>, 1033 the <a href="#Method_sets">method sets</a> of <code>S</code> 1034 and <code>*S</code> both include promoted methods with receiver 1035 <code>T</code>. The method set of <code>*S</code> also 1036 includes promoted methods with receiver <code>*T</code>. 1037 </li> 1038 1039 <li> 1040 If <code>S</code> contains an embedded field <code>*T</code>, 1041 the method sets of <code>S</code> and <code>*S</code> both 1042 include promoted methods with receiver <code>T</code> or 1043 <code>*T</code>. 1044 </li> 1045 </ul> 1046 1047 <p> 1048 A field declaration may be followed by an optional string literal <i>tag</i>, 1049 which becomes an attribute for all the fields in the corresponding 1050 field declaration. An empty tag string is equivalent to an absent tag. 1051 The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a> 1052 and take part in <a href="#Type_identity">type identity</a> for structs 1053 but are otherwise ignored. 1054 </p> 1055 1056 <pre> 1057 struct { 1058 x, y float64 "" // an empty tag string is like an absent tag 1059 name string "any string is permitted as a tag" 1060 _ [4]byte "ceci n'est pas un champ de structure" 1061 } 1062 1063 // A struct corresponding to a TimeStamp protocol buffer. 1064 // The tag strings define the protocol buffer field numbers; 1065 // they follow the convention outlined by the reflect package. 1066 struct { 1067 microsec uint64 `protobuf:"1"` 1068 serverIP6 uint64 `protobuf:"2"` 1069 } 1070 </pre> 1071 1072 <h3 id="Pointer_types">Pointer types</h3> 1073 1074 <p> 1075 A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given 1076 type, called the <i>base type</i> of the pointer. 1077 The value of an uninitialized pointer is <code>nil</code>. 1078 </p> 1079 1080 <pre class="ebnf"> 1081 PointerType = "*" BaseType . 1082 BaseType = Type . 1083 </pre> 1084 1085 <pre> 1086 *Point 1087 *[4]int 1088 </pre> 1089 1090 <h3 id="Function_types">Function types</h3> 1091 1092 <p> 1093 A function type denotes the set of all functions with the same parameter 1094 and result types. The value of an uninitialized variable of function type 1095 is <code>nil</code>. 1096 </p> 1097 1098 <pre class="ebnf"> 1099 FunctionType = "func" Signature . 1100 Signature = Parameters [ Result ] . 1101 Result = Parameters | Type . 1102 Parameters = "(" [ ParameterList [ "," ] ] ")" . 1103 ParameterList = ParameterDecl { "," ParameterDecl } . 1104 ParameterDecl = [ IdentifierList ] [ "..." ] Type . 1105 </pre> 1106 1107 <p> 1108 Within a list of parameters or results, the names (IdentifierList) 1109 must either all be present or all be absent. If present, each name 1110 stands for one item (parameter or result) of the specified type and 1111 all non-<a href="#Blank_identifier">blank</a> names in the signature 1112 must be <a href="#Uniqueness_of_identifiers">unique</a>. 1113 If absent, each type stands for one item of that type. 1114 Parameter and result 1115 lists are always parenthesized except that if there is exactly 1116 one unnamed result it may be written as an unparenthesized type. 1117 </p> 1118 1119 <p> 1120 The final incoming parameter in a function signature may have 1121 a type prefixed with <code>...</code>. 1122 A function with such a parameter is called <i>variadic</i> and 1123 may be invoked with zero or more arguments for that parameter. 1124 </p> 1125 1126 <pre> 1127 func() 1128 func(x int) int 1129 func(a, _ int, z float32) bool 1130 func(a, b int, z float32) (bool) 1131 func(prefix string, values ...int) 1132 func(a, b int, z float64, opt ...interface{}) (success bool) 1133 func(int, int, float64) (float64, *[]int) 1134 func(n int) func(p *T) 1135 </pre> 1136 1137 1138 <h3 id="Interface_types">Interface types</h3> 1139 1140 <p> 1141 An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>. 1142 A variable of interface type can store a value of any type with a method set 1143 that is any superset of the interface. Such a type is said to 1144 <i>implement the interface</i>. 1145 The value of an uninitialized variable of interface type is <code>nil</code>. 1146 </p> 1147 1148 <pre class="ebnf"> 1149 InterfaceType = "interface" "{" { MethodSpec ";" } "}" . 1150 MethodSpec = MethodName Signature | InterfaceTypeName . 1151 MethodName = identifier . 1152 InterfaceTypeName = TypeName . 1153 </pre> 1154 1155 <p> 1156 As with all method sets, in an interface type, each method must have a 1157 <a href="#Uniqueness_of_identifiers">unique</a> 1158 non-<a href="#Blank_identifier">blank</a> name. 1159 </p> 1160 1161 <pre> 1162 // A simple File interface 1163 interface { 1164 Read(b Buffer) bool 1165 Write(b Buffer) bool 1166 Close() 1167 } 1168 </pre> 1169 1170 <p> 1171 More than one type may implement an interface. 1172 For instance, if two types <code>S1</code> and <code>S2</code> 1173 have the method set 1174 </p> 1175 1176 <pre> 1177 func (p T) Read(b Buffer) bool { return } 1178 func (p T) Write(b Buffer) bool { return } 1179 func (p T) Close() { } 1180 </pre> 1181 1182 <p> 1183 (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>) 1184 then the <code>File</code> interface is implemented by both <code>S1</code> and 1185 <code>S2</code>, regardless of what other methods 1186 <code>S1</code> and <code>S2</code> may have or share. 1187 </p> 1188 1189 <p> 1190 A type implements any interface comprising any subset of its methods 1191 and may therefore implement several distinct interfaces. For 1192 instance, all types implement the <i>empty interface</i>: 1193 </p> 1194 1195 <pre> 1196 interface{} 1197 </pre> 1198 1199 <p> 1200 Similarly, consider this interface specification, 1201 which appears within a <a href="#Type_declarations">type declaration</a> 1202 to define an interface called <code>Locker</code>: 1203 </p> 1204 1205 <pre> 1206 type Locker interface { 1207 Lock() 1208 Unlock() 1209 } 1210 </pre> 1211 1212 <p> 1213 If <code>S1</code> and <code>S2</code> also implement 1214 </p> 1215 1216 <pre> 1217 func (p T) Lock() { } 1218 func (p T) Unlock() { } 1219 </pre> 1220 1221 <p> 1222 they implement the <code>Locker</code> interface as well 1223 as the <code>File</code> interface. 1224 </p> 1225 1226 <p> 1227 An interface <code>T</code> may use a (possibly qualified) interface type 1228 name <code>E</code> in place of a method specification. This is called 1229 <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds 1230 all (exported and non-exported) methods of <code>E</code> to the interface 1231 <code>T</code>. 1232 </p> 1233 1234 <pre> 1235 type ReadWriter interface { 1236 Read(b Buffer) bool 1237 Write(b Buffer) bool 1238 } 1239 1240 type File interface { 1241 ReadWriter // same as adding the methods of ReadWriter 1242 Locker // same as adding the methods of Locker 1243 Close() 1244 } 1245 1246 type LockedFile interface { 1247 Locker 1248 File // illegal: Lock, Unlock not unique 1249 Lock() // illegal: Lock not unique 1250 } 1251 </pre> 1252 1253 <p> 1254 An interface type <code>T</code> may not embed itself 1255 or any interface type that embeds <code>T</code>, recursively. 1256 </p> 1257 1258 <pre> 1259 // illegal: Bad cannot embed itself 1260 type Bad interface { 1261 Bad 1262 } 1263 1264 // illegal: Bad1 cannot embed itself using Bad2 1265 type Bad1 interface { 1266 Bad2 1267 } 1268 type Bad2 interface { 1269 Bad1 1270 } 1271 </pre> 1272 1273 <h3 id="Map_types">Map types</h3> 1274 1275 <p> 1276 A map is an unordered group of elements of one type, called the 1277 element type, indexed by a set of unique <i>keys</i> of another type, 1278 called the key type. 1279 The value of an uninitialized map is <code>nil</code>. 1280 </p> 1281 1282 <pre class="ebnf"> 1283 MapType = "map" "[" KeyType "]" ElementType . 1284 KeyType = Type . 1285 </pre> 1286 1287 <p> 1288 The <a href="#Comparison_operators">comparison operators</a> 1289 <code>==</code> and <code>!=</code> must be fully defined 1290 for operands of the key type; thus the key type must not be a function, map, or 1291 slice. 1292 If the key type is an interface type, these 1293 comparison operators must be defined for the dynamic key values; 1294 failure will cause a <a href="#Run_time_panics">run-time panic</a>. 1295 1296 </p> 1297 1298 <pre> 1299 map[string]int 1300 map[*T]struct{ x, y float64 } 1301 map[string]interface{} 1302 </pre> 1303 1304 <p> 1305 The number of map elements is called its length. 1306 For a map <code>m</code>, it can be discovered using the 1307 built-in function <a href="#Length_and_capacity"><code>len</code></a> 1308 and may change during execution. Elements may be added during execution 1309 using <a href="#Assignments">assignments</a> and retrieved with 1310 <a href="#Index_expressions">index expressions</a>; they may be removed with the 1311 <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function. 1312 </p> 1313 <p> 1314 A new, empty map value is made using the built-in 1315 function <a href="#Making_slices_maps_and_channels"><code>make</code></a>, 1316 which takes the map type and an optional capacity hint as arguments: 1317 </p> 1318 1319 <pre> 1320 make(map[string]int) 1321 make(map[string]int, 100) 1322 </pre> 1323 1324 <p> 1325 The initial capacity does not bound its size: 1326 maps grow to accommodate the number of items 1327 stored in them, with the exception of <code>nil</code> maps. 1328 A <code>nil</code> map is equivalent to an empty map except that no elements 1329 may be added. 1330 1331 <h3 id="Channel_types">Channel types</h3> 1332 1333 <p> 1334 A channel provides a mechanism for 1335 <a href="#Go_statements">concurrently executing functions</a> 1336 to communicate by 1337 <a href="#Send_statements">sending</a> and 1338 <a href="#Receive_operator">receiving</a> 1339 values of a specified element type. 1340 The value of an uninitialized channel is <code>nil</code>. 1341 </p> 1342 1343 <pre class="ebnf"> 1344 ChannelType = ( "chan" | "chan" "<-" | "<-" "chan" ) ElementType . 1345 </pre> 1346 1347 <p> 1348 The optional <code><-</code> operator specifies the channel <i>direction</i>, 1349 <i>send</i> or <i>receive</i>. If no direction is given, the channel is 1350 <i>bidirectional</i>. 1351 A channel may be constrained only to send or only to receive by 1352 <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>. 1353 </p> 1354 1355 <pre> 1356 chan T // can be used to send and receive values of type T 1357 chan<- float64 // can only be used to send float64s 1358 <-chan int // can only be used to receive ints 1359 </pre> 1360 1361 <p> 1362 The <code><-</code> operator associates with the leftmost <code>chan</code> 1363 possible: 1364 </p> 1365 1366 <pre> 1367 chan<- chan int // same as chan<- (chan int) 1368 chan<- <-chan int // same as chan<- (<-chan int) 1369 <-chan <-chan int // same as <-chan (<-chan int) 1370 chan (<-chan int) 1371 </pre> 1372 1373 <p> 1374 A new, initialized channel 1375 value can be made using the built-in function 1376 <a href="#Making_slices_maps_and_channels"><code>make</code></a>, 1377 which takes the channel type and an optional <i>capacity</i> as arguments: 1378 </p> 1379 1380 <pre> 1381 make(chan int, 100) 1382 </pre> 1383 1384 <p> 1385 The capacity, in number of elements, sets the size of the buffer in the channel. 1386 If the capacity is zero or absent, the channel is unbuffered and communication 1387 succeeds only when both a sender and receiver are ready. Otherwise, the channel 1388 is buffered and communication succeeds without blocking if the buffer 1389 is not full (sends) or not empty (receives). 1390 A <code>nil</code> channel is never ready for communication. 1391 </p> 1392 1393 <p> 1394 A channel may be closed with the built-in function 1395 <a href="#Close"><code>close</code></a>. 1396 The multi-valued assignment form of the 1397 <a href="#Receive_operator">receive operator</a> 1398 reports whether a received value was sent before 1399 the channel was closed. 1400 </p> 1401 1402 <p> 1403 A single channel may be used in 1404 <a href="#Send_statements">send statements</a>, 1405 <a href="#Receive_operator">receive operations</a>, 1406 and calls to the built-in functions 1407 <a href="#Length_and_capacity"><code>cap</code></a> and 1408 <a href="#Length_and_capacity"><code>len</code></a> 1409 by any number of goroutines without further synchronization. 1410 Channels act as first-in-first-out queues. 1411 For example, if one goroutine sends values on a channel 1412 and a second goroutine receives them, the values are 1413 received in the order sent. 1414 </p> 1415 1416 <h2 id="Properties_of_types_and_values">Properties of types and values</h2> 1417 1418 <h3 id="Type_identity">Type identity</h3> 1419 1420 <p> 1421 Two types are either <i>identical</i> or <i>different</i>. 1422 </p> 1423 1424 <p> 1425 A <a href="#Type_definitions">defined type</a> is always different from any other type. 1426 Otherwise, two types are identical if their <a href="#Types">underlying</a> type literals are 1427 structurally equivalent; that is, they have the same literal structure and corresponding 1428 components have identical types. In detail: 1429 </p> 1430 1431 <ul> 1432 <li>Two array types are identical if they have identical element types and 1433 the same array length.</li> 1434 1435 <li>Two slice types are identical if they have identical element types.</li> 1436 1437 <li>Two struct types are identical if they have the same sequence of fields, 1438 and if corresponding fields have the same names, and identical types, 1439 and identical tags. 1440 <a href="#Exported_identifiers">Non-exported</a> field names from different 1441 packages are always different.</li> 1442 1443 <li>Two pointer types are identical if they have identical base types.</li> 1444 1445 <li>Two function types are identical if they have the same number of parameters 1446 and result values, corresponding parameter and result types are 1447 identical, and either both functions are variadic or neither is. 1448 Parameter and result names are not required to match.</li> 1449 1450 <li>Two interface types are identical if they have the same set of methods 1451 with the same names and identical function types. 1452 <a href="#Exported_identifiers">Non-exported</a> method names from different 1453 packages are always different. The order of the methods is irrelevant.</li> 1454 1455 <li>Two map types are identical if they have identical key and element types.</li> 1456 1457 <li>Two channel types are identical if they have identical element types and 1458 the same direction.</li> 1459 </ul> 1460 1461 <p> 1462 Given the declarations 1463 </p> 1464 1465 <pre> 1466 type ( 1467 A0 = []string 1468 A1 = A0 1469 A2 = struct{ a, b int } 1470 A3 = int 1471 A4 = func(A3, float64) *A0 1472 A5 = func(x int, _ float64) *[]string 1473 ) 1474 1475 type ( 1476 B0 A0 1477 B1 []string 1478 B2 struct{ a, b int } 1479 B3 struct{ a, c int } 1480 B4 func(int, float64) *B0 1481 B5 func(x int, y float64) *A1 1482 ) 1483 1484 type C0 = B0 1485 </pre> 1486 1487 <p> 1488 these types are identical: 1489 </p> 1490 1491 <pre> 1492 A0, A1, and []string 1493 A2 and struct{ a, b int } 1494 A3 and int 1495 A4, func(int, float64) *[]string, and A5 1496 1497 B0 and C0 1498 []int and []int 1499 struct{ a, b *T5 } and struct{ a, b *T5 } 1500 func(x int, y float64) *[]string, func(int, float64) (result *[]string), and A5 1501 </pre> 1502 1503 <p> 1504 <code>B0</code> and <code>B1</code> are different because they are new types 1505 created by distinct <a href="#Type_definitions">type definitions</a>; 1506 <code>func(int, float64) *B0</code> and <code>func(x int, y float64) *[]string</code> 1507 are different because <code>B0</code> is different from <code>[]string</code>. 1508 </p> 1509 1510 1511 <h3 id="Assignability">Assignability</h3> 1512 1513 <p> 1514 A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code> 1515 ("<code>x</code> is assignable to <code>T</code>") if one of the following conditions applies: 1516 </p> 1517 1518 <ul> 1519 <li> 1520 <code>x</code>'s type is identical to <code>T</code>. 1521 </li> 1522 <li> 1523 <code>x</code>'s type <code>V</code> and <code>T</code> have identical 1524 <a href="#Types">underlying types</a> and at least one of <code>V</code> 1525 or <code>T</code> is not a <a href="#Type_definitions">defined</a> type. 1526 </li> 1527 <li> 1528 <code>T</code> is an interface type and 1529 <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>. 1530 </li> 1531 <li> 1532 <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type, 1533 <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types, 1534 and at least one of <code>V</code> or <code>T</code> is not a defined type. 1535 </li> 1536 <li> 1537 <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code> 1538 is a pointer, function, slice, map, channel, or interface type. 1539 </li> 1540 <li> 1541 <code>x</code> is an untyped <a href="#Constants">constant</a> 1542 <a href="#Representability">representable</a> 1543 by a value of type <code>T</code>. 1544 </li> 1545 </ul> 1546 1547 1548 <h3 id="Representability">Representability</h3> 1549 1550 <p> 1551 A <a href="#Constants">constant</a> <code>x</code> is <i>representable</i> 1552 by a value of type <code>T</code> if one of the following conditions applies: 1553 </p> 1554 1555 <ul> 1556 <li> 1557 <code>x</code> is in the set of values <a href="#Types">determined</a> by <code>T</code>. 1558 </li> 1559 1560 <li> 1561 <code>T</code> is a floating-point type and <code>x</code> can be rounded to <code>T</code>'s 1562 precision without overflow. Rounding uses IEEE 754 round-to-even rules but with an IEEE 1563 negative zero further simplified to an unsigned zero. Note that constant values never result 1564 in an IEEE negative zero, NaN, or infinity. 1565 </li> 1566 1567 <li> 1568 <code>T</code> is a complex type, and <code>x</code>'s 1569 <a href="#Complex_numbers">components</a> <code>real(x)</code> and <code>imag(x)</code> 1570 are representable by values of <code>T</code>'s component type (<code>float32</code> or 1571 <code>float64</code>). 1572 </li> 1573 </ul> 1574 1575 <pre> 1576 x T x is representable by a value of T because 1577 1578 'a' byte 97 is in the set of byte values 1579 97 rune rune is an alias for int32, and 97 is in the set of 32-bit integers 1580 "foo" string "foo" is in the set of string values 1581 1024 int16 1024 is in the set of 16-bit integers 1582 42.0 byte 42 is in the set of unsigned 8-bit integers 1583 1e10 uint64 10000000000 is in the set of unsigned 64-bit integers 1584 2.718281828459045 float32 2.718281828459045 rounds to 2.7182817 which is in the set of float32 values 1585 -1e-1000 float64 -1e-1000 rounds to IEEE -0.0 which is further simplified to 0.0 1586 0i int 0 is an integer value 1587 (42 + 0i) float32 42.0 (with zero imaginary part) is in the set of float32 values 1588 </pre> 1589 1590 <pre> 1591 x T x is not representable by a value of T because 1592 1593 0 bool 0 is not in the set of boolean values 1594 'a' string 'a' is a rune, it is not in the set of string values 1595 1024 byte 1024 is not in the set of unsigned 8-bit integers 1596 -1 uint16 -1 is not in the set of unsigned 16-bit integers 1597 1.1 int 1.1 is not an integer value 1598 42i float32 (0 + 42i) is not in the set of float32 values 1599 1e1000 float64 1e1000 overflows to IEEE +Inf after rounding 1600 </pre> 1601 1602 1603 <h2 id="Blocks">Blocks</h2> 1604 1605 <p> 1606 A <i>block</i> is a possibly empty sequence of declarations and statements 1607 within matching brace brackets. 1608 </p> 1609 1610 <pre class="ebnf"> 1611 Block = "{" StatementList "}" . 1612 StatementList = { Statement ";" } . 1613 </pre> 1614 1615 <p> 1616 In addition to explicit blocks in the source code, there are implicit blocks: 1617 </p> 1618 1619 <ol> 1620 <li>The <i>universe block</i> encompasses all Go source text.</li> 1621 1622 <li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all 1623 Go source text for that package.</li> 1624 1625 <li>Each file has a <i>file block</i> containing all Go source text 1626 in that file.</li> 1627 1628 <li>Each <a href="#If_statements">"if"</a>, 1629 <a href="#For_statements">"for"</a>, and 1630 <a href="#Switch_statements">"switch"</a> 1631 statement is considered to be in its own implicit block.</li> 1632 1633 <li>Each clause in a <a href="#Switch_statements">"switch"</a> 1634 or <a href="#Select_statements">"select"</a> statement 1635 acts as an implicit block.</li> 1636 </ol> 1637 1638 <p> 1639 Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>. 1640 </p> 1641 1642 1643 <h2 id="Declarations_and_scope">Declarations and scope</h2> 1644 1645 <p> 1646 A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a 1647 <a href="#Constant_declarations">constant</a>, 1648 <a href="#Type_declarations">type</a>, 1649 <a href="#Variable_declarations">variable</a>, 1650 <a href="#Function_declarations">function</a>, 1651 <a href="#Labeled_statements">label</a>, or 1652 <a href="#Import_declarations">package</a>. 1653 Every identifier in a program must be declared. 1654 No identifier may be declared twice in the same block, and 1655 no identifier may be declared in both the file and package block. 1656 </p> 1657 1658 <p> 1659 The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier 1660 in a declaration, but it does not introduce a binding and thus is not declared. 1661 In the package block, the identifier <code>init</code> may only be used for 1662 <a href="#Package_initialization"><code>init</code> function</a> declarations, 1663 and like the blank identifier it does not introduce a new binding. 1664 </p> 1665 1666 <pre class="ebnf"> 1667 Declaration = ConstDecl | TypeDecl | VarDecl . 1668 TopLevelDecl = Declaration | FunctionDecl | MethodDecl . 1669 </pre> 1670 1671 <p> 1672 The <i>scope</i> of a declared identifier is the extent of source text in which 1673 the identifier denotes the specified constant, type, variable, function, label, or package. 1674 </p> 1675 1676 <p> 1677 Go is lexically scoped using <a href="#Blocks">blocks</a>: 1678 </p> 1679 1680 <ol> 1681 <li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li> 1682 1683 <li>The scope of an identifier denoting a constant, type, variable, 1684 or function (but not method) declared at top level (outside any 1685 function) is the package block.</li> 1686 1687 <li>The scope of the package name of an imported package is the file block 1688 of the file containing the import declaration.</li> 1689 1690 <li>The scope of an identifier denoting a method receiver, function parameter, 1691 or result variable is the function body.</li> 1692 1693 <li>The scope of a constant or variable identifier declared 1694 inside a function begins at the end of the ConstSpec or VarSpec 1695 (ShortVarDecl for short variable declarations) 1696 and ends at the end of the innermost containing block.</li> 1697 1698 <li>The scope of a type identifier declared inside a function 1699 begins at the identifier in the TypeSpec 1700 and ends at the end of the innermost containing block.</li> 1701 </ol> 1702 1703 <p> 1704 An identifier declared in a block may be redeclared in an inner block. 1705 While the identifier of the inner declaration is in scope, it denotes 1706 the entity declared by the inner declaration. 1707 </p> 1708 1709 <p> 1710 The <a href="#Package_clause">package clause</a> is not a declaration; the package name 1711 does not appear in any scope. Its purpose is to identify the files belonging 1712 to the same <a href="#Packages">package</a> and to specify the default package name for import 1713 declarations. 1714 </p> 1715 1716 1717 <h3 id="Label_scopes">Label scopes</h3> 1718 1719 <p> 1720 Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are 1721 used in the <a href="#Break_statements">"break"</a>, 1722 <a href="#Continue_statements">"continue"</a>, and 1723 <a href="#Goto_statements">"goto"</a> statements. 1724 It is illegal to define a label that is never used. 1725 In contrast to other identifiers, labels are not block scoped and do 1726 not conflict with identifiers that are not labels. The scope of a label 1727 is the body of the function in which it is declared and excludes 1728 the body of any nested function. 1729 </p> 1730 1731 1732 <h3 id="Blank_identifier">Blank identifier</h3> 1733 1734 <p> 1735 The <i>blank identifier</i> is represented by the underscore character <code>_</code>. 1736 It serves as an anonymous placeholder instead of a regular (non-blank) 1737 identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>, 1738 as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>. 1739 </p> 1740 1741 1742 <h3 id="Predeclared_identifiers">Predeclared identifiers</h3> 1743 1744 <p> 1745 The following identifiers are implicitly declared in the 1746 <a href="#Blocks">universe block</a>: 1747 </p> 1748 <pre class="grammar"> 1749 Types: 1750 bool byte complex64 complex128 error float32 float64 1751 int int8 int16 int32 int64 rune string 1752 uint uint8 uint16 uint32 uint64 uintptr 1753 1754 Constants: 1755 true false iota 1756 1757 Zero value: 1758 nil 1759 1760 Functions: 1761 append cap close complex copy delete imag len 1762 make new panic print println real recover 1763 </pre> 1764 1765 1766 <h3 id="Exported_identifiers">Exported identifiers</h3> 1767 1768 <p> 1769 An identifier may be <i>exported</i> to permit access to it from another package. 1770 An identifier is exported if both: 1771 </p> 1772 <ol> 1773 <li>the first character of the identifier's name is a Unicode upper case 1774 letter (Unicode class "Lu"); and</li> 1775 <li>the identifier is declared in the <a href="#Blocks">package block</a> 1776 or it is a <a href="#Struct_types">field name</a> or 1777 <a href="#MethodName">method name</a>.</li> 1778 </ol> 1779 <p> 1780 All other identifiers are not exported. 1781 </p> 1782 1783 1784 <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3> 1785 1786 <p> 1787 Given a set of identifiers, an identifier is called <i>unique</i> if it is 1788 <i>different</i> from every other in the set. 1789 Two identifiers are different if they are spelled differently, or if they 1790 appear in different <a href="#Packages">packages</a> and are not 1791 <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same. 1792 </p> 1793 1794 <h3 id="Constant_declarations">Constant declarations</h3> 1795 1796 <p> 1797 A constant declaration binds a list of identifiers (the names of 1798 the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>. 1799 The number of identifiers must be equal 1800 to the number of expressions, and the <i>n</i>th identifier on 1801 the left is bound to the value of the <i>n</i>th expression on the 1802 right. 1803 </p> 1804 1805 <pre class="ebnf"> 1806 ConstDecl = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) . 1807 ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] . 1808 1809 IdentifierList = identifier { "," identifier } . 1810 ExpressionList = Expression { "," Expression } . 1811 </pre> 1812 1813 <p> 1814 If the type is present, all constants take the type specified, and 1815 the expressions must be <a href="#Assignability">assignable</a> to that type. 1816 If the type is omitted, the constants take the 1817 individual types of the corresponding expressions. 1818 If the expression values are untyped <a href="#Constants">constants</a>, 1819 the declared constants remain untyped and the constant identifiers 1820 denote the constant values. For instance, if the expression is a 1821 floating-point literal, the constant identifier denotes a floating-point 1822 constant, even if the literal's fractional part is zero. 1823 </p> 1824 1825 <pre> 1826 const Pi float64 = 3.14159265358979323846 1827 const zero = 0.0 // untyped floating-point constant 1828 const ( 1829 size int64 = 1024 1830 eof = -1 // untyped integer constant 1831 ) 1832 const a, b, c = 3, 4, "foo" // a = 3, b = 4, c = "foo", untyped integer and string constants 1833 const u, v float32 = 0, 3 // u = 0.0, v = 3.0 1834 </pre> 1835 1836 <p> 1837 Within a parenthesized <code>const</code> declaration list the 1838 expression list may be omitted from any but the first ConstSpec. 1839 Such an empty list is equivalent to the textual substitution of the 1840 first preceding non-empty expression list and its type if any. 1841 Omitting the list of expressions is therefore equivalent to 1842 repeating the previous list. The number of identifiers must be equal 1843 to the number of expressions in the previous list. 1844 Together with the <a href="#Iota"><code>iota</code> constant generator</a> 1845 this mechanism permits light-weight declaration of sequential values: 1846 </p> 1847 1848 <pre> 1849 const ( 1850 Sunday = iota 1851 Monday 1852 Tuesday 1853 Wednesday 1854 Thursday 1855 Friday 1856 Partyday 1857 numberOfDays // this constant is not exported 1858 ) 1859 </pre> 1860 1861 1862 <h3 id="Iota">Iota</h3> 1863 1864 <p> 1865 Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier 1866 <code>iota</code> represents successive untyped integer <a href="#Constants"> 1867 constants</a>. Its value is the index of the respective <a href="#ConstSpec">ConstSpec</a> 1868 in that constant declaration, starting at zero. 1869 It can be used to construct a set of related constants: 1870 </p> 1871 1872 <pre> 1873 const ( 1874 c0 = iota // c0 == 0 1875 c1 = iota // c1 == 1 1876 c2 = iota // c2 == 2 1877 ) 1878 1879 const ( 1880 a = 1 << iota // a == 1 (iota == 0) 1881 b = 1 << iota // b == 2 (iota == 1) 1882 c = 3 // c == 3 (iota == 2, unused) 1883 d = 1 << iota // d == 8 (iota == 3) 1884 ) 1885 1886 const ( 1887 u = iota * 42 // u == 0 (untyped integer constant) 1888 v float64 = iota * 42 // v == 42.0 (float64 constant) 1889 w = iota * 42 // w == 84 (untyped integer constant) 1890 ) 1891 1892 const x = iota // x == 0 1893 const y = iota // y == 0 1894 </pre> 1895 1896 <p> 1897 By definition, multiple uses of <code>iota</code> in the same ConstSpec all have the same value: 1898 </p> 1899 1900 <pre> 1901 const ( 1902 bit0, mask0 = 1 << iota, 1<<iota - 1 // bit0 == 1, mask0 == 0 (iota == 0) 1903 bit1, mask1 // bit1 == 2, mask1 == 1 (iota == 1) 1904 _, _ // (iota == 2, unused) 1905 bit3, mask3 // bit3 == 8, mask3 == 7 (iota == 3) 1906 ) 1907 </pre> 1908 1909 <p> 1910 This last example exploits the <a href="#Constant_declarations">implicit repetition</a> 1911 of the last non-empty expression list. 1912 </p> 1913 1914 1915 <h3 id="Type_declarations">Type declarations</h3> 1916 1917 <p> 1918 A type declaration binds an identifier, the <i>type name</i>, to a <a href="#Types">type</a>. 1919 Type declarations come in two forms: alias declarations and type definitions. 1920 <p> 1921 1922 <pre class="ebnf"> 1923 TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) . 1924 TypeSpec = AliasDecl | TypeDef . 1925 </pre> 1926 1927 <h4 id="Alias_declarations">Alias declarations</h4> 1928 1929 <p> 1930 An alias declaration binds an identifier to the given type. 1931 </p> 1932 1933 <pre class="ebnf"> 1934 AliasDecl = identifier "=" Type . 1935 </pre> 1936 1937 <p> 1938 Within the <a href="#Declarations_and_scope">scope</a> of 1939 the identifier, it serves as an <i>alias</i> for the type. 1940 </p> 1941 1942 <pre> 1943 type ( 1944 nodeList = []*Node // nodeList and []*Node are identical types 1945 Polar = polar // Polar and polar denote identical types 1946 ) 1947 </pre> 1948 1949 1950 <h4 id="Type_definitions">Type definitions</h4> 1951 1952 <p> 1953 A type definition creates a new, distinct type with the same 1954 <a href="#Types">underlying type</a> and operations as the given type, 1955 and binds an identifier to it. 1956 </p> 1957 1958 <pre class="ebnf"> 1959 TypeDef = identifier Type . 1960 </pre> 1961 1962 <p> 1963 The new type is called a <i>defined type</i>. 1964 It is <a href="#Type_identity">different</a> from any other type, 1965 including the type it is created from. 1966 </p> 1967 1968 <pre> 1969 type ( 1970 Point struct{ x, y float64 } // Point and struct{ x, y float64 } are different types 1971 polar Point // polar and Point denote different types 1972 ) 1973 1974 type TreeNode struct { 1975 left, right *TreeNode 1976 value *Comparable 1977 } 1978 1979 type Block interface { 1980 BlockSize() int 1981 Encrypt(src, dst []byte) 1982 Decrypt(src, dst []byte) 1983 } 1984 </pre> 1985 1986 <p> 1987 A defined type may have <a href="#Method_declarations">methods</a> associated with it. 1988 It does not inherit any methods bound to the given type, 1989 but the <a href="#Method_sets">method set</a> 1990 of an interface type or of elements of a composite type remains unchanged: 1991 </p> 1992 1993 <pre> 1994 // A Mutex is a data type with two methods, Lock and Unlock. 1995 type Mutex struct { /* Mutex fields */ } 1996 func (m *Mutex) Lock() { /* Lock implementation */ } 1997 func (m *Mutex) Unlock() { /* Unlock implementation */ } 1998 1999 // NewMutex has the same composition as Mutex but its method set is empty. 2000 type NewMutex Mutex 2001 2002 // The method set of PtrMutex's underlying type *Mutex remains unchanged, 2003 // but the method set of PtrMutex is empty. 2004 type PtrMutex *Mutex 2005 2006 // The method set of *PrintableMutex contains the methods 2007 // Lock and Unlock bound to its embedded field Mutex. 2008 type PrintableMutex struct { 2009 Mutex 2010 } 2011 2012 // MyBlock is an interface type that has the same method set as Block. 2013 type MyBlock Block 2014 </pre> 2015 2016 <p> 2017 Type definitions may be used to define different boolean, numeric, 2018 or string types and associate methods with them: 2019 </p> 2020 2021 <pre> 2022 type TimeZone int 2023 2024 const ( 2025 EST TimeZone = -(5 + iota) 2026 CST 2027 MST 2028 PST 2029 ) 2030 2031 func (tz TimeZone) String() string { 2032 return fmt.Sprintf("GMT%+dh", tz) 2033 } 2034 </pre> 2035 2036 2037 <h3 id="Variable_declarations">Variable declarations</h3> 2038 2039 <p> 2040 A variable declaration creates one or more <a href="#Variables">variables</a>, 2041 binds corresponding identifiers to them, and gives each a type and an initial value. 2042 </p> 2043 2044 <pre class="ebnf"> 2045 VarDecl = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) . 2046 VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) . 2047 </pre> 2048 2049 <pre> 2050 var i int 2051 var U, V, W float64 2052 var k = 0 2053 var x, y float32 = -1, -2 2054 var ( 2055 i int 2056 u, v, s = 2.0, 3.0, "bar" 2057 ) 2058 var re, im = complexSqrt(-1) 2059 var _, found = entries[name] // map lookup; only interested in "found" 2060 </pre> 2061 2062 <p> 2063 If a list of expressions is given, the variables are initialized 2064 with the expressions following the rules for <a href="#Assignments">assignments</a>. 2065 Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>. 2066 </p> 2067 2068 <p> 2069 If a type is present, each variable is given that type. 2070 Otherwise, each variable is given the type of the corresponding 2071 initialization value in the assignment. 2072 If that value is an untyped constant, it is first 2073 <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>; 2074 if it is an untyped boolean value, it is first converted to type <code>bool</code>. 2075 The predeclared value <code>nil</code> cannot be used to initialize a variable 2076 with no explicit type. 2077 </p> 2078 2079 <pre> 2080 var d = math.Sin(0.5) // d is float64 2081 var i = 42 // i is int 2082 var t, ok = x.(T) // t is T, ok is bool 2083 var n = nil // illegal 2084 </pre> 2085 2086 <p> 2087 Implementation restriction: A compiler may make it illegal to declare a variable 2088 inside a <a href="#Function_declarations">function body</a> if the variable is 2089 never used. 2090 </p> 2091 2092 <h3 id="Short_variable_declarations">Short variable declarations</h3> 2093 2094 <p> 2095 A <i>short variable declaration</i> uses the syntax: 2096 </p> 2097 2098 <pre class="ebnf"> 2099 ShortVarDecl = IdentifierList ":=" ExpressionList . 2100 </pre> 2101 2102 <p> 2103 It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a> 2104 with initializer expressions but no types: 2105 </p> 2106 2107 <pre class="grammar"> 2108 "var" IdentifierList = ExpressionList . 2109 </pre> 2110 2111 <pre> 2112 i, j := 0, 10 2113 f := func() int { return 7 } 2114 ch := make(chan int) 2115 r, w := os.Pipe(fd) // os.Pipe() returns two values 2116 _, y, _ := coord(p) // coord() returns three values; only interested in y coordinate 2117 </pre> 2118 2119 <p> 2120 Unlike regular variable declarations, a short variable declaration may <i>redeclare</i> 2121 variables provided they were originally declared earlier in the same block 2122 (or the parameter lists if the block is the function body) with the same type, 2123 and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new. 2124 As a consequence, redeclaration can only appear in a multi-variable short declaration. 2125 Redeclaration does not introduce a new variable; it just assigns a new value to the original. 2126 </p> 2127 2128 <pre> 2129 field1, offset := nextField(str, 0) 2130 field2, offset := nextField(str, offset) // redeclares offset 2131 a, a := 1, 2 // illegal: double declaration of a or no new variable if a was declared elsewhere 2132 </pre> 2133 2134 <p> 2135 Short variable declarations may appear only inside functions. 2136 In some contexts such as the initializers for 2137 <a href="#If_statements">"if"</a>, 2138 <a href="#For_statements">"for"</a>, or 2139 <a href="#Switch_statements">"switch"</a> statements, 2140 they can be used to declare local temporary variables. 2141 </p> 2142 2143 <h3 id="Function_declarations">Function declarations</h3> 2144 2145 <p> 2146 A function declaration binds an identifier, the <i>function name</i>, 2147 to a function. 2148 </p> 2149 2150 <pre class="ebnf"> 2151 FunctionDecl = "func" FunctionName Signature [ FunctionBody ] . 2152 FunctionName = identifier . 2153 FunctionBody = Block . 2154 </pre> 2155 2156 <p> 2157 If the function's <a href="#Function_types">signature</a> declares 2158 result parameters, the function body's statement list must end in 2159 a <a href="#Terminating_statements">terminating statement</a>. 2160 </p> 2161 2162 <pre> 2163 func IndexRune(s string, r rune) int { 2164 for i, c := range s { 2165 if c == r { 2166 return i 2167 } 2168 } 2169 // invalid: missing return statement 2170 } 2171 </pre> 2172 2173 <p> 2174 A function declaration may omit the body. Such a declaration provides the 2175 signature for a function implemented outside Go, such as an assembly routine. 2176 </p> 2177 2178 <pre> 2179 func min(x int, y int) int { 2180 if x < y { 2181 return x 2182 } 2183 return y 2184 } 2185 2186 func flushICache(begin, end uintptr) // implemented externally 2187 </pre> 2188 2189 <h3 id="Method_declarations">Method declarations</h3> 2190 2191 <p> 2192 A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>. 2193 A method declaration binds an identifier, the <i>method name</i>, to a method, 2194 and associates the method with the receiver's <i>base type</i>. 2195 </p> 2196 2197 <pre class="ebnf"> 2198 MethodDecl = "func" Receiver MethodName Signature [ FunctionBody ] . 2199 Receiver = Parameters . 2200 </pre> 2201 2202 <p> 2203 The receiver is specified via an extra parameter section preceding the method 2204 name. That parameter section must declare a single non-variadic parameter, the receiver. 2205 Its type must be of the form <code>T</code> or <code>*T</code> (possibly using 2206 parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called 2207 the receiver <i>base type</i>; it must not be a pointer or interface type and 2208 it must be <a href="#Type_definitions">defined</a> in the same package as the method. 2209 The method is said to be <i>bound</i> to the base type and the method name 2210 is visible only within <a href="#Selectors">selectors</a> for type <code>T</code> 2211 or <code>*T</code>. 2212 </p> 2213 2214 <p> 2215 A non-<a href="#Blank_identifier">blank</a> receiver identifier must be 2216 <a href="#Uniqueness_of_identifiers">unique</a> in the method signature. 2217 If the receiver's value is not referenced inside the body of the method, 2218 its identifier may be omitted in the declaration. The same applies in 2219 general to parameters of functions and methods. 2220 </p> 2221 2222 <p> 2223 For a base type, the non-blank names of methods bound to it must be unique. 2224 If the base type is a <a href="#Struct_types">struct type</a>, 2225 the non-blank method and field names must be distinct. 2226 </p> 2227 2228 <p> 2229 Given type <code>Point</code>, the declarations 2230 </p> 2231 2232 <pre> 2233 func (p *Point) Length() float64 { 2234 return math.Sqrt(p.x * p.x + p.y * p.y) 2235 } 2236 2237 func (p *Point) Scale(factor float64) { 2238 p.x *= factor 2239 p.y *= factor 2240 } 2241 </pre> 2242 2243 <p> 2244 bind the methods <code>Length</code> and <code>Scale</code>, 2245 with receiver type <code>*Point</code>, 2246 to the base type <code>Point</code>. 2247 </p> 2248 2249 <p> 2250 The type of a method is the type of a function with the receiver as first 2251 argument. For instance, the method <code>Scale</code> has type 2252 </p> 2253 2254 <pre> 2255 func(p *Point, factor float64) 2256 </pre> 2257 2258 <p> 2259 However, a function declared this way is not a method. 2260 </p> 2261 2262 2263 <h2 id="Expressions">Expressions</h2> 2264 2265 <p> 2266 An expression specifies the computation of a value by applying 2267 operators and functions to operands. 2268 </p> 2269 2270 <h3 id="Operands">Operands</h3> 2271 2272 <p> 2273 Operands denote the elementary values in an expression. An operand may be a 2274 literal, a (possibly <a href="#Qualified_identifiers">qualified</a>) 2275 non-<a href="#Blank_identifier">blank</a> identifier denoting a 2276 <a href="#Constant_declarations">constant</a>, 2277 <a href="#Variable_declarations">variable</a>, or 2278 <a href="#Function_declarations">function</a>, 2279 or a parenthesized expression. 2280 </p> 2281 2282 <p> 2283 The <a href="#Blank_identifier">blank identifier</a> may appear as an 2284 operand only on the left-hand side of an <a href="#Assignments">assignment</a>. 2285 </p> 2286 2287 <pre class="ebnf"> 2288 Operand = Literal | OperandName | "(" Expression ")" . 2289 Literal = BasicLit | CompositeLit | FunctionLit . 2290 BasicLit = int_lit | float_lit | imaginary_lit | rune_lit | string_lit . 2291 OperandName = identifier | QualifiedIdent. 2292 </pre> 2293 2294 <h3 id="Qualified_identifiers">Qualified identifiers</h3> 2295 2296 <p> 2297 A qualified identifier is an identifier qualified with a package name prefix. 2298 Both the package name and the identifier must not be 2299 <a href="#Blank_identifier">blank</a>. 2300 </p> 2301 2302 <pre class="ebnf"> 2303 QualifiedIdent = PackageName "." identifier . 2304 </pre> 2305 2306 <p> 2307 A qualified identifier accesses an identifier in a different package, which 2308 must be <a href="#Import_declarations">imported</a>. 2309 The identifier must be <a href="#Exported_identifiers">exported</a> and 2310 declared in the <a href="#Blocks">package block</a> of that package. 2311 </p> 2312 2313 <pre> 2314 math.Sin // denotes the Sin function in package math 2315 </pre> 2316 2317 <h3 id="Composite_literals">Composite literals</h3> 2318 2319 <p> 2320 Composite literals construct values for structs, arrays, slices, and maps 2321 and create a new value each time they are evaluated. 2322 They consist of the type of the literal followed by a brace-bound list of elements. 2323 Each element may optionally be preceded by a corresponding key. 2324 </p> 2325 2326 <pre class="ebnf"> 2327 CompositeLit = LiteralType LiteralValue . 2328 LiteralType = StructType | ArrayType | "[" "..." "]" ElementType | 2329 SliceType | MapType | TypeName . 2330 LiteralValue = "{" [ ElementList [ "," ] ] "}" . 2331 ElementList = KeyedElement { "," KeyedElement } . 2332 KeyedElement = [ Key ":" ] Element . 2333 Key = FieldName | Expression | LiteralValue . 2334 FieldName = identifier . 2335 Element = Expression | LiteralValue . 2336 </pre> 2337 2338 <p> 2339 The LiteralType's underlying type must be a struct, array, slice, or map type 2340 (the grammar enforces this constraint except when the type is given 2341 as a TypeName). 2342 The types of the elements and keys must be <a href="#Assignability">assignable</a> 2343 to the respective field, element, and key types of the literal type; 2344 there is no additional conversion. 2345 The key is interpreted as a field name for struct literals, 2346 an index for array and slice literals, and a key for map literals. 2347 For map literals, all elements must have a key. It is an error 2348 to specify multiple elements with the same field name or 2349 constant key value. For non-constant map keys, see the section on 2350 <a href="#Order_of_evaluation">evaluation order</a>. 2351 </p> 2352 2353 <p> 2354 For struct literals the following rules apply: 2355 </p> 2356 <ul> 2357 <li>A key must be a field name declared in the struct type. 2358 </li> 2359 <li>An element list that does not contain any keys must 2360 list an element for each struct field in the 2361 order in which the fields are declared. 2362 </li> 2363 <li>If any element has a key, every element must have a key. 2364 </li> 2365 <li>An element list that contains keys does not need to 2366 have an element for each struct field. Omitted fields 2367 get the zero value for that field. 2368 </li> 2369 <li>A literal may omit the element list; such a literal evaluates 2370 to the zero value for its type. 2371 </li> 2372 <li>It is an error to specify an element for a non-exported 2373 field of a struct belonging to a different package. 2374 </li> 2375 </ul> 2376 2377 <p> 2378 Given the declarations 2379 </p> 2380 <pre> 2381 type Point3D struct { x, y, z float64 } 2382 type Line struct { p, q Point3D } 2383 </pre> 2384 2385 <p> 2386 one may write 2387 </p> 2388 2389 <pre> 2390 origin := Point3D{} // zero value for Point3D 2391 line := Line{origin, Point3D{y: -4, z: 12.3}} // zero value for line.q.x 2392 </pre> 2393 2394 <p> 2395 For array and slice literals the following rules apply: 2396 </p> 2397 <ul> 2398 <li>Each element has an associated integer index marking 2399 its position in the array. 2400 </li> 2401 <li>An element with a key uses the key as its index. The 2402 key must be a non-negative constant 2403 <a href="#Representability">representable</a> by 2404 a value of type <code>int</code>; and if it is typed 2405 it must be of integer type. 2406 </li> 2407 <li>An element without a key uses the previous element's index plus one. 2408 If the first element has no key, its index is zero. 2409 </li> 2410 </ul> 2411 2412 <p> 2413 <a href="#Address_operators">Taking the address</a> of a composite literal 2414 generates a pointer to a unique <a href="#Variables">variable</a> initialized 2415 with the literal's value. 2416 </p> 2417 <pre> 2418 var pointer *Point3D = &Point3D{y: 1000} 2419 </pre> 2420 2421 <p> 2422 The length of an array literal is the length specified in the literal type. 2423 If fewer elements than the length are provided in the literal, the missing 2424 elements are set to the zero value for the array element type. 2425 It is an error to provide elements with index values outside the index range 2426 of the array. The notation <code>...</code> specifies an array length equal 2427 to the maximum element index plus one. 2428 </p> 2429 2430 <pre> 2431 buffer := [10]string{} // len(buffer) == 10 2432 intSet := [6]int{1, 2, 3, 5} // len(intSet) == 6 2433 days := [...]string{"Sat", "Sun"} // len(days) == 2 2434 </pre> 2435 2436 <p> 2437 A slice literal describes the entire underlying array literal. 2438 Thus the length and capacity of a slice literal are the maximum 2439 element index plus one. A slice literal has the form 2440 </p> 2441 2442 <pre> 2443 []T{x1, x2, xn} 2444 </pre> 2445 2446 <p> 2447 and is shorthand for a slice operation applied to an array: 2448 </p> 2449 2450 <pre> 2451 tmp := [n]T{x1, x2, xn} 2452 tmp[0 : n] 2453 </pre> 2454 2455 <p> 2456 Within a composite literal of array, slice, or map type <code>T</code>, 2457 elements or map keys that are themselves composite literals may elide the respective 2458 literal type if it is identical to the element or key type of <code>T</code>. 2459 Similarly, elements or keys that are addresses of composite literals may elide 2460 the <code>&T</code> when the element or key type is <code>*T</code>. 2461 </p> 2462 2463 <pre> 2464 [...]Point{{1.5, -3.5}, {0, 0}} // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}} 2465 [][]int{{1, 2, 3}, {4, 5}} // same as [][]int{[]int{1, 2, 3}, []int{4, 5}} 2466 [][]Point{{{0, 1}, {1, 2}}} // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}} 2467 map[string]Point{"orig": {0, 0}} // same as map[string]Point{"orig": Point{0, 0}} 2468 map[Point]string{{0, 0}: "orig"} // same as map[Point]string{Point{0, 0}: "orig"} 2469 2470 type PPoint *Point 2471 [2]*Point{{1.5, -3.5}, {}} // same as [2]*Point{&Point{1.5, -3.5}, &Point{}} 2472 [2]PPoint{{1.5, -3.5}, {}} // same as [2]PPoint{PPoint(&Point{1.5, -3.5}), PPoint(&Point{})} 2473 </pre> 2474 2475 <p> 2476 A parsing ambiguity arises when a composite literal using the 2477 TypeName form of the LiteralType appears as an operand between the 2478 <a href="#Keywords">keyword</a> and the opening brace of the block 2479 of an "if", "for", or "switch" statement, and the composite literal 2480 is not enclosed in parentheses, square brackets, or curly braces. 2481 In this rare case, the opening brace of the literal is erroneously parsed 2482 as the one introducing the block of statements. To resolve the ambiguity, 2483 the composite literal must appear within parentheses. 2484 </p> 2485 2486 <pre> 2487 if x == (T{a,b,c}[i]) { } 2488 if (x == T{a,b,c}[i]) { } 2489 </pre> 2490 2491 <p> 2492 Examples of valid array, slice, and map literals: 2493 </p> 2494 2495 <pre> 2496 // list of prime numbers 2497 primes := []int{2, 3, 5, 7, 9, 2147483647} 2498 2499 // vowels[ch] is true if ch is a vowel 2500 vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true} 2501 2502 // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1} 2503 filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1} 2504 2505 // frequencies in Hz for equal-tempered scale (A4 = 440Hz) 2506 noteFrequency := map[string]float32{ 2507 "C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83, 2508 "G0": 24.50, "A0": 27.50, "B0": 30.87, 2509 } 2510 </pre> 2511 2512 2513 <h3 id="Function_literals">Function literals</h3> 2514 2515 <p> 2516 A function literal represents an anonymous <a href="#Function_declarations">function</a>. 2517 </p> 2518 2519 <pre class="ebnf"> 2520 FunctionLit = "func" Signature FunctionBody . 2521 </pre> 2522 2523 <pre> 2524 func(a, b int, z float64) bool { return a*b < int(z) } 2525 </pre> 2526 2527 <p> 2528 A function literal can be assigned to a variable or invoked directly. 2529 </p> 2530 2531 <pre> 2532 f := func(x, y int) int { return x + y } 2533 func(ch chan int) { ch <- ACK }(replyChan) 2534 </pre> 2535 2536 <p> 2537 Function literals are <i>closures</i>: they may refer to variables 2538 defined in a surrounding function. Those variables are then shared between 2539 the surrounding function and the function literal, and they survive as long 2540 as they are accessible. 2541 </p> 2542 2543 2544 <h3 id="Primary_expressions">Primary expressions</h3> 2545 2546 <p> 2547 Primary expressions are the operands for unary and binary expressions. 2548 </p> 2549 2550 <pre class="ebnf"> 2551 PrimaryExpr = 2552 Operand | 2553 Conversion | 2554 MethodExpr | 2555 PrimaryExpr Selector | 2556 PrimaryExpr Index | 2557 PrimaryExpr Slice | 2558 PrimaryExpr TypeAssertion | 2559 PrimaryExpr Arguments . 2560 2561 Selector = "." identifier . 2562 Index = "[" Expression "]" . 2563 Slice = "[" [ Expression ] ":" [ Expression ] "]" | 2564 "[" [ Expression ] ":" Expression ":" Expression "]" . 2565 TypeAssertion = "." "(" Type ")" . 2566 Arguments = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" . 2567 </pre> 2568 2569 2570 <pre> 2571 x 2572 2 2573 (s + ".txt") 2574 f(3.1415, true) 2575 Point{1, 2} 2576 m["foo"] 2577 s[i : j + 1] 2578 obj.color 2579 f.p[i].x() 2580 </pre> 2581 2582 2583 <h3 id="Selectors">Selectors</h3> 2584 2585 <p> 2586 For a <a href="#Primary_expressions">primary expression</a> <code>x</code> 2587 that is not a <a href="#Package_clause">package name</a>, the 2588 <i>selector expression</i> 2589 </p> 2590 2591 <pre> 2592 x.f 2593 </pre> 2594 2595 <p> 2596 denotes the field or method <code>f</code> of the value <code>x</code> 2597 (or sometimes <code>*x</code>; see below). 2598 The identifier <code>f</code> is called the (field or method) <i>selector</i>; 2599 it must not be the <a href="#Blank_identifier">blank identifier</a>. 2600 The type of the selector expression is the type of <code>f</code>. 2601 If <code>x</code> is a package name, see the section on 2602 <a href="#Qualified_identifiers">qualified identifiers</a>. 2603 </p> 2604 2605 <p> 2606 A selector <code>f</code> may denote a field or method <code>f</code> of 2607 a type <code>T</code>, or it may refer 2608 to a field or method <code>f</code> of a nested 2609 <a href="#Struct_types">embedded field</a> of <code>T</code>. 2610 The number of embedded fields traversed 2611 to reach <code>f</code> is called its <i>depth</i> in <code>T</code>. 2612 The depth of a field or method <code>f</code> 2613 declared in <code>T</code> is zero. 2614 The depth of a field or method <code>f</code> declared in 2615 an embedded field <code>A</code> in <code>T</code> is the 2616 depth of <code>f</code> in <code>A</code> plus one. 2617 </p> 2618 2619 <p> 2620 The following rules apply to selectors: 2621 </p> 2622 2623 <ol> 2624 <li> 2625 For a value <code>x</code> of type <code>T</code> or <code>*T</code> 2626 where <code>T</code> is not a pointer or interface type, 2627 <code>x.f</code> denotes the field or method at the shallowest depth 2628 in <code>T</code> where there 2629 is such an <code>f</code>. 2630 If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a> 2631 with shallowest depth, the selector expression is illegal. 2632 </li> 2633 2634 <li> 2635 For a value <code>x</code> of type <code>I</code> where <code>I</code> 2636 is an interface type, <code>x.f</code> denotes the actual method with name 2637 <code>f</code> of the dynamic value of <code>x</code>. 2638 If there is no method with name <code>f</code> in the 2639 <a href="#Method_sets">method set</a> of <code>I</code>, the selector 2640 expression is illegal. 2641 </li> 2642 2643 <li> 2644 As an exception, if the type of <code>x</code> is a <a href="#Type_definitions">defined</a> 2645 pointer type and <code>(*x).f</code> is a valid selector expression denoting a field 2646 (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>. 2647 </li> 2648 2649 <li> 2650 In all other cases, <code>x.f</code> is illegal. 2651 </li> 2652 2653 <li> 2654 If <code>x</code> is of pointer type and has the value 2655 <code>nil</code> and <code>x.f</code> denotes a struct field, 2656 assigning to or evaluating <code>x.f</code> 2657 causes a <a href="#Run_time_panics">run-time panic</a>. 2658 </li> 2659 2660 <li> 2661 If <code>x</code> is of interface type and has the value 2662 <code>nil</code>, <a href="#Calls">calling</a> or 2663 <a href="#Method_values">evaluating</a> the method <code>x.f</code> 2664 causes a <a href="#Run_time_panics">run-time panic</a>. 2665 </li> 2666 </ol> 2667 2668 <p> 2669 For example, given the declarations: 2670 </p> 2671 2672 <pre> 2673 type T0 struct { 2674 x int 2675 } 2676 2677 func (*T0) M0() 2678 2679 type T1 struct { 2680 y int 2681 } 2682 2683 func (T1) M1() 2684 2685 type T2 struct { 2686 z int 2687 T1 2688 *T0 2689 } 2690 2691 func (*T2) M2() 2692 2693 type Q *T2 2694 2695 var t T2 // with t.T0 != nil 2696 var p *T2 // with p != nil and (*p).T0 != nil 2697 var q Q = p 2698 </pre> 2699 2700 <p> 2701 one may write: 2702 </p> 2703 2704 <pre> 2705 t.z // t.z 2706 t.y // t.T1.y 2707 t.x // (*t.T0).x 2708 2709 p.z // (*p).z 2710 p.y // (*p).T1.y 2711 p.x // (*(*p).T0).x 2712 2713 q.x // (*(*q).T0).x (*q).x is a valid field selector 2714 2715 p.M0() // ((*p).T0).M0() M0 expects *T0 receiver 2716 p.M1() // ((*p).T1).M1() M1 expects T1 receiver 2717 p.M2() // p.M2() M2 expects *T2 receiver 2718 t.M2() // (&t).M2() M2 expects *T2 receiver, see section on Calls 2719 </pre> 2720 2721 <p> 2722 but the following is invalid: 2723 </p> 2724 2725 <pre> 2726 q.M0() // (*q).M0 is valid but not a field selector 2727 </pre> 2728 2729 2730 <h3 id="Method_expressions">Method expressions</h3> 2731 2732 <p> 2733 If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>, 2734 <code>T.M</code> is a function that is callable as a regular function 2735 with the same arguments as <code>M</code> prefixed by an additional 2736 argument that is the receiver of the method. 2737 </p> 2738 2739 <pre class="ebnf"> 2740 MethodExpr = ReceiverType "." MethodName . 2741 ReceiverType = Type . 2742 </pre> 2743 2744 <p> 2745 Consider a struct type <code>T</code> with two methods, 2746 <code>Mv</code>, whose receiver is of type <code>T</code>, and 2747 <code>Mp</code>, whose receiver is of type <code>*T</code>. 2748 </p> 2749 2750 <pre> 2751 type T struct { 2752 a int 2753 } 2754 func (tv T) Mv(a int) int { return 0 } // value receiver 2755 func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver 2756 2757 var t T 2758 </pre> 2759 2760 <p> 2761 The expression 2762 </p> 2763 2764 <pre> 2765 T.Mv 2766 </pre> 2767 2768 <p> 2769 yields a function equivalent to <code>Mv</code> but 2770 with an explicit receiver as its first argument; it has signature 2771 </p> 2772 2773 <pre> 2774 func(tv T, a int) int 2775 </pre> 2776 2777 <p> 2778 That function may be called normally with an explicit receiver, so 2779 these five invocations are equivalent: 2780 </p> 2781 2782 <pre> 2783 t.Mv(7) 2784 T.Mv(t, 7) 2785 (T).Mv(t, 7) 2786 f1 := T.Mv; f1(t, 7) 2787 f2 := (T).Mv; f2(t, 7) 2788 </pre> 2789 2790 <p> 2791 Similarly, the expression 2792 </p> 2793 2794 <pre> 2795 (*T).Mp 2796 </pre> 2797 2798 <p> 2799 yields a function value representing <code>Mp</code> with signature 2800 </p> 2801 2802 <pre> 2803 func(tp *T, f float32) float32 2804 </pre> 2805 2806 <p> 2807 For a method with a value receiver, one can derive a function 2808 with an explicit pointer receiver, so 2809 </p> 2810 2811 <pre> 2812 (*T).Mv 2813 </pre> 2814 2815 <p> 2816 yields a function value representing <code>Mv</code> with signature 2817 </p> 2818 2819 <pre> 2820 func(tv *T, a int) int 2821 </pre> 2822 2823 <p> 2824 Such a function indirects through the receiver to create a value 2825 to pass as the receiver to the underlying method; 2826 the method does not overwrite the value whose address is passed in 2827 the function call. 2828 </p> 2829 2830 <p> 2831 The final case, a value-receiver function for a pointer-receiver method, 2832 is illegal because pointer-receiver methods are not in the method set 2833 of the value type. 2834 </p> 2835 2836 <p> 2837 Function values derived from methods are called with function call syntax; 2838 the receiver is provided as the first argument to the call. 2839 That is, given <code>f := T.Mv</code>, <code>f</code> is invoked 2840 as <code>f(t, 7)</code> not <code>t.f(7)</code>. 2841 To construct a function that binds the receiver, use a 2842 <a href="#Function_literals">function literal</a> or 2843 <a href="#Method_values">method value</a>. 2844 </p> 2845 2846 <p> 2847 It is legal to derive a function value from a method of an interface type. 2848 The resulting function takes an explicit receiver of that interface type. 2849 </p> 2850 2851 <h3 id="Method_values">Method values</h3> 2852 2853 <p> 2854 If the expression <code>x</code> has static type <code>T</code> and 2855 <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>, 2856 <code>x.M</code> is called a <i>method value</i>. 2857 The method value <code>x.M</code> is a function value that is callable 2858 with the same arguments as a method call of <code>x.M</code>. 2859 The expression <code>x</code> is evaluated and saved during the evaluation of the 2860 method value; the saved copy is then used as the receiver in any calls, 2861 which may be executed later. 2862 </p> 2863 2864 <p> 2865 The type <code>T</code> may be an interface or non-interface type. 2866 </p> 2867 2868 <p> 2869 As in the discussion of <a href="#Method_expressions">method expressions</a> above, 2870 consider a struct type <code>T</code> with two methods, 2871 <code>Mv</code>, whose receiver is of type <code>T</code>, and 2872 <code>Mp</code>, whose receiver is of type <code>*T</code>. 2873 </p> 2874 2875 <pre> 2876 type T struct { 2877 a int 2878 } 2879 func (tv T) Mv(a int) int { return 0 } // value receiver 2880 func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver 2881 2882 var t T 2883 var pt *T 2884 func makeT() T 2885 </pre> 2886 2887 <p> 2888 The expression 2889 </p> 2890 2891 <pre> 2892 t.Mv 2893 </pre> 2894 2895 <p> 2896 yields a function value of type 2897 </p> 2898 2899 <pre> 2900 func(int) int 2901 </pre> 2902 2903 <p> 2904 These two invocations are equivalent: 2905 </p> 2906 2907 <pre> 2908 t.Mv(7) 2909 f := t.Mv; f(7) 2910 </pre> 2911 2912 <p> 2913 Similarly, the expression 2914 </p> 2915 2916 <pre> 2917 pt.Mp 2918 </pre> 2919 2920 <p> 2921 yields a function value of type 2922 </p> 2923 2924 <pre> 2925 func(float32) float32 2926 </pre> 2927 2928 <p> 2929 As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver 2930 using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>. 2931 </p> 2932 2933 <p> 2934 As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver 2935 using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&t).Mp</code>. 2936 </p> 2937 2938 <pre> 2939 f := t.Mv; f(7) // like t.Mv(7) 2940 f := pt.Mp; f(7) // like pt.Mp(7) 2941 f := pt.Mv; f(7) // like (*pt).Mv(7) 2942 f := t.Mp; f(7) // like (&t).Mp(7) 2943 f := makeT().Mp // invalid: result of makeT() is not addressable 2944 </pre> 2945 2946 <p> 2947 Although the examples above use non-interface types, it is also legal to create a method value 2948 from a value of interface type. 2949 </p> 2950 2951 <pre> 2952 var i interface { M(int) } = myVal 2953 f := i.M; f(7) // like i.M(7) 2954 </pre> 2955 2956 2957 <h3 id="Index_expressions">Index expressions</h3> 2958 2959 <p> 2960 A primary expression of the form 2961 </p> 2962 2963 <pre> 2964 a[x] 2965 </pre> 2966 2967 <p> 2968 denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>. 2969 The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively. 2970 The following rules apply: 2971 </p> 2972 2973 <p> 2974 If <code>a</code> is not a map: 2975 </p> 2976 <ul> 2977 <li>the index <code>x</code> must be of integer type or an untyped constant</li> 2978 <li>a constant index must be non-negative and 2979 <a href="#Representability">representable</a> by a value of type <code>int</code></li> 2980 <li>a constant index that is untyped is given type <code>int</code></li> 2981 <li>the index <code>x</code> is <i>in range</i> if <code>0 <= x < len(a)</code>, 2982 otherwise it is <i>out of range</i></li> 2983 </ul> 2984 2985 <p> 2986 For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>: 2987 </p> 2988 <ul> 2989 <li>a <a href="#Constants">constant</a> index must be in range</li> 2990 <li>if <code>x</code> is out of range at run time, 2991 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 2992 <li><code>a[x]</code> is the array element at index <code>x</code> and the type of 2993 <code>a[x]</code> is the element type of <code>A</code></li> 2994 </ul> 2995 2996 <p> 2997 For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type: 2998 </p> 2999 <ul> 3000 <li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li> 3001 </ul> 3002 3003 <p> 3004 For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>: 3005 </p> 3006 <ul> 3007 <li>if <code>x</code> is out of range at run time, 3008 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 3009 <li><code>a[x]</code> is the slice element at index <code>x</code> and the type of 3010 <code>a[x]</code> is the element type of <code>S</code></li> 3011 </ul> 3012 3013 <p> 3014 For <code>a</code> of <a href="#String_types">string type</a>: 3015 </p> 3016 <ul> 3017 <li>a <a href="#Constants">constant</a> index must be in range 3018 if the string <code>a</code> is also constant</li> 3019 <li>if <code>x</code> is out of range at run time, 3020 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 3021 <li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of 3022 <code>a[x]</code> is <code>byte</code></li> 3023 <li><code>a[x]</code> may not be assigned to</li> 3024 </ul> 3025 3026 <p> 3027 For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>: 3028 </p> 3029 <ul> 3030 <li><code>x</code>'s type must be 3031 <a href="#Assignability">assignable</a> 3032 to the key type of <code>M</code></li> 3033 <li>if the map contains an entry with key <code>x</code>, 3034 <code>a[x]</code> is the map element with key <code>x</code> 3035 and the type of <code>a[x]</code> is the element type of <code>M</code></li> 3036 <li>if the map is <code>nil</code> or does not contain such an entry, 3037 <code>a[x]</code> is the <a href="#The_zero_value">zero value</a> 3038 for the element type of <code>M</code></li> 3039 </ul> 3040 3041 <p> 3042 Otherwise <code>a[x]</code> is illegal. 3043 </p> 3044 3045 <p> 3046 An index expression on a map <code>a</code> of type <code>map[K]V</code> 3047 used in an <a href="#Assignments">assignment</a> or initialization of the special form 3048 </p> 3049 3050 <pre> 3051 v, ok = a[x] 3052 v, ok := a[x] 3053 var v, ok = a[x] 3054 var v, ok T = a[x] 3055 </pre> 3056 3057 <p> 3058 yields an additional untyped boolean value. The value of <code>ok</code> is 3059 <code>true</code> if the key <code>x</code> is present in the map, and 3060 <code>false</code> otherwise. 3061 </p> 3062 3063 <p> 3064 Assigning to an element of a <code>nil</code> map causes a 3065 <a href="#Run_time_panics">run-time panic</a>. 3066 </p> 3067 3068 3069 <h3 id="Slice_expressions">Slice expressions</h3> 3070 3071 <p> 3072 Slice expressions construct a substring or slice from a string, array, pointer 3073 to array, or slice. There are two variants: a simple form that specifies a low 3074 and high bound, and a full form that also specifies a bound on the capacity. 3075 </p> 3076 3077 <h4>Simple slice expressions</h4> 3078 3079 <p> 3080 For a string, array, pointer to array, or slice <code>a</code>, the primary expression 3081 </p> 3082 3083 <pre> 3084 a[low : high] 3085 </pre> 3086 3087 <p> 3088 constructs a substring or slice. The <i>indices</i> <code>low</code> and 3089 <code>high</code> select which elements of operand <code>a</code> appear 3090 in the result. The result has indices starting at 0 and length equal to 3091 <code>high</code> - <code>low</code>. 3092 After slicing the array <code>a</code> 3093 </p> 3094 3095 <pre> 3096 a := [5]int{1, 2, 3, 4, 5} 3097 s := a[1:4] 3098 </pre> 3099 3100 <p> 3101 the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements 3102 </p> 3103 3104 <pre> 3105 s[0] == 2 3106 s[1] == 3 3107 s[2] == 4 3108 </pre> 3109 3110 <p> 3111 For convenience, any of the indices may be omitted. A missing <code>low</code> 3112 index defaults to zero; a missing <code>high</code> index defaults to the length of the 3113 sliced operand: 3114 </p> 3115 3116 <pre> 3117 a[2:] // same as a[2 : len(a)] 3118 a[:3] // same as a[0 : 3] 3119 a[:] // same as a[0 : len(a)] 3120 </pre> 3121 3122 <p> 3123 If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for 3124 <code>(*a)[low : high]</code>. 3125 </p> 3126 3127 <p> 3128 For arrays or strings, the indices are <i>in range</i> if 3129 <code>0</code> <= <code>low</code> <= <code>high</code> <= <code>len(a)</code>, 3130 otherwise they are <i>out of range</i>. 3131 For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length. 3132 A <a href="#Constants">constant</a> index must be non-negative and 3133 <a href="#Representability">representable</a> by a value of type 3134 <code>int</code>; for arrays or constant strings, constant indices must also be in range. 3135 If both indices are constant, they must satisfy <code>low <= high</code>. 3136 If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3137 </p> 3138 3139 <p> 3140 Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice, 3141 the result of the slice operation is a non-constant value of the same type as the operand. 3142 For untyped string operands the result is a non-constant value of type <code>string</code>. 3143 If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a> 3144 and the result of the slice operation is a slice with the same element type as the array. 3145 </p> 3146 3147 <p> 3148 If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result 3149 is a <code>nil</code> slice. Otherwise, if the result is a slice, it shares its underlying 3150 array with the operand. 3151 </p> 3152 3153 <h4>Full slice expressions</h4> 3154 3155 <p> 3156 For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression 3157 </p> 3158 3159 <pre> 3160 a[low : high : max] 3161 </pre> 3162 3163 <p> 3164 constructs a slice of the same type, and with the same length and elements as the simple slice 3165 expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity 3166 by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0. 3167 After slicing the array <code>a</code> 3168 </p> 3169 3170 <pre> 3171 a := [5]int{1, 2, 3, 4, 5} 3172 t := a[1:3:5] 3173 </pre> 3174 3175 <p> 3176 the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements 3177 </p> 3178 3179 <pre> 3180 t[0] == 2 3181 t[1] == 3 3182 </pre> 3183 3184 <p> 3185 As for simple slice expressions, if <code>a</code> is a pointer to an array, 3186 <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>. 3187 If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>. 3188 </p> 3189 3190 <p> 3191 The indices are <i>in range</i> if <code>0 <= low <= high <= max <= cap(a)</code>, 3192 otherwise they are <i>out of range</i>. 3193 A <a href="#Constants">constant</a> index must be non-negative and 3194 <a href="#Representability">representable</a> by a value of type 3195 <code>int</code>; for arrays, constant indices must also be in range. 3196 If multiple indices are constant, the constants that are present must be in range relative to each 3197 other. 3198 If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3199 </p> 3200 3201 <h3 id="Type_assertions">Type assertions</h3> 3202 3203 <p> 3204 For an expression <code>x</code> of <a href="#Interface_types">interface type</a> 3205 and a type <code>T</code>, the primary expression 3206 </p> 3207 3208 <pre> 3209 x.(T) 3210 </pre> 3211 3212 <p> 3213 asserts that <code>x</code> is not <code>nil</code> 3214 and that the value stored in <code>x</code> is of type <code>T</code>. 3215 The notation <code>x.(T)</code> is called a <i>type assertion</i>. 3216 </p> 3217 <p> 3218 More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts 3219 that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a> 3220 to the type <code>T</code>. 3221 In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>; 3222 otherwise the type assertion is invalid since it is not possible for <code>x</code> 3223 to store a value of type <code>T</code>. 3224 If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type 3225 of <code>x</code> implements the interface <code>T</code>. 3226 </p> 3227 <p> 3228 If the type assertion holds, the value of the expression is the value 3229 stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false, 3230 a <a href="#Run_time_panics">run-time panic</a> occurs. 3231 In other words, even though the dynamic type of <code>x</code> 3232 is known only at run time, the type of <code>x.(T)</code> is 3233 known to be <code>T</code> in a correct program. 3234 </p> 3235 3236 <pre> 3237 var x interface{} = 7 // x has dynamic type int and value 7 3238 i := x.(int) // i has type int and value 7 3239 3240 type I interface { m() } 3241 3242 func f(y I) { 3243 s := y.(string) // illegal: string does not implement I (missing method m) 3244 r := y.(io.Reader) // r has type io.Reader and the dynamic type of y must implement both I and io.Reader 3245 3246 } 3247 </pre> 3248 3249 <p> 3250 A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form 3251 </p> 3252 3253 <pre> 3254 v, ok = x.(T) 3255 v, ok := x.(T) 3256 var v, ok = x.(T) 3257 var v, ok T1 = x.(T) 3258 </pre> 3259 3260 <p> 3261 yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code> 3262 if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is 3263 the <a href="#The_zero_value">zero value</a> for type <code>T</code>. 3264 No run-time panic occurs in this case. 3265 </p> 3266 3267 3268 <h3 id="Calls">Calls</h3> 3269 3270 <p> 3271 Given an expression <code>f</code> of function type 3272 <code>F</code>, 3273 </p> 3274 3275 <pre> 3276 f(a1, a2, an) 3277 </pre> 3278 3279 <p> 3280 calls <code>f</code> with arguments <code>a1, a2, an</code>. 3281 Except for one special case, arguments must be single-valued expressions 3282 <a href="#Assignability">assignable</a> to the parameter types of 3283 <code>F</code> and are evaluated before the function is called. 3284 The type of the expression is the result type 3285 of <code>F</code>. 3286 A method invocation is similar but the method itself 3287 is specified as a selector upon a value of the receiver type for 3288 the method. 3289 </p> 3290 3291 <pre> 3292 math.Atan2(x, y) // function call 3293 var pt *Point 3294 pt.Scale(3.5) // method call with receiver pt 3295 </pre> 3296 3297 <p> 3298 In a function call, the function value and arguments are evaluated in 3299 <a href="#Order_of_evaluation">the usual order</a>. 3300 After they are evaluated, the parameters of the call are passed by value to the function 3301 and the called function begins execution. 3302 The return parameters of the function are passed by value 3303 back to the calling function when the function returns. 3304 </p> 3305 3306 <p> 3307 Calling a <code>nil</code> function value 3308 causes a <a href="#Run_time_panics">run-time panic</a>. 3309 </p> 3310 3311 <p> 3312 As a special case, if the return values of a function or method 3313 <code>g</code> are equal in number and individually 3314 assignable to the parameters of another function or method 3315 <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code> 3316 will invoke <code>f</code> after binding the return values of 3317 <code>g</code> to the parameters of <code>f</code> in order. The call 3318 of <code>f</code> must contain no parameters other than the call of <code>g</code>, 3319 and <code>g</code> must have at least one return value. 3320 If <code>f</code> has a final <code>...</code> parameter, it is 3321 assigned the return values of <code>g</code> that remain after 3322 assignment of regular parameters. 3323 </p> 3324 3325 <pre> 3326 func Split(s string, pos int) (string, string) { 3327 return s[0:pos], s[pos:] 3328 } 3329 3330 func Join(s, t string) string { 3331 return s + t 3332 } 3333 3334 if Join(Split(value, len(value)/2)) != value { 3335 log.Panic("test fails") 3336 } 3337 </pre> 3338 3339 <p> 3340 A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a> 3341 of (the type of) <code>x</code> contains <code>m</code> and the 3342 argument list can be assigned to the parameter list of <code>m</code>. 3343 If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&x</code>'s method 3344 set contains <code>m</code>, <code>x.m()</code> is shorthand 3345 for <code>(&x).m()</code>: 3346 </p> 3347 3348 <pre> 3349 var p Point 3350 p.Scale(3.5) 3351 </pre> 3352 3353 <p> 3354 There is no distinct method type and there are no method literals. 3355 </p> 3356 3357 <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3> 3358 3359 <p> 3360 If <code>f</code> is <a href="#Function_types">variadic</a> with a final 3361 parameter <code>p</code> of type <code>...T</code>, then within <code>f</code> 3362 the type of <code>p</code> is equivalent to type <code>[]T</code>. 3363 If <code>f</code> is invoked with no actual arguments for <code>p</code>, 3364 the value passed to <code>p</code> is <code>nil</code>. 3365 Otherwise, the value passed is a new slice 3366 of type <code>[]T</code> with a new underlying array whose successive elements 3367 are the actual arguments, which all must be <a href="#Assignability">assignable</a> 3368 to <code>T</code>. The length and capacity of the slice is therefore 3369 the number of arguments bound to <code>p</code> and may differ for each 3370 call site. 3371 </p> 3372 3373 <p> 3374 Given the function and calls 3375 </p> 3376 <pre> 3377 func Greeting(prefix string, who ...string) 3378 Greeting("nobody") 3379 Greeting("hello:", "Joe", "Anna", "Eileen") 3380 </pre> 3381 3382 <p> 3383 within <code>Greeting</code>, <code>who</code> will have the value 3384 <code>nil</code> in the first call, and 3385 <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second. 3386 </p> 3387 3388 <p> 3389 If the final argument is assignable to a slice type <code>[]T</code>, it may be 3390 passed unchanged as the value for a <code>...T</code> parameter if the argument 3391 is followed by <code>...</code>. In this case no new slice is created. 3392 </p> 3393 3394 <p> 3395 Given the slice <code>s</code> and call 3396 </p> 3397 3398 <pre> 3399 s := []string{"James", "Jasmine"} 3400 Greeting("goodbye:", s...) 3401 </pre> 3402 3403 <p> 3404 within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code> 3405 with the same underlying array. 3406 </p> 3407 3408 3409 <h3 id="Operators">Operators</h3> 3410 3411 <p> 3412 Operators combine operands into expressions. 3413 </p> 3414 3415 <pre class="ebnf"> 3416 Expression = UnaryExpr | Expression binary_op Expression . 3417 UnaryExpr = PrimaryExpr | unary_op UnaryExpr . 3418 3419 binary_op = "||" | "&&" | rel_op | add_op | mul_op . 3420 rel_op = "==" | "!=" | "<" | "<=" | ">" | ">=" . 3421 add_op = "+" | "-" | "|" | "^" . 3422 mul_op = "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" . 3423 3424 unary_op = "+" | "-" | "!" | "^" | "*" | "&" | "<-" . 3425 </pre> 3426 3427 <p> 3428 Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>. 3429 For other binary operators, the operand types must be <a href="#Type_identity">identical</a> 3430 unless the operation involves shifts or untyped <a href="#Constants">constants</a>. 3431 For operations involving constants only, see the section on 3432 <a href="#Constant_expressions">constant expressions</a>. 3433 </p> 3434 3435 <p> 3436 Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a> 3437 and the other operand is not, the constant is <a href="#Conversions">converted</a> 3438 to the type of the other operand. 3439 </p> 3440 3441 <p> 3442 The right operand in a shift expression must have unsigned integer type 3443 or be an untyped constant <a href="#Representability">representable</a> by a 3444 value of type <code>uint</code>. 3445 If the left operand of a non-constant shift expression is an untyped constant, 3446 it is first converted to the type it would assume if the shift expression were 3447 replaced by its left operand alone. 3448 </p> 3449 3450 <pre> 3451 var s uint = 33 3452 var i = 1<<s // 1 has type int 3453 var j int32 = 1<<s // 1 has type int32; j == 0 3454 var k = uint64(1<<s) // 1 has type uint64; k == 1<<33 3455 var m int = 1.0<<s // 1.0 has type int; m == 0 if ints are 32bits in size 3456 var n = 1.0<<s == j // 1.0 has type int32; n == true 3457 var o = 1<<s == 2<<s // 1 and 2 have type int; o == true if ints are 32bits in size 3458 var p = 1<<s == 1<<33 // illegal if ints are 32bits in size: 1 has type int, but 1<<33 overflows int 3459 var u = 1.0<<s // illegal: 1.0 has type float64, cannot shift 3460 var u1 = 1.0<<s != 0 // illegal: 1.0 has type float64, cannot shift 3461 var u2 = 1<<s != 1.0 // illegal: 1 has type float64, cannot shift 3462 var v float32 = 1<<s // illegal: 1 has type float32, cannot shift 3463 var w int64 = 1.0<<33 // 1.0<<33 is a constant shift expression 3464 var x = a[1.0<<s] // 1.0 has type int; x == a[0] if ints are 32bits in size 3465 var a = make([]byte, 1.0<<s) // 1.0 has type int; len(a) == 0 if ints are 32bits in size 3466 </pre> 3467 3468 3469 <h4 id="Operator_precedence">Operator precedence</h4> 3470 <p> 3471 Unary operators have the highest precedence. 3472 As the <code>++</code> and <code>--</code> operators form 3473 statements, not expressions, they fall 3474 outside the operator hierarchy. 3475 As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>. 3476 <p> 3477 There are five precedence levels for binary operators. 3478 Multiplication operators bind strongest, followed by addition 3479 operators, comparison operators, <code>&&</code> (logical AND), 3480 and finally <code>||</code> (logical OR): 3481 </p> 3482 3483 <pre class="grammar"> 3484 Precedence Operator 3485 5 * / % << >> & &^ 3486 4 + - | ^ 3487 3 == != < <= > >= 3488 2 && 3489 1 || 3490 </pre> 3491 3492 <p> 3493 Binary operators of the same precedence associate from left to right. 3494 For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>. 3495 </p> 3496 3497 <pre> 3498 +x 3499 23 + 3*x[i] 3500 x <= f() 3501 ^a >> b 3502 f() || g() 3503 x == y+1 && <-chanPtr > 0 3504 </pre> 3505 3506 3507 <h3 id="Arithmetic_operators">Arithmetic operators</h3> 3508 <p> 3509 Arithmetic operators apply to numeric values and yield a result of the same 3510 type as the first operand. The four standard arithmetic operators (<code>+</code>, 3511 <code>-</code>, <code>*</code>, <code>/</code>) apply to integer, 3512 floating-point, and complex types; <code>+</code> also applies to strings. 3513 The bitwise logical and shift operators apply to integers only. 3514 </p> 3515 3516 <pre class="grammar"> 3517 + sum integers, floats, complex values, strings 3518 - difference integers, floats, complex values 3519 * product integers, floats, complex values 3520 / quotient integers, floats, complex values 3521 % remainder integers 3522 3523 & bitwise AND integers 3524 | bitwise OR integers 3525 ^ bitwise XOR integers 3526 &^ bit clear (AND NOT) integers 3527 3528 << left shift integer << unsigned integer 3529 >> right shift integer >> unsigned integer 3530 </pre> 3531 3532 3533 <h4 id="Integer_operators">Integer operators</h4> 3534 3535 <p> 3536 For two integer values <code>x</code> and <code>y</code>, the integer quotient 3537 <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following 3538 relationships: 3539 </p> 3540 3541 <pre> 3542 x = q*y + r and |r| < |y| 3543 </pre> 3544 3545 <p> 3546 with <code>x / y</code> truncated towards zero 3547 (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>). 3548 </p> 3549 3550 <pre> 3551 x y x / y x % y 3552 5 3 1 2 3553 -5 3 -1 -2 3554 5 -3 -1 2 3555 -5 -3 1 -2 3556 </pre> 3557 3558 <p> 3559 The one exception to this rule is that if the dividend <code>x</code> is 3560 the most negative value for the int type of <code>x</code>, the quotient 3561 <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>) 3562 due to two's-complement <a href="#Integer_overflow">integer overflow</a>: 3563 </p> 3564 3565 <pre> 3566 x, q 3567 int8 -128 3568 int16 -32768 3569 int32 -2147483648 3570 int64 -9223372036854775808 3571 </pre> 3572 3573 <p> 3574 If the divisor is a <a href="#Constants">constant</a>, it must not be zero. 3575 If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3576 If the dividend is non-negative and the divisor is a constant power of 2, 3577 the division may be replaced by a right shift, and computing the remainder may 3578 be replaced by a bitwise AND operation: 3579 </p> 3580 3581 <pre> 3582 x x / 4 x % 4 x >> 2 x & 3 3583 11 2 3 2 3 3584 -11 -2 -3 -3 1 3585 </pre> 3586 3587 <p> 3588 The shift operators shift the left operand by the shift count specified by the 3589 right operand. They implement arithmetic shifts if the left operand is a signed 3590 integer and logical shifts if it is an unsigned integer. 3591 There is no upper limit on the shift count. Shifts behave 3592 as if the left operand is shifted <code>n</code> times by 1 for a shift 3593 count of <code>n</code>. 3594 As a result, <code>x << 1</code> is the same as <code>x*2</code> 3595 and <code>x >> 1</code> is the same as 3596 <code>x/2</code> but truncated towards negative infinity. 3597 </p> 3598 3599 <p> 3600 For integer operands, the unary operators 3601 <code>+</code>, <code>-</code>, and <code>^</code> are defined as 3602 follows: 3603 </p> 3604 3605 <pre class="grammar"> 3606 +x is 0 + x 3607 -x negation is 0 - x 3608 ^x bitwise complement is m ^ x with m = "all bits set to 1" for unsigned x 3609 and m = -1 for signed x 3610 </pre> 3611 3612 3613 <h4 id="Integer_overflow">Integer overflow</h4> 3614 3615 <p> 3616 For unsigned integer values, the operations <code>+</code>, 3617 <code>-</code>, <code>*</code>, and <code><<</code> are 3618 computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of 3619 the <a href="#Numeric_types">unsigned integer</a>'s type. 3620 Loosely speaking, these unsigned integer operations 3621 discard high bits upon overflow, and programs may rely on "wrap around". 3622 </p> 3623 <p> 3624 For signed integers, the operations <code>+</code>, 3625 <code>-</code>, <code>*</code>, <code>/</code>, and <code><<</code> may legally 3626 overflow and the resulting value exists and is deterministically defined 3627 by the signed integer representation, the operation, and its operands. 3628 No exception is raised as a result of overflow. 3629 A compiler may not optimize code under the assumption that overflow does 3630 not occur. For instance, it may not assume that <code>x < x + 1</code> is always true. 3631 </p> 3632 3633 3634 <h4 id="Floating_point_operators">Floating-point operators</h4> 3635 3636 <p> 3637 For floating-point and complex numbers, 3638 <code>+x</code> is the same as <code>x</code>, 3639 while <code>-x</code> is the negation of <code>x</code>. 3640 The result of a floating-point or complex division by zero is not specified beyond the 3641 IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a> 3642 occurs is implementation-specific. 3643 </p> 3644 3645 <p> 3646 An implementation may combine multiple floating-point operations into a single 3647 fused operation, possibly across statements, and produce a result that differs 3648 from the value obtained by executing and rounding the instructions individually. 3649 A floating-point type <a href="#Conversions">conversion</a> explicitly rounds to 3650 the precision of the target type, preventing fusion that would discard that rounding. 3651 </p> 3652 3653 <p> 3654 For instance, some architectures provide a "fused multiply and add" (FMA) instruction 3655 that computes <code>x*y + z</code> without rounding the intermediate result <code>x*y</code>. 3656 These examples show when a Go implementation can use that instruction: 3657 </p> 3658 3659 <pre> 3660 // FMA allowed for computing r, because x*y is not explicitly rounded: 3661 r = x*y + z 3662 r = z; r += x*y 3663 t = x*y; r = t + z 3664 *p = x*y; r = *p + z 3665 r = x*y + float64(z) 3666 3667 // FMA disallowed for computing r, because it would omit rounding of x*y: 3668 r = float64(x*y) + z 3669 r = z; r += float64(x*y) 3670 t = float64(x*y); r = t + z 3671 </pre> 3672 3673 <h4 id="String_concatenation">String concatenation</h4> 3674 3675 <p> 3676 Strings can be concatenated using the <code>+</code> operator 3677 or the <code>+=</code> assignment operator: 3678 </p> 3679 3680 <pre> 3681 s := "hi" + string(c) 3682 s += " and good bye" 3683 </pre> 3684 3685 <p> 3686 String addition creates a new string by concatenating the operands. 3687 </p> 3688 3689 3690 <h3 id="Comparison_operators">Comparison operators</h3> 3691 3692 <p> 3693 Comparison operators compare two operands and yield an untyped boolean value. 3694 </p> 3695 3696 <pre class="grammar"> 3697 == equal 3698 != not equal 3699 < less 3700 <= less or equal 3701 > greater 3702 >= greater or equal 3703 </pre> 3704 3705 <p> 3706 In any comparison, the first operand 3707 must be <a href="#Assignability">assignable</a> 3708 to the type of the second operand, or vice versa. 3709 </p> 3710 <p> 3711 The equality operators <code>==</code> and <code>!=</code> apply 3712 to operands that are <i>comparable</i>. 3713 The ordering operators <code><</code>, <code><=</code>, <code>></code>, and <code>>=</code> 3714 apply to operands that are <i>ordered</i>. 3715 These terms and the result of the comparisons are defined as follows: 3716 </p> 3717 3718 <ul> 3719 <li> 3720 Boolean values are comparable. 3721 Two boolean values are equal if they are either both 3722 <code>true</code> or both <code>false</code>. 3723 </li> 3724 3725 <li> 3726 Integer values are comparable and ordered, in the usual way. 3727 </li> 3728 3729 <li> 3730 Floating-point values are comparable and ordered, 3731 as defined by the IEEE-754 standard. 3732 </li> 3733 3734 <li> 3735 Complex values are comparable. 3736 Two complex values <code>u</code> and <code>v</code> are 3737 equal if both <code>real(u) == real(v)</code> and 3738 <code>imag(u) == imag(v)</code>. 3739 </li> 3740 3741 <li> 3742 String values are comparable and ordered, lexically byte-wise. 3743 </li> 3744 3745 <li> 3746 Pointer values are comparable. 3747 Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>. 3748 Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal. 3749 </li> 3750 3751 <li> 3752 Channel values are comparable. 3753 Two channel values are equal if they were created by the same call to 3754 <a href="#Making_slices_maps_and_channels"><code>make</code></a> 3755 or if both have value <code>nil</code>. 3756 </li> 3757 3758 <li> 3759 Interface values are comparable. 3760 Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types 3761 and equal dynamic values or if both have value <code>nil</code>. 3762 </li> 3763 3764 <li> 3765 A value <code>x</code> of non-interface type <code>X</code> and 3766 a value <code>t</code> of interface type <code>T</code> are comparable when values 3767 of type <code>X</code> are comparable and 3768 <code>X</code> implements <code>T</code>. 3769 They are equal if <code>t</code>'s dynamic type is identical to <code>X</code> 3770 and <code>t</code>'s dynamic value is equal to <code>x</code>. 3771 </li> 3772 3773 <li> 3774 Struct values are comparable if all their fields are comparable. 3775 Two struct values are equal if their corresponding 3776 non-<a href="#Blank_identifier">blank</a> fields are equal. 3777 </li> 3778 3779 <li> 3780 Array values are comparable if values of the array element type are comparable. 3781 Two array values are equal if their corresponding elements are equal. 3782 </li> 3783 </ul> 3784 3785 <p> 3786 A comparison of two interface values with identical dynamic types 3787 causes a <a href="#Run_time_panics">run-time panic</a> if values 3788 of that type are not comparable. This behavior applies not only to direct interface 3789 value comparisons but also when comparing arrays of interface values 3790 or structs with interface-valued fields. 3791 </p> 3792 3793 <p> 3794 Slice, map, and function values are not comparable. 3795 However, as a special case, a slice, map, or function value may 3796 be compared to the predeclared identifier <code>nil</code>. 3797 Comparison of pointer, channel, and interface values to <code>nil</code> 3798 is also allowed and follows from the general rules above. 3799 </p> 3800 3801 <pre> 3802 const c = 3 < 4 // c is the untyped boolean constant true 3803 3804 type MyBool bool 3805 var x, y int 3806 var ( 3807 // The result of a comparison is an untyped boolean. 3808 // The usual assignment rules apply. 3809 b3 = x == y // b3 has type bool 3810 b4 bool = x == y // b4 has type bool 3811 b5 MyBool = x == y // b5 has type MyBool 3812 ) 3813 </pre> 3814 3815 <h3 id="Logical_operators">Logical operators</h3> 3816 3817 <p> 3818 Logical operators apply to <a href="#Boolean_types">boolean</a> values 3819 and yield a result of the same type as the operands. 3820 The right operand is evaluated conditionally. 3821 </p> 3822 3823 <pre class="grammar"> 3824 && conditional AND p && q is "if p then q else false" 3825 || conditional OR p || q is "if p then true else q" 3826 ! NOT !p is "not p" 3827 </pre> 3828 3829 3830 <h3 id="Address_operators">Address operators</h3> 3831 3832 <p> 3833 For an operand <code>x</code> of type <code>T</code>, the address operation 3834 <code>&x</code> generates a pointer of type <code>*T</code> to <code>x</code>. 3835 The operand must be <i>addressable</i>, 3836 that is, either a variable, pointer indirection, or slice indexing 3837 operation; or a field selector of an addressable struct operand; 3838 or an array indexing operation of an addressable array. 3839 As an exception to the addressability requirement, <code>x</code> may also be a 3840 (possibly parenthesized) 3841 <a href="#Composite_literals">composite literal</a>. 3842 If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>, 3843 then the evaluation of <code>&x</code> does too. 3844 </p> 3845 3846 <p> 3847 For an operand <code>x</code> of pointer type <code>*T</code>, the pointer 3848 indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed 3849 to by <code>x</code>. 3850 If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code> 3851 will cause a <a href="#Run_time_panics">run-time panic</a>. 3852 </p> 3853 3854 <pre> 3855 &x 3856 &a[f(2)] 3857 &Point{2, 3} 3858 *p 3859 *pf(x) 3860 3861 var x *int = nil 3862 *x // causes a run-time panic 3863 &*x // causes a run-time panic 3864 </pre> 3865 3866 3867 <h3 id="Receive_operator">Receive operator</h3> 3868 3869 <p> 3870 For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>, 3871 the value of the receive operation <code><-ch</code> is the value received 3872 from the channel <code>ch</code>. The channel direction must permit receive operations, 3873 and the type of the receive operation is the element type of the channel. 3874 The expression blocks until a value is available. 3875 Receiving from a <code>nil</code> channel blocks forever. 3876 A receive operation on a <a href="#Close">closed</a> channel can always proceed 3877 immediately, yielding the element type's <a href="#The_zero_value">zero value</a> 3878 after any previously sent values have been received. 3879 </p> 3880 3881 <pre> 3882 v1 := <-ch 3883 v2 = <-ch 3884 f(<-ch) 3885 <-strobe // wait until clock pulse and discard received value 3886 </pre> 3887 3888 <p> 3889 A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form 3890 </p> 3891 3892 <pre> 3893 x, ok = <-ch 3894 x, ok := <-ch 3895 var x, ok = <-ch 3896 var x, ok T = <-ch 3897 </pre> 3898 3899 <p> 3900 yields an additional untyped boolean result reporting whether the 3901 communication succeeded. The value of <code>ok</code> is <code>true</code> 3902 if the value received was delivered by a successful send operation to the 3903 channel, or <code>false</code> if it is a zero value generated because the 3904 channel is closed and empty. 3905 </p> 3906 3907 3908 <h3 id="Conversions">Conversions</h3> 3909 3910 <p> 3911 Conversions are expressions of the form <code>T(x)</code> 3912 where <code>T</code> is a type and <code>x</code> is an expression 3913 that can be converted to type <code>T</code>. 3914 </p> 3915 3916 <pre class="ebnf"> 3917 Conversion = Type "(" Expression [ "," ] ")" . 3918 </pre> 3919 3920 <p> 3921 If the type starts with the operator <code>*</code> or <code><-</code>, 3922 or if the type starts with the keyword <code>func</code> 3923 and has no result list, it must be parenthesized when 3924 necessary to avoid ambiguity: 3925 </p> 3926 3927 <pre> 3928 *Point(p) // same as *(Point(p)) 3929 (*Point)(p) // p is converted to *Point 3930 <-chan int(c) // same as <-(chan int(c)) 3931 (<-chan int)(c) // c is converted to <-chan int 3932 func()(x) // function signature func() x 3933 (func())(x) // x is converted to func() 3934 (func() int)(x) // x is converted to func() int 3935 func() int(x) // x is converted to func() int (unambiguous) 3936 </pre> 3937 3938 <p> 3939 A <a href="#Constants">constant</a> value <code>x</code> can be converted to 3940 type <code>T</code> if <code>x</code> is <a href="#Representability">representable</a> 3941 by a value of <code>T</code>. 3942 As a special case, an integer constant <code>x</code> can be converted to a 3943 <a href="#String_types">string type</a> using the 3944 <a href="#Conversions_to_and_from_a_string_type">same rule</a> 3945 as for non-constant <code>x</code>. 3946 </p> 3947 3948 <p> 3949 Converting a constant yields a typed constant as result. 3950 </p> 3951 3952 <pre> 3953 uint(iota) // iota value of type uint 3954 float32(2.718281828) // 2.718281828 of type float32 3955 complex128(1) // 1.0 + 0.0i of type complex128 3956 float32(0.49999999) // 0.5 of type float32 3957 float64(-1e-1000) // 0.0 of type float64 3958 string('x') // "x" of type string 3959 string(0x266c) // "" of type string 3960 MyString("foo" + "bar") // "foobar" of type MyString 3961 string([]byte{'a'}) // not a constant: []byte{'a'} is not a constant 3962 (*int)(nil) // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type 3963 int(1.2) // illegal: 1.2 cannot be represented as an int 3964 string(65.0) // illegal: 65.0 is not an integer constant 3965 </pre> 3966 3967 <p> 3968 A non-constant value <code>x</code> can be converted to type <code>T</code> 3969 in any of these cases: 3970 </p> 3971 3972 <ul> 3973 <li> 3974 <code>x</code> is <a href="#Assignability">assignable</a> 3975 to <code>T</code>. 3976 </li> 3977 <li> 3978 ignoring struct tags (see below), 3979 <code>x</code>'s type and <code>T</code> have <a href="#Type_identity">identical</a> 3980 <a href="#Types">underlying types</a>. 3981 </li> 3982 <li> 3983 ignoring struct tags (see below), 3984 <code>x</code>'s type and <code>T</code> are pointer types 3985 that are not <a href="#Type_definitions">defined types</a>, 3986 and their pointer base types have identical underlying types. 3987 </li> 3988 <li> 3989 <code>x</code>'s type and <code>T</code> are both integer or floating 3990 point types. 3991 </li> 3992 <li> 3993 <code>x</code>'s type and <code>T</code> are both complex types. 3994 </li> 3995 <li> 3996 <code>x</code> is an integer or a slice of bytes or runes 3997 and <code>T</code> is a string type. 3998 </li> 3999 <li> 4000 <code>x</code> is a string and <code>T</code> is a slice of bytes or runes. 4001 </li> 4002 </ul> 4003 4004 <p> 4005 <a href="#Struct_types">Struct tags</a> are ignored when comparing struct types 4006 for identity for the purpose of conversion: 4007 </p> 4008 4009 <pre> 4010 type Person struct { 4011 Name string 4012 Address *struct { 4013 Street string 4014 City string 4015 } 4016 } 4017 4018 var data *struct { 4019 Name string `json:"name"` 4020 Address *struct { 4021 Street string `json:"street"` 4022 City string `json:"city"` 4023 } `json:"address"` 4024 } 4025 4026 var person = (*Person)(data) // ignoring tags, the underlying types are identical 4027 </pre> 4028 4029 <p> 4030 Specific rules apply to (non-constant) conversions between numeric types or 4031 to and from a string type. 4032 These conversions may change the representation of <code>x</code> 4033 and incur a run-time cost. 4034 All other conversions only change the type but not the representation 4035 of <code>x</code>. 4036 </p> 4037 4038 <p> 4039 There is no linguistic mechanism to convert between pointers and integers. 4040 The package <a href="#Package_unsafe"><code>unsafe</code></a> 4041 implements this functionality under 4042 restricted circumstances. 4043 </p> 4044 4045 <h4>Conversions between numeric types</h4> 4046 4047 <p> 4048 For the conversion of non-constant numeric values, the following rules apply: 4049 </p> 4050 4051 <ol> 4052 <li> 4053 When converting between integer types, if the value is a signed integer, it is 4054 sign extended to implicit infinite precision; otherwise it is zero extended. 4055 It is then truncated to fit in the result type's size. 4056 For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>. 4057 The conversion always yields a valid value; there is no indication of overflow. 4058 </li> 4059 <li> 4060 When converting a floating-point number to an integer, the fraction is discarded 4061 (truncation towards zero). 4062 </li> 4063 <li> 4064 When converting an integer or floating-point number to a floating-point type, 4065 or a complex number to another complex type, the result value is rounded 4066 to the precision specified by the destination type. 4067 For instance, the value of a variable <code>x</code> of type <code>float32</code> 4068 may be stored using additional precision beyond that of an IEEE-754 32-bit number, 4069 but float32(x) represents the result of rounding <code>x</code>'s value to 4070 32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits 4071 of precision, but <code>float32(x + 0.1)</code> does not. 4072 </li> 4073 </ol> 4074 4075 <p> 4076 In all non-constant conversions involving floating-point or complex values, 4077 if the result type cannot represent the value the conversion 4078 succeeds but the result value is implementation-dependent. 4079 </p> 4080 4081 <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4> 4082 4083 <ol> 4084 <li> 4085 Converting a signed or unsigned integer value to a string type yields a 4086 string containing the UTF-8 representation of the integer. Values outside 4087 the range of valid Unicode code points are converted to <code>"\uFFFD"</code>. 4088 4089 <pre> 4090 string('a') // "a" 4091 string(-1) // "\ufffd" == "\xef\xbf\xbd" 4092 string(0xf8) // "\u00f8" == "" == "\xc3\xb8" 4093 type MyString string 4094 MyString(0x65e5) // "\u65e5" == "" == "\xe6\x97\xa5" 4095 </pre> 4096 </li> 4097 4098 <li> 4099 Converting a slice of bytes to a string type yields 4100 a string whose successive bytes are the elements of the slice. 4101 4102 <pre> 4103 string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hell" 4104 string([]byte{}) // "" 4105 string([]byte(nil)) // "" 4106 4107 type MyBytes []byte 4108 string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hell" 4109 </pre> 4110 </li> 4111 4112 <li> 4113 Converting a slice of runes to a string type yields 4114 a string that is the concatenation of the individual rune values 4115 converted to strings. 4116 4117 <pre> 4118 string([]rune{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "" 4119 string([]rune{}) // "" 4120 string([]rune(nil)) // "" 4121 4122 type MyRunes []rune 4123 string(MyRunes{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "" 4124 </pre> 4125 </li> 4126 4127 <li> 4128 Converting a value of a string type to a slice of bytes type 4129 yields a slice whose successive elements are the bytes of the string. 4130 4131 <pre> 4132 []byte("hell") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'} 4133 []byte("") // []byte{} 4134 4135 MyBytes("hell") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'} 4136 </pre> 4137 </li> 4138 4139 <li> 4140 Converting a value of a string type to a slice of runes type 4141 yields a slice containing the individual Unicode code points of the string. 4142 4143 <pre> 4144 []rune(MyString("")) // []rune{0x767d, 0x9d6c, 0x7fd4} 4145 []rune("") // []rune{} 4146 4147 MyRunes("") // []rune{0x767d, 0x9d6c, 0x7fd4} 4148 </pre> 4149 </li> 4150 </ol> 4151 4152 4153 <h3 id="Constant_expressions">Constant expressions</h3> 4154 4155 <p> 4156 Constant expressions may contain only <a href="#Constants">constant</a> 4157 operands and are evaluated at compile time. 4158 </p> 4159 4160 <p> 4161 Untyped boolean, numeric, and string constants may be used as operands 4162 wherever it is legal to use an operand of boolean, numeric, or string type, 4163 respectively. 4164 Except for shift operations, if the operands of a binary operation are 4165 different kinds of untyped constants, the operation and, for non-boolean operations, the result use 4166 the kind that appears later in this list: integer, rune, floating-point, complex. 4167 For example, an untyped integer constant divided by an 4168 untyped complex constant yields an untyped complex constant. 4169 </p> 4170 4171 <p> 4172 A constant <a href="#Comparison_operators">comparison</a> always yields 4173 an untyped boolean constant. If the left operand of a constant 4174 <a href="#Operators">shift expression</a> is an untyped constant, the 4175 result is an integer constant; otherwise it is a constant of the same 4176 type as the left operand, which must be of 4177 <a href="#Numeric_types">integer type</a>. 4178 Applying all other operators to untyped constants results in an untyped 4179 constant of the same kind (that is, a boolean, integer, floating-point, 4180 complex, or string constant). 4181 </p> 4182 4183 <pre> 4184 const a = 2 + 3.0 // a == 5.0 (untyped floating-point constant) 4185 const b = 15 / 4 // b == 3 (untyped integer constant) 4186 const c = 15 / 4.0 // c == 3.75 (untyped floating-point constant) 4187 const float64 = 3/2 // == 1.0 (type float64, 3/2 is integer division) 4188 const float64 = 3/2. // == 1.5 (type float64, 3/2. is float division) 4189 const d = 1 << 3.0 // d == 8 (untyped integer constant) 4190 const e = 1.0 << 3 // e == 8 (untyped integer constant) 4191 const f = int32(1) << 33 // illegal (constant 8589934592 overflows int32) 4192 const g = float64(2) >> 1 // illegal (float64(2) is a typed floating-point constant) 4193 const h = "foo" > "bar" // h == true (untyped boolean constant) 4194 const j = true // j == true (untyped boolean constant) 4195 const k = 'w' + 1 // k == 'x' (untyped rune constant) 4196 const l = "hi" // l == "hi" (untyped string constant) 4197 const m = string(k) // m == "x" (type string) 4198 const = 1 - 0.707i // (untyped complex constant) 4199 const = + 2.0e-4 // (untyped complex constant) 4200 const = iota*1i - 1/1i // (untyped complex constant) 4201 </pre> 4202 4203 <p> 4204 Applying the built-in function <code>complex</code> to untyped 4205 integer, rune, or floating-point constants yields 4206 an untyped complex constant. 4207 </p> 4208 4209 <pre> 4210 const ic = complex(0, c) // ic == 3.75i (untyped complex constant) 4211 const i = complex(0, ) // i == 1i (type complex128) 4212 </pre> 4213 4214 <p> 4215 Constant expressions are always evaluated exactly; intermediate values and the 4216 constants themselves may require precision significantly larger than supported 4217 by any predeclared type in the language. The following are legal declarations: 4218 </p> 4219 4220 <pre> 4221 const Huge = 1 << 100 // Huge == 1267650600228229401496703205376 (untyped integer constant) 4222 const Four int8 = Huge >> 98 // Four == 4 (type int8) 4223 </pre> 4224 4225 <p> 4226 The divisor of a constant division or remainder operation must not be zero: 4227 </p> 4228 4229 <pre> 4230 3.14 / 0.0 // illegal: division by zero 4231 </pre> 4232 4233 <p> 4234 The values of <i>typed</i> constants must always be accurately 4235 <a href="#Representability">representable</a> by values 4236 of the constant type. The following constant expressions are illegal: 4237 </p> 4238 4239 <pre> 4240 uint(-1) // -1 cannot be represented as a uint 4241 int(3.14) // 3.14 cannot be represented as an int 4242 int64(Huge) // 1267650600228229401496703205376 cannot be represented as an int64 4243 Four * 300 // operand 300 cannot be represented as an int8 (type of Four) 4244 Four * 100 // product 400 cannot be represented as an int8 (type of Four) 4245 </pre> 4246 4247 <p> 4248 The mask used by the unary bitwise complement operator <code>^</code> matches 4249 the rule for non-constants: the mask is all 1s for unsigned constants 4250 and -1 for signed and untyped constants. 4251 </p> 4252 4253 <pre> 4254 ^1 // untyped integer constant, equal to -2 4255 uint8(^1) // illegal: same as uint8(-2), -2 cannot be represented as a uint8 4256 ^uint8(1) // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE) 4257 int8(^1) // same as int8(-2) 4258 ^int8(1) // same as -1 ^ int8(1) = -2 4259 </pre> 4260 4261 <p> 4262 Implementation restriction: A compiler may use rounding while 4263 computing untyped floating-point or complex constant expressions; see 4264 the implementation restriction in the section 4265 on <a href="#Constants">constants</a>. This rounding may cause a 4266 floating-point constant expression to be invalid in an integer 4267 context, even if it would be integral when calculated using infinite 4268 precision, and vice versa. 4269 </p> 4270 4271 4272 <h3 id="Order_of_evaluation">Order of evaluation</h3> 4273 4274 <p> 4275 At package level, <a href="#Package_initialization">initialization dependencies</a> 4276 determine the evaluation order of individual initialization expressions in 4277 <a href="#Variable_declarations">variable declarations</a>. 4278 Otherwise, when evaluating the <a href="#Operands">operands</a> of an 4279 expression, assignment, or 4280 <a href="#Return_statements">return statement</a>, 4281 all function calls, method calls, and 4282 communication operations are evaluated in lexical left-to-right 4283 order. 4284 </p> 4285 4286 <p> 4287 For example, in the (function-local) assignment 4288 </p> 4289 <pre> 4290 y[f()], ok = g(h(), i()+x[j()], <-c), k() 4291 </pre> 4292 <p> 4293 the function calls and communication happen in the order 4294 <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>, 4295 <code><-c</code>, <code>g()</code>, and <code>k()</code>. 4296 However, the order of those events compared to the evaluation 4297 and indexing of <code>x</code> and the evaluation 4298 of <code>y</code> is not specified. 4299 </p> 4300 4301 <pre> 4302 a := 1 4303 f := func() int { a++; return a } 4304 x := []int{a, f()} // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified 4305 m := map[int]int{a: 1, a: 2} // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified 4306 n := map[int]int{a: f()} // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified 4307 </pre> 4308 4309 <p> 4310 At package level, initialization dependencies override the left-to-right rule 4311 for individual initialization expressions, but not for operands within each 4312 expression: 4313 </p> 4314 4315 <pre> 4316 var a, b, c = f() + v(), g(), sqr(u()) + v() 4317 4318 func f() int { return c } 4319 func g() int { return a } 4320 func sqr(x int) int { return x*x } 4321 4322 // functions u and v are independent of all other variables and functions 4323 </pre> 4324 4325 <p> 4326 The function calls happen in the order 4327 <code>u()</code>, <code>sqr()</code>, <code>v()</code>, 4328 <code>f()</code>, <code>v()</code>, and <code>g()</code>. 4329 </p> 4330 4331 <p> 4332 Floating-point operations within a single expression are evaluated according to 4333 the associativity of the operators. Explicit parentheses affect the evaluation 4334 by overriding the default associativity. 4335 In the expression <code>x + (y + z)</code> the addition <code>y + z</code> 4336 is performed before adding <code>x</code>. 4337 </p> 4338 4339 <h2 id="Statements">Statements</h2> 4340 4341 <p> 4342 Statements control execution. 4343 </p> 4344 4345 <pre class="ebnf"> 4346 Statement = 4347 Declaration | LabeledStmt | SimpleStmt | 4348 GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt | 4349 FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt | 4350 DeferStmt . 4351 4352 SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl . 4353 </pre> 4354 4355 <h3 id="Terminating_statements">Terminating statements</h3> 4356 4357 <p> 4358 A <i>terminating statement</i> prevents execution of all statements that lexically 4359 appear after it in the same <a href="#Blocks">block</a>. The following statements 4360 are terminating: 4361 </p> 4362 4363 <ol> 4364 <li> 4365 A <a href="#Return_statements">"return"</a> or 4366 <a href="#Goto_statements">"goto"</a> statement. 4367 <!-- ul below only for regular layout --> 4368 <ul> </ul> 4369 </li> 4370 4371 <li> 4372 A call to the built-in function 4373 <a href="#Handling_panics"><code>panic</code></a>. 4374 <!-- ul below only for regular layout --> 4375 <ul> </ul> 4376 </li> 4377 4378 <li> 4379 A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement. 4380 <!-- ul below only for regular layout --> 4381 <ul> </ul> 4382 </li> 4383 4384 <li> 4385 An <a href="#If_statements">"if" statement</a> in which: 4386 <ul> 4387 <li>the "else" branch is present, and</li> 4388 <li>both branches are terminating statements.</li> 4389 </ul> 4390 </li> 4391 4392 <li> 4393 A <a href="#For_statements">"for" statement</a> in which: 4394 <ul> 4395 <li>there are no "break" statements referring to the "for" statement, and</li> 4396 <li>the loop condition is absent.</li> 4397 </ul> 4398 </li> 4399 4400 <li> 4401 A <a href="#Switch_statements">"switch" statement</a> in which: 4402 <ul> 4403 <li>there are no "break" statements referring to the "switch" statement,</li> 4404 <li>there is a default case, and</li> 4405 <li>the statement lists in each case, including the default, end in a terminating 4406 statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough" 4407 statement</a>.</li> 4408 </ul> 4409 </li> 4410 4411 <li> 4412 A <a href="#Select_statements">"select" statement</a> in which: 4413 <ul> 4414 <li>there are no "break" statements referring to the "select" statement, and</li> 4415 <li>the statement lists in each case, including the default if present, 4416 end in a terminating statement.</li> 4417 </ul> 4418 </li> 4419 4420 <li> 4421 A <a href="#Labeled_statements">labeled statement</a> labeling 4422 a terminating statement. 4423 </li> 4424 </ol> 4425 4426 <p> 4427 All other statements are not terminating. 4428 </p> 4429 4430 <p> 4431 A <a href="#Blocks">statement list</a> ends in a terminating statement if the list 4432 is not empty and its final non-empty statement is terminating. 4433 </p> 4434 4435 4436 <h3 id="Empty_statements">Empty statements</h3> 4437 4438 <p> 4439 The empty statement does nothing. 4440 </p> 4441 4442 <pre class="ebnf"> 4443 EmptyStmt = . 4444 </pre> 4445 4446 4447 <h3 id="Labeled_statements">Labeled statements</h3> 4448 4449 <p> 4450 A labeled statement may be the target of a <code>goto</code>, 4451 <code>break</code> or <code>continue</code> statement. 4452 </p> 4453 4454 <pre class="ebnf"> 4455 LabeledStmt = Label ":" Statement . 4456 Label = identifier . 4457 </pre> 4458 4459 <pre> 4460 Error: log.Panic("error encountered") 4461 </pre> 4462 4463 4464 <h3 id="Expression_statements">Expression statements</h3> 4465 4466 <p> 4467 With the exception of specific built-in functions, 4468 function and method <a href="#Calls">calls</a> and 4469 <a href="#Receive_operator">receive operations</a> 4470 can appear in statement context. Such statements may be parenthesized. 4471 </p> 4472 4473 <pre class="ebnf"> 4474 ExpressionStmt = Expression . 4475 </pre> 4476 4477 <p> 4478 The following built-in functions are not permitted in statement context: 4479 </p> 4480 4481 <pre> 4482 append cap complex imag len make new real 4483 unsafe.Alignof unsafe.Offsetof unsafe.Sizeof 4484 </pre> 4485 4486 <pre> 4487 h(x+y) 4488 f.Close() 4489 <-ch 4490 (<-ch) 4491 len("foo") // illegal if len is the built-in function 4492 </pre> 4493 4494 4495 <h3 id="Send_statements">Send statements</h3> 4496 4497 <p> 4498 A send statement sends a value on a channel. 4499 The channel expression must be of <a href="#Channel_types">channel type</a>, 4500 the channel direction must permit send operations, 4501 and the type of the value to be sent must be <a href="#Assignability">assignable</a> 4502 to the channel's element type. 4503 </p> 4504 4505 <pre class="ebnf"> 4506 SendStmt = Channel "<-" Expression . 4507 Channel = Expression . 4508 </pre> 4509 4510 <p> 4511 Both the channel and the value expression are evaluated before communication 4512 begins. Communication blocks until the send can proceed. 4513 A send on an unbuffered channel can proceed if a receiver is ready. 4514 A send on a buffered channel can proceed if there is room in the buffer. 4515 A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>. 4516 A send on a <code>nil</code> channel blocks forever. 4517 </p> 4518 4519 <pre> 4520 ch <- 3 // send value 3 to channel ch 4521 </pre> 4522 4523 4524 <h3 id="IncDec_statements">IncDec statements</h3> 4525 4526 <p> 4527 The "++" and "--" statements increment or decrement their operands 4528 by the untyped <a href="#Constants">constant</a> <code>1</code>. 4529 As with an assignment, the operand must be <a href="#Address_operators">addressable</a> 4530 or a map index expression. 4531 </p> 4532 4533 <pre class="ebnf"> 4534 IncDecStmt = Expression ( "++" | "--" ) . 4535 </pre> 4536 4537 <p> 4538 The following <a href="#Assignments">assignment statements</a> are semantically 4539 equivalent: 4540 </p> 4541 4542 <pre class="grammar"> 4543 IncDec statement Assignment 4544 x++ x += 1 4545 x-- x -= 1 4546 </pre> 4547 4548 4549 <h3 id="Assignments">Assignments</h3> 4550 4551 <pre class="ebnf"> 4552 Assignment = ExpressionList assign_op ExpressionList . 4553 4554 assign_op = [ add_op | mul_op ] "=" . 4555 </pre> 4556 4557 <p> 4558 Each left-hand side operand must be <a href="#Address_operators">addressable</a>, 4559 a map index expression, or (for <code>=</code> assignments only) the 4560 <a href="#Blank_identifier">blank identifier</a>. 4561 Operands may be parenthesized. 4562 </p> 4563 4564 <pre> 4565 x = 1 4566 *p = f() 4567 a[i] = 23 4568 (k) = <-ch // same as: k = <-ch 4569 </pre> 4570 4571 <p> 4572 An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code> 4573 <code>y</code> where <i>op</i> is a binary <a href="#Arithmetic_operators">arithmetic operator</a> 4574 is equivalent to <code>x</code> <code>=</code> <code>x</code> <i>op</i> 4575 <code>(y)</code> but evaluates <code>x</code> 4576 only once. The <i>op</i><code>=</code> construct is a single token. 4577 In assignment operations, both the left- and right-hand expression lists 4578 must contain exactly one single-valued expression, and the left-hand 4579 expression must not be the blank identifier. 4580 </p> 4581 4582 <pre> 4583 a[i] <<= 2 4584 i &^= 1<<n 4585 </pre> 4586 4587 <p> 4588 A tuple assignment assigns the individual elements of a multi-valued 4589 operation to a list of variables. There are two forms. In the 4590 first, the right hand operand is a single multi-valued expression 4591 such as a function call, a <a href="#Channel_types">channel</a> or 4592 <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>. 4593 The number of operands on the left 4594 hand side must match the number of values. For instance, if 4595 <code>f</code> is a function returning two values, 4596 </p> 4597 4598 <pre> 4599 x, y = f() 4600 </pre> 4601 4602 <p> 4603 assigns the first value to <code>x</code> and the second to <code>y</code>. 4604 In the second form, the number of operands on the left must equal the number 4605 of expressions on the right, each of which must be single-valued, and the 4606 <i>n</i>th expression on the right is assigned to the <i>n</i>th 4607 operand on the left: 4608 </p> 4609 4610 <pre> 4611 one, two, three = '', '', '' 4612 </pre> 4613 4614 <p> 4615 The <a href="#Blank_identifier">blank identifier</a> provides a way to 4616 ignore right-hand side values in an assignment: 4617 </p> 4618 4619 <pre> 4620 _ = x // evaluate x but ignore it 4621 x, _ = f() // evaluate f() but ignore second result value 4622 </pre> 4623 4624 <p> 4625 The assignment proceeds in two phases. 4626 First, the operands of <a href="#Index_expressions">index expressions</a> 4627 and <a href="#Address_operators">pointer indirections</a> 4628 (including implicit pointer indirections in <a href="#Selectors">selectors</a>) 4629 on the left and the expressions on the right are all 4630 <a href="#Order_of_evaluation">evaluated in the usual order</a>. 4631 Second, the assignments are carried out in left-to-right order. 4632 </p> 4633 4634 <pre> 4635 a, b = b, a // exchange a and b 4636 4637 x := []int{1, 2, 3} 4638 i := 0 4639 i, x[i] = 1, 2 // set i = 1, x[0] = 2 4640 4641 i = 0 4642 x[i], i = 2, 1 // set x[0] = 2, i = 1 4643 4644 x[0], x[0] = 1, 2 // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end) 4645 4646 x[1], x[3] = 4, 5 // set x[1] = 4, then panic setting x[3] = 5. 4647 4648 type Point struct { x, y int } 4649 var p *Point 4650 x[2], p.x = 6, 7 // set x[2] = 6, then panic setting p.x = 7 4651 4652 i = 2 4653 x = []int{3, 5, 7} 4654 for i, x[i] = range x { // set i, x[2] = 0, x[0] 4655 break 4656 } 4657 // after this loop, i == 0 and x == []int{3, 5, 3} 4658 </pre> 4659 4660 <p> 4661 In assignments, each value must be <a href="#Assignability">assignable</a> 4662 to the type of the operand to which it is assigned, with the following special cases: 4663 </p> 4664 4665 <ol> 4666 <li> 4667 Any typed value may be assigned to the blank identifier. 4668 </li> 4669 4670 <li> 4671 If an untyped constant 4672 is assigned to a variable of interface type or the blank identifier, 4673 the constant is first <a href="#Conversions">converted</a> to its 4674 <a href="#Constants">default type</a>. 4675 </li> 4676 4677 <li> 4678 If an untyped boolean value is assigned to a variable of interface type or 4679 the blank identifier, it is first converted to type <code>bool</code>. 4680 </li> 4681 </ol> 4682 4683 <h3 id="If_statements">If statements</h3> 4684 4685 <p> 4686 "If" statements specify the conditional execution of two branches 4687 according to the value of a boolean expression. If the expression 4688 evaluates to true, the "if" branch is executed, otherwise, if 4689 present, the "else" branch is executed. 4690 </p> 4691 4692 <pre class="ebnf"> 4693 IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] . 4694 </pre> 4695 4696 <pre> 4697 if x > max { 4698 x = max 4699 } 4700 </pre> 4701 4702 <p> 4703 The expression may be preceded by a simple statement, which 4704 executes before the expression is evaluated. 4705 </p> 4706 4707 <pre> 4708 if x := f(); x < y { 4709 return x 4710 } else if x > z { 4711 return z 4712 } else { 4713 return y 4714 } 4715 </pre> 4716 4717 4718 <h3 id="Switch_statements">Switch statements</h3> 4719 4720 <p> 4721 "Switch" statements provide multi-way execution. 4722 An expression or type specifier is compared to the "cases" 4723 inside the "switch" to determine which branch 4724 to execute. 4725 </p> 4726 4727 <pre class="ebnf"> 4728 SwitchStmt = ExprSwitchStmt | TypeSwitchStmt . 4729 </pre> 4730 4731 <p> 4732 There are two forms: expression switches and type switches. 4733 In an expression switch, the cases contain expressions that are compared 4734 against the value of the switch expression. 4735 In a type switch, the cases contain types that are compared against the 4736 type of a specially annotated switch expression. 4737 The switch expression is evaluated exactly once in a switch statement. 4738 </p> 4739 4740 <h4 id="Expression_switches">Expression switches</h4> 4741 4742 <p> 4743 In an expression switch, 4744 the switch expression is evaluated and 4745 the case expressions, which need not be constants, 4746 are evaluated left-to-right and top-to-bottom; the first one that equals the 4747 switch expression 4748 triggers execution of the statements of the associated case; 4749 the other cases are skipped. 4750 If no case matches and there is a "default" case, 4751 its statements are executed. 4752 There can be at most one default case and it may appear anywhere in the 4753 "switch" statement. 4754 A missing switch expression is equivalent to the boolean value 4755 <code>true</code>. 4756 </p> 4757 4758 <pre class="ebnf"> 4759 ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" . 4760 ExprCaseClause = ExprSwitchCase ":" StatementList . 4761 ExprSwitchCase = "case" ExpressionList | "default" . 4762 </pre> 4763 4764 <p> 4765 If the switch expression evaluates to an untyped constant, it is first 4766 <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>; 4767 if it is an untyped boolean value, it is first converted to type <code>bool</code>. 4768 The predeclared untyped value <code>nil</code> cannot be used as a switch expression. 4769 </p> 4770 4771 <p> 4772 If a case expression is untyped, it is first <a href="#Conversions">converted</a> 4773 to the type of the switch expression. 4774 For each (possibly converted) case expression <code>x</code> and the value <code>t</code> 4775 of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>. 4776 </p> 4777 4778 <p> 4779 In other words, the switch expression is treated as if it were used to declare and 4780 initialize a temporary variable <code>t</code> without explicit type; it is that 4781 value of <code>t</code> against which each case expression <code>x</code> is tested 4782 for equality. 4783 </p> 4784 4785 <p> 4786 In a case or default clause, the last non-empty statement 4787 may be a (possibly <a href="#Labeled_statements">labeled</a>) 4788 <a href="#Fallthrough_statements">"fallthrough" statement</a> to 4789 indicate that control should flow from the end of this clause to 4790 the first statement of the next clause. 4791 Otherwise control flows to the end of the "switch" statement. 4792 A "fallthrough" statement may appear as the last statement of all 4793 but the last clause of an expression switch. 4794 </p> 4795 4796 <p> 4797 The switch expression may be preceded by a simple statement, which 4798 executes before the expression is evaluated. 4799 </p> 4800 4801 <pre> 4802 switch tag { 4803 default: s3() 4804 case 0, 1, 2, 3: s1() 4805 case 4, 5, 6, 7: s2() 4806 } 4807 4808 switch x := f(); { // missing switch expression means "true" 4809 case x < 0: return -x 4810 default: return x 4811 } 4812 4813 switch { 4814 case x < y: f1() 4815 case x < z: f2() 4816 case x == 4: f3() 4817 } 4818 </pre> 4819 4820 <p> 4821 Implementation restriction: A compiler may disallow multiple case 4822 expressions evaluating to the same constant. 4823 For instance, the current compilers disallow duplicate integer, 4824 floating point, or string constants in case expressions. 4825 </p> 4826 4827 <h4 id="Type_switches">Type switches</h4> 4828 4829 <p> 4830 A type switch compares types rather than values. It is otherwise similar 4831 to an expression switch. It is marked by a special switch expression that 4832 has the form of a <a href="#Type_assertions">type assertion</a> 4833 using the reserved word <code>type</code> rather than an actual type: 4834 </p> 4835 4836 <pre> 4837 switch x.(type) { 4838 // cases 4839 } 4840 </pre> 4841 4842 <p> 4843 Cases then match actual types <code>T</code> against the dynamic type of the 4844 expression <code>x</code>. As with type assertions, <code>x</code> must be of 4845 <a href="#Interface_types">interface type</a>, and each non-interface type 4846 <code>T</code> listed in a case must implement the type of <code>x</code>. 4847 The types listed in the cases of a type switch must all be 4848 <a href="#Type_identity">different</a>. 4849 </p> 4850 4851 <pre class="ebnf"> 4852 TypeSwitchStmt = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" . 4853 TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" . 4854 TypeCaseClause = TypeSwitchCase ":" StatementList . 4855 TypeSwitchCase = "case" TypeList | "default" . 4856 TypeList = Type { "," Type } . 4857 </pre> 4858 4859 <p> 4860 The TypeSwitchGuard may include a 4861 <a href="#Short_variable_declarations">short variable declaration</a>. 4862 When that form is used, the variable is declared at the end of the 4863 TypeSwitchCase in the <a href="#Blocks">implicit block</a> of each clause. 4864 In clauses with a case listing exactly one type, the variable 4865 has that type; otherwise, the variable has the type of the expression 4866 in the TypeSwitchGuard. 4867 </p> 4868 4869 <p> 4870 Instead of a type, a case may use the predeclared identifier 4871 <a href="#Predeclared_identifiers"><code>nil</code></a>; 4872 that case is selected when the expression in the TypeSwitchGuard 4873 is a <code>nil</code> interface value. 4874 There may be at most one <code>nil</code> case. 4875 </p> 4876 4877 <p> 4878 Given an expression <code>x</code> of type <code>interface{}</code>, 4879 the following type switch: 4880 </p> 4881 4882 <pre> 4883 switch i := x.(type) { 4884 case nil: 4885 printString("x is nil") // type of i is type of x (interface{}) 4886 case int: 4887 printInt(i) // type of i is int 4888 case float64: 4889 printFloat64(i) // type of i is float64 4890 case func(int) float64: 4891 printFunction(i) // type of i is func(int) float64 4892 case bool, string: 4893 printString("type is bool or string") // type of i is type of x (interface{}) 4894 default: 4895 printString("don't know the type") // type of i is type of x (interface{}) 4896 } 4897 </pre> 4898 4899 <p> 4900 could be rewritten: 4901 </p> 4902 4903 <pre> 4904 v := x // x is evaluated exactly once 4905 if v == nil { 4906 i := v // type of i is type of x (interface{}) 4907 printString("x is nil") 4908 } else if i, isInt := v.(int); isInt { 4909 printInt(i) // type of i is int 4910 } else if i, isFloat64 := v.(float64); isFloat64 { 4911 printFloat64(i) // type of i is float64 4912 } else if i, isFunc := v.(func(int) float64); isFunc { 4913 printFunction(i) // type of i is func(int) float64 4914 } else { 4915 _, isBool := v.(bool) 4916 _, isString := v.(string) 4917 if isBool || isString { 4918 i := v // type of i is type of x (interface{}) 4919 printString("type is bool or string") 4920 } else { 4921 i := v // type of i is type of x (interface{}) 4922 printString("don't know the type") 4923 } 4924 } 4925 </pre> 4926 4927 <p> 4928 The type switch guard may be preceded by a simple statement, which 4929 executes before the guard is evaluated. 4930 </p> 4931 4932 <p> 4933 The "fallthrough" statement is not permitted in a type switch. 4934 </p> 4935 4936 <h3 id="For_statements">For statements</h3> 4937 4938 <p> 4939 A "for" statement specifies repeated execution of a block. There are three forms: 4940 The iteration may be controlled by a single condition, a "for" clause, or a "range" clause. 4941 </p> 4942 4943 <pre class="ebnf"> 4944 ForStmt = "for" [ Condition | ForClause | RangeClause ] Block . 4945 Condition = Expression . 4946 </pre> 4947 4948 <h4 id="For_condition">For statements with single condition</h4> 4949 4950 <p> 4951 In its simplest form, a "for" statement specifies the repeated execution of 4952 a block as long as a boolean condition evaluates to true. 4953 The condition is evaluated before each iteration. 4954 If the condition is absent, it is equivalent to the boolean value 4955 <code>true</code>. 4956 </p> 4957 4958 <pre> 4959 for a < b { 4960 a *= 2 4961 } 4962 </pre> 4963 4964 <h4 id="For_clause">For statements with <code>for</code> clause</h4> 4965 4966 <p> 4967 A "for" statement with a ForClause is also controlled by its condition, but 4968 additionally it may specify an <i>init</i> 4969 and a <i>post</i> statement, such as an assignment, 4970 an increment or decrement statement. The init statement may be a 4971 <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not. 4972 Variables declared by the init statement are re-used in each iteration. 4973 </p> 4974 4975 <pre class="ebnf"> 4976 ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] . 4977 InitStmt = SimpleStmt . 4978 PostStmt = SimpleStmt . 4979 </pre> 4980 4981 <pre> 4982 for i := 0; i < 10; i++ { 4983 f(i) 4984 } 4985 </pre> 4986 4987 <p> 4988 If non-empty, the init statement is executed once before evaluating the 4989 condition for the first iteration; 4990 the post statement is executed after each execution of the block (and 4991 only if the block was executed). 4992 Any element of the ForClause may be empty but the 4993 <a href="#Semicolons">semicolons</a> are 4994 required unless there is only a condition. 4995 If the condition is absent, it is equivalent to the boolean value 4996 <code>true</code>. 4997 </p> 4998 4999 <pre> 5000 for cond { S() } is the same as for ; cond ; { S() } 5001 for { S() } is the same as for true { S() } 5002 </pre> 5003 5004 <h4 id="For_range">For statements with <code>range</code> clause</h4> 5005 5006 <p> 5007 A "for" statement with a "range" clause 5008 iterates through all entries of an array, slice, string or map, 5009 or values received on a channel. For each entry it assigns <i>iteration values</i> 5010 to corresponding <i>iteration variables</i> if present and then executes the block. 5011 </p> 5012 5013 <pre class="ebnf"> 5014 RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression . 5015 </pre> 5016 5017 <p> 5018 The expression on the right in the "range" clause is called the <i>range expression</i>, 5019 which may be an array, pointer to an array, slice, string, map, or channel permitting 5020 <a href="#Receive_operator">receive operations</a>. 5021 As with an assignment, if present the operands on the left must be 5022 <a href="#Address_operators">addressable</a> or map index expressions; they 5023 denote the iteration variables. If the range expression is a channel, at most 5024 one iteration variable is permitted, otherwise there may be up to two. 5025 If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>, 5026 the range clause is equivalent to the same clause without that identifier. 5027 </p> 5028 5029 <p> 5030 The range expression <code>x</code> is evaluated once before beginning the loop, 5031 with one exception: if at most one iteration variable is present and 5032 <code>len(x)</code> is <a href="#Length_and_capacity">constant</a>, 5033 the range expression is not evaluated. 5034 </p> 5035 5036 <p> 5037 Function calls on the left are evaluated once per iteration. 5038 For each iteration, iteration values are produced as follows 5039 if the respective iteration variables are present: 5040 </p> 5041 5042 <pre class="grammar"> 5043 Range expression 1st value 2nd value 5044 5045 array or slice a [n]E, *[n]E, or []E index i int a[i] E 5046 string s string type index i int see below rune 5047 map m map[K]V key k K m[k] V 5048 channel c chan E, <-chan E element e E 5049 </pre> 5050 5051 <ol> 5052 <li> 5053 For an array, pointer to array, or slice value <code>a</code>, the index iteration 5054 values are produced in increasing order, starting at element index 0. 5055 If at most one iteration variable is present, the range loop produces 5056 iteration values from 0 up to <code>len(a)-1</code> and does not index into the array 5057 or slice itself. For a <code>nil</code> slice, the number of iterations is 0. 5058 </li> 5059 5060 <li> 5061 For a string value, the "range" clause iterates over the Unicode code points 5062 in the string starting at byte index 0. On successive iterations, the index value will be the 5063 index of the first byte of successive UTF-8-encoded code points in the string, 5064 and the second value, of type <code>rune</code>, will be the value of 5065 the corresponding code point. If the iteration encounters an invalid 5066 UTF-8 sequence, the second value will be <code>0xFFFD</code>, 5067 the Unicode replacement character, and the next iteration will advance 5068 a single byte in the string. 5069 </li> 5070 5071 <li> 5072 The iteration order over maps is not specified 5073 and is not guaranteed to be the same from one iteration to the next. 5074 If a map entry that has not yet been reached is removed during iteration, 5075 the corresponding iteration value will not be produced. If a map entry is 5076 created during iteration, that entry may be produced during the iteration or 5077 may be skipped. The choice may vary for each entry created and from one 5078 iteration to the next. 5079 If the map is <code>nil</code>, the number of iterations is 0. 5080 </li> 5081 5082 <li> 5083 For channels, the iteration values produced are the successive values sent on 5084 the channel until the channel is <a href="#Close">closed</a>. If the channel 5085 is <code>nil</code>, the range expression blocks forever. 5086 </li> 5087 </ol> 5088 5089 <p> 5090 The iteration values are assigned to the respective 5091 iteration variables as in an <a href="#Assignments">assignment statement</a>. 5092 </p> 5093 5094 <p> 5095 The iteration variables may be declared by the "range" clause using a form of 5096 <a href="#Short_variable_declarations">short variable declaration</a> 5097 (<code>:=</code>). 5098 In this case their types are set to the types of the respective iteration values 5099 and their <a href="#Declarations_and_scope">scope</a> is the block of the "for" 5100 statement; they are re-used in each iteration. 5101 If the iteration variables are declared outside the "for" statement, 5102 after execution their values will be those of the last iteration. 5103 </p> 5104 5105 <pre> 5106 var testdata *struct { 5107 a *[7]int 5108 } 5109 for i, _ := range testdata.a { 5110 // testdata.a is never evaluated; len(testdata.a) is constant 5111 // i ranges from 0 to 6 5112 f(i) 5113 } 5114 5115 var a [10]string 5116 for i, s := range a { 5117 // type of i is int 5118 // type of s is string 5119 // s == a[i] 5120 g(i, s) 5121 } 5122 5123 var key string 5124 var val interface {} // element type of m is assignable to val 5125 m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6} 5126 for key, val = range m { 5127 h(key, val) 5128 } 5129 // key == last map key encountered in iteration 5130 // val == map[key] 5131 5132 var ch chan Work = producer() 5133 for w := range ch { 5134 doWork(w) 5135 } 5136 5137 // empty a channel 5138 for range ch {} 5139 </pre> 5140 5141 5142 <h3 id="Go_statements">Go statements</h3> 5143 5144 <p> 5145 A "go" statement starts the execution of a function call 5146 as an independent concurrent thread of control, or <i>goroutine</i>, 5147 within the same address space. 5148 </p> 5149 5150 <pre class="ebnf"> 5151 GoStmt = "go" Expression . 5152 </pre> 5153 5154 <p> 5155 The expression must be a function or method call; it cannot be parenthesized. 5156 Calls of built-in functions are restricted as for 5157 <a href="#Expression_statements">expression statements</a>. 5158 </p> 5159 5160 <p> 5161 The function value and parameters are 5162 <a href="#Calls">evaluated as usual</a> 5163 in the calling goroutine, but 5164 unlike with a regular call, program execution does not wait 5165 for the invoked function to complete. 5166 Instead, the function begins executing independently 5167 in a new goroutine. 5168 When the function terminates, its goroutine also terminates. 5169 If the function has any return values, they are discarded when the 5170 function completes. 5171 </p> 5172 5173 <pre> 5174 go Server() 5175 go func(ch chan<- bool) { for { sleep(10); ch <- true }} (c) 5176 </pre> 5177 5178 5179 <h3 id="Select_statements">Select statements</h3> 5180 5181 <p> 5182 A "select" statement chooses which of a set of possible 5183 <a href="#Send_statements">send</a> or 5184 <a href="#Receive_operator">receive</a> 5185 operations will proceed. 5186 It looks similar to a 5187 <a href="#Switch_statements">"switch"</a> statement but with the 5188 cases all referring to communication operations. 5189 </p> 5190 5191 <pre class="ebnf"> 5192 SelectStmt = "select" "{" { CommClause } "}" . 5193 CommClause = CommCase ":" StatementList . 5194 CommCase = "case" ( SendStmt | RecvStmt ) | "default" . 5195 RecvStmt = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr . 5196 RecvExpr = Expression . 5197 </pre> 5198 5199 <p> 5200 A case with a RecvStmt may assign the result of a RecvExpr to one or 5201 two variables, which may be declared using a 5202 <a href="#Short_variable_declarations">short variable declaration</a>. 5203 The RecvExpr must be a (possibly parenthesized) receive operation. 5204 There can be at most one default case and it may appear anywhere 5205 in the list of cases. 5206 </p> 5207 5208 <p> 5209 Execution of a "select" statement proceeds in several steps: 5210 </p> 5211 5212 <ol> 5213 <li> 5214 For all the cases in the statement, the channel operands of receive operations 5215 and the channel and right-hand-side expressions of send statements are 5216 evaluated exactly once, in source order, upon entering the "select" statement. 5217 The result is a set of channels to receive from or send to, 5218 and the corresponding values to send. 5219 Any side effects in that evaluation will occur irrespective of which (if any) 5220 communication operation is selected to proceed. 5221 Expressions on the left-hand side of a RecvStmt with a short variable declaration 5222 or assignment are not yet evaluated. 5223 </li> 5224 5225 <li> 5226 If one or more of the communications can proceed, 5227 a single one that can proceed is chosen via a uniform pseudo-random selection. 5228 Otherwise, if there is a default case, that case is chosen. 5229 If there is no default case, the "select" statement blocks until 5230 at least one of the communications can proceed. 5231 </li> 5232 5233 <li> 5234 Unless the selected case is the default case, the respective communication 5235 operation is executed. 5236 </li> 5237 5238 <li> 5239 If the selected case is a RecvStmt with a short variable declaration or 5240 an assignment, the left-hand side expressions are evaluated and the 5241 received value (or values) are assigned. 5242 </li> 5243 5244 <li> 5245 The statement list of the selected case is executed. 5246 </li> 5247 </ol> 5248 5249 <p> 5250 Since communication on <code>nil</code> channels can never proceed, 5251 a select with only <code>nil</code> channels and no default case blocks forever. 5252 </p> 5253 5254 <pre> 5255 var a []int 5256 var c, c1, c2, c3, c4 chan int 5257 var i1, i2 int 5258 select { 5259 case i1 = <-c1: 5260 print("received ", i1, " from c1\n") 5261 case c2 <- i2: 5262 print("sent ", i2, " to c2\n") 5263 case i3, ok := (<-c3): // same as: i3, ok := <-c3 5264 if ok { 5265 print("received ", i3, " from c3\n") 5266 } else { 5267 print("c3 is closed\n") 5268 } 5269 case a[f()] = <-c4: 5270 // same as: 5271 // case t := <-c4 5272 // a[f()] = t 5273 default: 5274 print("no communication\n") 5275 } 5276 5277 for { // send random sequence of bits to c 5278 select { 5279 case c <- 0: // note: no statement, no fallthrough, no folding of cases 5280 case c <- 1: 5281 } 5282 } 5283 5284 select {} // block forever 5285 </pre> 5286 5287 5288 <h3 id="Return_statements">Return statements</h3> 5289 5290 <p> 5291 A "return" statement in a function <code>F</code> terminates the execution 5292 of <code>F</code>, and optionally provides one or more result values. 5293 Any functions <a href="#Defer_statements">deferred</a> by <code>F</code> 5294 are executed before <code>F</code> returns to its caller. 5295 </p> 5296 5297 <pre class="ebnf"> 5298 ReturnStmt = "return" [ ExpressionList ] . 5299 </pre> 5300 5301 <p> 5302 In a function without a result type, a "return" statement must not 5303 specify any result values. 5304 </p> 5305 <pre> 5306 func noResult() { 5307 return 5308 } 5309 </pre> 5310 5311 <p> 5312 There are three ways to return values from a function with a result 5313 type: 5314 </p> 5315 5316 <ol> 5317 <li>The return value or values may be explicitly listed 5318 in the "return" statement. Each expression must be single-valued 5319 and <a href="#Assignability">assignable</a> 5320 to the corresponding element of the function's result type. 5321 <pre> 5322 func simpleF() int { 5323 return 2 5324 } 5325 5326 func complexF1() (re float64, im float64) { 5327 return -7.0, -4.0 5328 } 5329 </pre> 5330 </li> 5331 <li>The expression list in the "return" statement may be a single 5332 call to a multi-valued function. The effect is as if each value 5333 returned from that function were assigned to a temporary 5334 variable with the type of the respective value, followed by a 5335 "return" statement listing these variables, at which point the 5336 rules of the previous case apply. 5337 <pre> 5338 func complexF2() (re float64, im float64) { 5339 return complexF1() 5340 } 5341 </pre> 5342 </li> 5343 <li>The expression list may be empty if the function's result 5344 type specifies names for its <a href="#Function_types">result parameters</a>. 5345 The result parameters act as ordinary local variables 5346 and the function may assign values to them as necessary. 5347 The "return" statement returns the values of these variables. 5348 <pre> 5349 func complexF3() (re float64, im float64) { 5350 re = 7.0 5351 im = 4.0 5352 return 5353 } 5354 5355 func (devnull) Write(p []byte) (n int, _ error) { 5356 n = len(p) 5357 return 5358 } 5359 </pre> 5360 </li> 5361 </ol> 5362 5363 <p> 5364 Regardless of how they are declared, all the result values are initialized to 5365 the <a href="#The_zero_value">zero values</a> for their type upon entry to the 5366 function. A "return" statement that specifies results sets the result parameters before 5367 any deferred functions are executed. 5368 </p> 5369 5370 <p> 5371 Implementation restriction: A compiler may disallow an empty expression list 5372 in a "return" statement if a different entity (constant, type, or variable) 5373 with the same name as a result parameter is in 5374 <a href="#Declarations_and_scope">scope</a> at the place of the return. 5375 </p> 5376 5377 <pre> 5378 func f(n int) (res int, err error) { 5379 if _, err := f(n-1); err != nil { 5380 return // invalid return statement: err is shadowed 5381 } 5382 return 5383 } 5384 </pre> 5385 5386 <h3 id="Break_statements">Break statements</h3> 5387 5388 <p> 5389 A "break" statement terminates execution of the innermost 5390 <a href="#For_statements">"for"</a>, 5391 <a href="#Switch_statements">"switch"</a>, or 5392 <a href="#Select_statements">"select"</a> statement 5393 within the same function. 5394 </p> 5395 5396 <pre class="ebnf"> 5397 BreakStmt = "break" [ Label ] . 5398 </pre> 5399 5400 <p> 5401 If there is a label, it must be that of an enclosing 5402 "for", "switch", or "select" statement, 5403 and that is the one whose execution terminates. 5404 </p> 5405 5406 <pre> 5407 OuterLoop: 5408 for i = 0; i < n; i++ { 5409 for j = 0; j < m; j++ { 5410 switch a[i][j] { 5411 case nil: 5412 state = Error 5413 break OuterLoop 5414 case item: 5415 state = Found 5416 break OuterLoop 5417 } 5418 } 5419 } 5420 </pre> 5421 5422 <h3 id="Continue_statements">Continue statements</h3> 5423 5424 <p> 5425 A "continue" statement begins the next iteration of the 5426 innermost <a href="#For_statements">"for" loop</a> at its post statement. 5427 The "for" loop must be within the same function. 5428 </p> 5429 5430 <pre class="ebnf"> 5431 ContinueStmt = "continue" [ Label ] . 5432 </pre> 5433 5434 <p> 5435 If there is a label, it must be that of an enclosing 5436 "for" statement, and that is the one whose execution 5437 advances. 5438 </p> 5439 5440 <pre> 5441 RowLoop: 5442 for y, row := range rows { 5443 for x, data := range row { 5444 if data == endOfRow { 5445 continue RowLoop 5446 } 5447 row[x] = data + bias(x, y) 5448 } 5449 } 5450 </pre> 5451 5452 <h3 id="Goto_statements">Goto statements</h3> 5453 5454 <p> 5455 A "goto" statement transfers control to the statement with the corresponding label 5456 within the same function. 5457 </p> 5458 5459 <pre class="ebnf"> 5460 GotoStmt = "goto" Label . 5461 </pre> 5462 5463 <pre> 5464 goto Error 5465 </pre> 5466 5467 <p> 5468 Executing the "goto" statement must not cause any variables to come into 5469 <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto. 5470 For instance, this example: 5471 </p> 5472 5473 <pre> 5474 goto L // BAD 5475 v := 3 5476 L: 5477 </pre> 5478 5479 <p> 5480 is erroneous because the jump to label <code>L</code> skips 5481 the creation of <code>v</code>. 5482 </p> 5483 5484 <p> 5485 A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block. 5486 For instance, this example: 5487 </p> 5488 5489 <pre> 5490 if n%2 == 1 { 5491 goto L1 5492 } 5493 for n > 0 { 5494 f() 5495 n-- 5496 L1: 5497 f() 5498 n-- 5499 } 5500 </pre> 5501 5502 <p> 5503 is erroneous because the label <code>L1</code> is inside 5504 the "for" statement's block but the <code>goto</code> is not. 5505 </p> 5506 5507 <h3 id="Fallthrough_statements">Fallthrough statements</h3> 5508 5509 <p> 5510 A "fallthrough" statement transfers control to the first statement of the 5511 next case clause in an <a href="#Expression_switches">expression "switch" statement</a>. 5512 It may be used only as the final non-empty statement in such a clause. 5513 </p> 5514 5515 <pre class="ebnf"> 5516 FallthroughStmt = "fallthrough" . 5517 </pre> 5518 5519 5520 <h3 id="Defer_statements">Defer statements</h3> 5521 5522 <p> 5523 A "defer" statement invokes a function whose execution is deferred 5524 to the moment the surrounding function returns, either because the 5525 surrounding function executed a <a href="#Return_statements">return statement</a>, 5526 reached the end of its <a href="#Function_declarations">function body</a>, 5527 or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>. 5528 </p> 5529 5530 <pre class="ebnf"> 5531 DeferStmt = "defer" Expression . 5532 </pre> 5533 5534 <p> 5535 The expression must be a function or method call; it cannot be parenthesized. 5536 Calls of built-in functions are restricted as for 5537 <a href="#Expression_statements">expression statements</a>. 5538 </p> 5539 5540 <p> 5541 Each time a "defer" statement 5542 executes, the function value and parameters to the call are 5543 <a href="#Calls">evaluated as usual</a> 5544 and saved anew but the actual function is not invoked. 5545 Instead, deferred functions are invoked immediately before 5546 the surrounding function returns, in the reverse order 5547 they were deferred. 5548 If a deferred function value evaluates 5549 to <code>nil</code>, execution <a href="#Handling_panics">panics</a> 5550 when the function is invoked, not when the "defer" statement is executed. 5551 </p> 5552 5553 <p> 5554 For instance, if the deferred function is 5555 a <a href="#Function_literals">function literal</a> and the surrounding 5556 function has <a href="#Function_types">named result parameters</a> that 5557 are in scope within the literal, the deferred function may access and modify 5558 the result parameters before they are returned. 5559 If the deferred function has any return values, they are discarded when 5560 the function completes. 5561 (See also the section on <a href="#Handling_panics">handling panics</a>.) 5562 </p> 5563 5564 <pre> 5565 lock(l) 5566 defer unlock(l) // unlocking happens before surrounding function returns 5567 5568 // prints 3 2 1 0 before surrounding function returns 5569 for i := 0; i <= 3; i++ { 5570 defer fmt.Print(i) 5571 } 5572 5573 // f returns 1 5574 func f() (result int) { 5575 defer func() { 5576 result++ 5577 }() 5578 return 0 5579 } 5580 </pre> 5581 5582 <h2 id="Built-in_functions">Built-in functions</h2> 5583 5584 <p> 5585 Built-in functions are 5586 <a href="#Predeclared_identifiers">predeclared</a>. 5587 They are called like any other function but some of them 5588 accept a type instead of an expression as the first argument. 5589 </p> 5590 5591 <p> 5592 The built-in functions do not have standard Go types, 5593 so they can only appear in <a href="#Calls">call expressions</a>; 5594 they cannot be used as function values. 5595 </p> 5596 5597 <h3 id="Close">Close</h3> 5598 5599 <p> 5600 For a channel <code>c</code>, the built-in function <code>close(c)</code> 5601 records that no more values will be sent on the channel. 5602 It is an error if <code>c</code> is a receive-only channel. 5603 Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>. 5604 Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>. 5605 After calling <code>close</code>, and after any previously 5606 sent values have been received, receive operations will return 5607 the zero value for the channel's type without blocking. 5608 The multi-valued <a href="#Receive_operator">receive operation</a> 5609 returns a received value along with an indication of whether the channel is closed. 5610 </p> 5611 5612 5613 <h3 id="Length_and_capacity">Length and capacity</h3> 5614 5615 <p> 5616 The built-in functions <code>len</code> and <code>cap</code> take arguments 5617 of various types and return a result of type <code>int</code>. 5618 The implementation guarantees that the result always fits into an <code>int</code>. 5619 </p> 5620 5621 <pre class="grammar"> 5622 Call Argument type Result 5623 5624 len(s) string type string length in bytes 5625 [n]T, *[n]T array length (== n) 5626 []T slice length 5627 map[K]T map length (number of defined keys) 5628 chan T number of elements queued in channel buffer 5629 5630 cap(s) [n]T, *[n]T array length (== n) 5631 []T slice capacity 5632 chan T channel buffer capacity 5633 </pre> 5634 5635 <p> 5636 The capacity of a slice is the number of elements for which there is 5637 space allocated in the underlying array. 5638 At any time the following relationship holds: 5639 </p> 5640 5641 <pre> 5642 0 <= len(s) <= cap(s) 5643 </pre> 5644 5645 <p> 5646 The length of a <code>nil</code> slice, map or channel is 0. 5647 The capacity of a <code>nil</code> slice or channel is 0. 5648 </p> 5649 5650 <p> 5651 The expression <code>len(s)</code> is <a href="#Constants">constant</a> if 5652 <code>s</code> is a string constant. The expressions <code>len(s)</code> and 5653 <code>cap(s)</code> are constants if the type of <code>s</code> is an array 5654 or pointer to an array and the expression <code>s</code> does not contain 5655 <a href="#Receive_operator">channel receives</a> or (non-constant) 5656 <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated. 5657 Otherwise, invocations of <code>len</code> and <code>cap</code> are not 5658 constant and <code>s</code> is evaluated. 5659 </p> 5660 5661 <pre> 5662 const ( 5663 c1 = imag(2i) // imag(2i) = 2.0 is a constant 5664 c2 = len([10]float64{2}) // [10]float64{2} contains no function calls 5665 c3 = len([10]float64{c1}) // [10]float64{c1} contains no function calls 5666 c4 = len([10]float64{imag(2i)}) // imag(2i) is a constant and no function call is issued 5667 c5 = len([10]float64{imag(z)}) // invalid: imag(z) is a (non-constant) function call 5668 ) 5669 var z complex128 5670 </pre> 5671 5672 <h3 id="Allocation">Allocation</h3> 5673 5674 <p> 5675 The built-in function <code>new</code> takes a type <code>T</code>, 5676 allocates storage for a <a href="#Variables">variable</a> of that type 5677 at run time, and returns a value of type <code>*T</code> 5678 <a href="#Pointer_types">pointing</a> to it. 5679 The variable is initialized as described in the section on 5680 <a href="#The_zero_value">initial values</a>. 5681 </p> 5682 5683 <pre class="grammar"> 5684 new(T) 5685 </pre> 5686 5687 <p> 5688 For instance 5689 </p> 5690 5691 <pre> 5692 type S struct { a int; b float64 } 5693 new(S) 5694 </pre> 5695 5696 <p> 5697 allocates storage for a variable of type <code>S</code>, 5698 initializes it (<code>a=0</code>, <code>b=0.0</code>), 5699 and returns a value of type <code>*S</code> containing the address 5700 of the location. 5701 </p> 5702 5703 <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3> 5704 5705 <p> 5706 The built-in function <code>make</code> takes a type <code>T</code>, 5707 which must be a slice, map or channel type, 5708 optionally followed by a type-specific list of expressions. 5709 It returns a value of type <code>T</code> (not <code>*T</code>). 5710 The memory is initialized as described in the section on 5711 <a href="#The_zero_value">initial values</a>. 5712 </p> 5713 5714 <pre class="grammar"> 5715 Call Type T Result 5716 5717 make(T, n) slice slice of type T with length n and capacity n 5718 make(T, n, m) slice slice of type T with length n and capacity m 5719 5720 make(T) map map of type T 5721 make(T, n) map map of type T with initial space for approximately n elements 5722 5723 make(T) channel unbuffered channel of type T 5724 make(T, n) channel buffered channel of type T, buffer size n 5725 </pre> 5726 5727 5728 <p> 5729 Each of the size arguments <code>n</code> and <code>m</code> must be of integer type 5730 or an untyped <a href="#Constants">constant</a>. 5731 A constant size argument must be non-negative and <a href="#Representability">representable</a> 5732 by a value of type <code>int</code>; if it is an untyped constant it is given type <code>int</code>. 5733 If both <code>n</code> and <code>m</code> are provided and are constant, then 5734 <code>n</code> must be no larger than <code>m</code>. 5735 If <code>n</code> is negative or larger than <code>m</code> at run time, 5736 a <a href="#Run_time_panics">run-time panic</a> occurs. 5737 </p> 5738 5739 <pre> 5740 s := make([]int, 10, 100) // slice with len(s) == 10, cap(s) == 100 5741 s := make([]int, 1e3) // slice with len(s) == cap(s) == 1000 5742 s := make([]int, 1<<63) // illegal: len(s) is not representable by a value of type int 5743 s := make([]int, 10, 0) // illegal: len(s) > cap(s) 5744 c := make(chan int, 10) // channel with a buffer size of 10 5745 m := make(map[string]int, 100) // map with initial space for approximately 100 elements 5746 </pre> 5747 5748 <p> 5749 Calling <code>make</code> with a map type and size hint <code>n</code> will 5750 create a map with initial space to hold <code>n</code> map elements. 5751 The precise behavior is implementation-dependent. 5752 </p> 5753 5754 5755 <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3> 5756 5757 <p> 5758 The built-in functions <code>append</code> and <code>copy</code> assist in 5759 common slice operations. 5760 For both functions, the result is independent of whether the memory referenced 5761 by the arguments overlaps. 5762 </p> 5763 5764 <p> 5765 The <a href="#Function_types">variadic</a> function <code>append</code> 5766 appends zero or more values <code>x</code> 5767 to <code>s</code> of type <code>S</code>, which must be a slice type, and 5768 returns the resulting slice, also of type <code>S</code>. 5769 The values <code>x</code> are passed to a parameter of type <code>...T</code> 5770 where <code>T</code> is the <a href="#Slice_types">element type</a> of 5771 <code>S</code> and the respective 5772 <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply. 5773 As a special case, <code>append</code> also accepts a first argument 5774 assignable to type <code>[]byte</code> with a second argument of 5775 string type followed by <code>...</code>. This form appends the 5776 bytes of the string. 5777 </p> 5778 5779 <pre class="grammar"> 5780 append(s S, x ...T) S // T is the element type of S 5781 </pre> 5782 5783 <p> 5784 If the capacity of <code>s</code> is not large enough to fit the additional 5785 values, <code>append</code> allocates a new, sufficiently large underlying 5786 array that fits both the existing slice elements and the additional values. 5787 Otherwise, <code>append</code> re-uses the underlying array. 5788 </p> 5789 5790 <pre> 5791 s0 := []int{0, 0} 5792 s1 := append(s0, 2) // append a single element s1 == []int{0, 0, 2} 5793 s2 := append(s1, 3, 5, 7) // append multiple elements s2 == []int{0, 0, 2, 3, 5, 7} 5794 s3 := append(s2, s0...) // append a slice s3 == []int{0, 0, 2, 3, 5, 7, 0, 0} 5795 s4 := append(s3[3:6], s3[2:]...) // append overlapping slice s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0} 5796 5797 var t []interface{} 5798 t = append(t, 42, 3.1415, "foo") // t == []interface{}{42, 3.1415, "foo"} 5799 5800 var b []byte 5801 b = append(b, "bar"...) // append string contents b == []byte{'b', 'a', 'r' } 5802 </pre> 5803 5804 <p> 5805 The function <code>copy</code> copies slice elements from 5806 a source <code>src</code> to a destination <code>dst</code> and returns the 5807 number of elements copied. 5808 Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be 5809 <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>. 5810 The number of elements copied is the minimum of 5811 <code>len(src)</code> and <code>len(dst)</code>. 5812 As a special case, <code>copy</code> also accepts a destination argument assignable 5813 to type <code>[]byte</code> with a source argument of a string type. 5814 This form copies the bytes from the string into the byte slice. 5815 </p> 5816 5817 <pre class="grammar"> 5818 copy(dst, src []T) int 5819 copy(dst []byte, src string) int 5820 </pre> 5821 5822 <p> 5823 Examples: 5824 </p> 5825 5826 <pre> 5827 var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7} 5828 var s = make([]int, 6) 5829 var b = make([]byte, 5) 5830 n1 := copy(s, a[0:]) // n1 == 6, s == []int{0, 1, 2, 3, 4, 5} 5831 n2 := copy(s, s[2:]) // n2 == 4, s == []int{2, 3, 4, 5, 4, 5} 5832 n3 := copy(b, "Hello, World!") // n3 == 5, b == []byte("Hello") 5833 </pre> 5834 5835 5836 <h3 id="Deletion_of_map_elements">Deletion of map elements</h3> 5837 5838 <p> 5839 The built-in function <code>delete</code> removes the element with key 5840 <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The 5841 type of <code>k</code> must be <a href="#Assignability">assignable</a> 5842 to the key type of <code>m</code>. 5843 </p> 5844 5845 <pre class="grammar"> 5846 delete(m, k) // remove element m[k] from map m 5847 </pre> 5848 5849 <p> 5850 If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code> 5851 does not exist, <code>delete</code> is a no-op. 5852 </p> 5853 5854 5855 <h3 id="Complex_numbers">Manipulating complex numbers</h3> 5856 5857 <p> 5858 Three functions assemble and disassemble complex numbers. 5859 The built-in function <code>complex</code> constructs a complex 5860 value from a floating-point real and imaginary part, while 5861 <code>real</code> and <code>imag</code> 5862 extract the real and imaginary parts of a complex value. 5863 </p> 5864 5865 <pre class="grammar"> 5866 complex(realPart, imaginaryPart floatT) complexT 5867 real(complexT) floatT 5868 imag(complexT) floatT 5869 </pre> 5870 5871 <p> 5872 The type of the arguments and return value correspond. 5873 For <code>complex</code>, the two arguments must be of the same 5874 floating-point type and the return type is the complex type 5875 with the corresponding floating-point constituents: 5876 <code>complex64</code> for <code>float32</code> arguments, and 5877 <code>complex128</code> for <code>float64</code> arguments. 5878 If one of the arguments evaluates to an untyped constant, it is first 5879 <a href="#Conversions">converted</a> to the type of the other argument. 5880 If both arguments evaluate to untyped constants, they must be non-complex 5881 numbers or their imaginary parts must be zero, and the return value of 5882 the function is an untyped complex constant. 5883 </p> 5884 5885 <p> 5886 For <code>real</code> and <code>imag</code>, the argument must be 5887 of complex type, and the return type is the corresponding floating-point 5888 type: <code>float32</code> for a <code>complex64</code> argument, and 5889 <code>float64</code> for a <code>complex128</code> argument. 5890 If the argument evaluates to an untyped constant, it must be a number, 5891 and the return value of the function is an untyped floating-point constant. 5892 </p> 5893 5894 <p> 5895 The <code>real</code> and <code>imag</code> functions together form the inverse of 5896 <code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>, 5897 <code>z == Z(complex(real(z), imag(z)))</code>. 5898 </p> 5899 5900 <p> 5901 If the operands of these functions are all constants, the return 5902 value is a constant. 5903 </p> 5904 5905 <pre> 5906 var a = complex(2, -2) // complex128 5907 const b = complex(1.0, -1.4) // untyped complex constant 1 - 1.4i 5908 x := float32(math.Cos(math.Pi/2)) // float32 5909 var c64 = complex(5, -x) // complex64 5910 var s uint = complex(1, 0) // untyped complex constant 1 + 0i can be converted to uint 5911 _ = complex(1, 2<<s) // illegal: 2 assumes floating-point type, cannot shift 5912 var rl = real(c64) // float32 5913 var im = imag(a) // float64 5914 const c = imag(b) // untyped constant -1.4 5915 _ = imag(3 << s) // illegal: 3 assumes complex type, cannot shift 5916 </pre> 5917 5918 <h3 id="Handling_panics">Handling panics</h3> 5919 5920 <p> Two built-in functions, <code>panic</code> and <code>recover</code>, 5921 assist in reporting and handling <a href="#Run_time_panics">run-time panics</a> 5922 and program-defined error conditions. 5923 </p> 5924 5925 <pre class="grammar"> 5926 func panic(interface{}) 5927 func recover() interface{} 5928 </pre> 5929 5930 <p> 5931 While executing a function <code>F</code>, 5932 an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a> 5933 terminates the execution of <code>F</code>. 5934 Any functions <a href="#Defer_statements">deferred</a> by <code>F</code> 5935 are then executed as usual. 5936 Next, any deferred functions run by <code>F's</code> caller are run, 5937 and so on up to any deferred by the top-level function in the executing goroutine. 5938 At that point, the program is terminated and the error 5939 condition is reported, including the value of the argument to <code>panic</code>. 5940 This termination sequence is called <i>panicking</i>. 5941 </p> 5942 5943 <pre> 5944 panic(42) 5945 panic("unreachable") 5946 panic(Error("cannot parse")) 5947 </pre> 5948 5949 <p> 5950 The <code>recover</code> function allows a program to manage behavior 5951 of a panicking goroutine. 5952 Suppose a function <code>G</code> defers a function <code>D</code> that calls 5953 <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code> 5954 is executing. 5955 When the running of deferred functions reaches <code>D</code>, 5956 the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>. 5957 If <code>D</code> returns normally, without starting a new 5958 <code>panic</code>, the panicking sequence stops. In that case, 5959 the state of functions called between <code>G</code> and the call to <code>panic</code> 5960 is discarded, and normal execution resumes. 5961 Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s 5962 execution terminates by returning to its caller. 5963 </p> 5964 5965 <p> 5966 The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds: 5967 </p> 5968 <ul> 5969 <li> 5970 <code>panic</code>'s argument was <code>nil</code>; 5971 </li> 5972 <li> 5973 the goroutine is not panicking; 5974 </li> 5975 <li> 5976 <code>recover</code> was not called directly by a deferred function. 5977 </li> 5978 </ul> 5979 5980 <p> 5981 The <code>protect</code> function in the example below invokes 5982 the function argument <code>g</code> and protects callers from 5983 run-time panics raised by <code>g</code>. 5984 </p> 5985 5986 <pre> 5987 func protect(g func()) { 5988 defer func() { 5989 log.Println("done") // Println executes normally even if there is a panic 5990 if x := recover(); x != nil { 5991 log.Printf("run time panic: %v", x) 5992 } 5993 }() 5994 log.Println("start") 5995 g() 5996 } 5997 </pre> 5998 5999 6000 <h3 id="Bootstrapping">Bootstrapping</h3> 6001 6002 <p> 6003 Current implementations provide several built-in functions useful during 6004 bootstrapping. These functions are documented for completeness but are not 6005 guaranteed to stay in the language. They do not return a result. 6006 </p> 6007 6008 <pre class="grammar"> 6009 Function Behavior 6010 6011 print prints all arguments; formatting of arguments is implementation-specific 6012 println like print but prints spaces between arguments and a newline at the end 6013 </pre> 6014 6015 <p> 6016 Implementation restriction: <code>print</code> and <code>println</code> need not 6017 accept arbitrary argument types, but printing of boolean, numeric, and string 6018 <a href="#Types">types</a> must be supported. 6019 </p> 6020 6021 <h2 id="Packages">Packages</h2> 6022 6023 <p> 6024 Go programs are constructed by linking together <i>packages</i>. 6025 A package in turn is constructed from one or more source files 6026 that together declare constants, types, variables and functions 6027 belonging to the package and which are accessible in all files 6028 of the same package. Those elements may be 6029 <a href="#Exported_identifiers">exported</a> and used in another package. 6030 </p> 6031 6032 <h3 id="Source_file_organization">Source file organization</h3> 6033 6034 <p> 6035 Each source file consists of a package clause defining the package 6036 to which it belongs, followed by a possibly empty set of import 6037 declarations that declare packages whose contents it wishes to use, 6038 followed by a possibly empty set of declarations of functions, 6039 types, variables, and constants. 6040 </p> 6041 6042 <pre class="ebnf"> 6043 SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } . 6044 </pre> 6045 6046 <h3 id="Package_clause">Package clause</h3> 6047 6048 <p> 6049 A package clause begins each source file and defines the package 6050 to which the file belongs. 6051 </p> 6052 6053 <pre class="ebnf"> 6054 PackageClause = "package" PackageName . 6055 PackageName = identifier . 6056 </pre> 6057 6058 <p> 6059 The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>. 6060 </p> 6061 6062 <pre> 6063 package math 6064 </pre> 6065 6066 <p> 6067 A set of files sharing the same PackageName form the implementation of a package. 6068 An implementation may require that all source files for a package inhabit the same directory. 6069 </p> 6070 6071 <h3 id="Import_declarations">Import declarations</h3> 6072 6073 <p> 6074 An import declaration states that the source file containing the declaration 6075 depends on functionality of the <i>imported</i> package 6076 (<a href="#Program_initialization_and_execution">Program initialization and execution</a>) 6077 and enables access to <a href="#Exported_identifiers">exported</a> identifiers 6078 of that package. 6079 The import names an identifier (PackageName) to be used for access and an ImportPath 6080 that specifies the package to be imported. 6081 </p> 6082 6083 <pre class="ebnf"> 6084 ImportDecl = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) . 6085 ImportSpec = [ "." | PackageName ] ImportPath . 6086 ImportPath = string_lit . 6087 </pre> 6088 6089 <p> 6090 The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a> 6091 to access exported identifiers of the package within the importing source file. 6092 It is declared in the <a href="#Blocks">file block</a>. 6093 If the PackageName is omitted, it defaults to the identifier specified in the 6094 <a href="#Package_clause">package clause</a> of the imported package. 6095 If an explicit period (<code>.</code>) appears instead of a name, all the 6096 package's exported identifiers declared in that package's 6097 <a href="#Blocks">package block</a> will be declared in the importing source 6098 file's file block and must be accessed without a qualifier. 6099 </p> 6100 6101 <p> 6102 The interpretation of the ImportPath is implementation-dependent but 6103 it is typically a substring of the full file name of the compiled 6104 package and may be relative to a repository of installed packages. 6105 </p> 6106 6107 <p> 6108 Implementation restriction: A compiler may restrict ImportPaths to 6109 non-empty strings using only characters belonging to 6110 <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a> 6111 L, M, N, P, and S general categories (the Graphic characters without 6112 spaces) and may also exclude the characters 6113 <code>!"#$%&'()*,:;<=>?[\]^`{|}</code> 6114 and the Unicode replacement character U+FFFD. 6115 </p> 6116 6117 <p> 6118 Assume we have compiled a package containing the package clause 6119 <code>package math</code>, which exports function <code>Sin</code>, and 6120 installed the compiled package in the file identified by 6121 <code>"lib/math"</code>. 6122 This table illustrates how <code>Sin</code> is accessed in files 6123 that import the package after the 6124 various types of import declaration. 6125 </p> 6126 6127 <pre class="grammar"> 6128 Import declaration Local name of Sin 6129 6130 import "lib/math" math.Sin 6131 import m "lib/math" m.Sin 6132 import . "lib/math" Sin 6133 </pre> 6134 6135 <p> 6136 An import declaration declares a dependency relation between 6137 the importing and imported package. 6138 It is illegal for a package to import itself, directly or indirectly, 6139 or to directly import a package without 6140 referring to any of its exported identifiers. To import a package solely for 6141 its side-effects (initialization), use the <a href="#Blank_identifier">blank</a> 6142 identifier as explicit package name: 6143 </p> 6144 6145 <pre> 6146 import _ "lib/math" 6147 </pre> 6148 6149 6150 <h3 id="An_example_package">An example package</h3> 6151 6152 <p> 6153 Here is a complete Go package that implements a concurrent prime sieve. 6154 </p> 6155 6156 <pre> 6157 package main 6158 6159 import "fmt" 6160 6161 // Send the sequence 2, 3, 4, to channel 'ch'. 6162 func generate(ch chan<- int) { 6163 for i := 2; ; i++ { 6164 ch <- i // Send 'i' to channel 'ch'. 6165 } 6166 } 6167 6168 // Copy the values from channel 'src' to channel 'dst', 6169 // removing those divisible by 'prime'. 6170 func filter(src <-chan int, dst chan<- int, prime int) { 6171 for i := range src { // Loop over values received from 'src'. 6172 if i%prime != 0 { 6173 dst <- i // Send 'i' to channel 'dst'. 6174 } 6175 } 6176 } 6177 6178 // The prime sieve: Daisy-chain filter processes together. 6179 func sieve() { 6180 ch := make(chan int) // Create a new channel. 6181 go generate(ch) // Start generate() as a subprocess. 6182 for { 6183 prime := <-ch 6184 fmt.Print(prime, "\n") 6185 ch1 := make(chan int) 6186 go filter(ch, ch1, prime) 6187 ch = ch1 6188 } 6189 } 6190 6191 func main() { 6192 sieve() 6193 } 6194 </pre> 6195 6196 <h2 id="Program_initialization_and_execution">Program initialization and execution</h2> 6197 6198 <h3 id="The_zero_value">The zero value</h3> 6199 <p> 6200 When storage is allocated for a <a href="#Variables">variable</a>, 6201 either through a declaration or a call of <code>new</code>, or when 6202 a new value is created, either through a composite literal or a call 6203 of <code>make</code>, 6204 and no explicit initialization is provided, the variable or value is 6205 given a default value. Each element of such a variable or value is 6206 set to the <i>zero value</i> for its type: <code>false</code> for booleans, 6207 <code>0</code> for numeric types, <code>""</code> 6208 for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps. 6209 This initialization is done recursively, so for instance each element of an 6210 array of structs will have its fields zeroed if no value is specified. 6211 </p> 6212 <p> 6213 These two simple declarations are equivalent: 6214 </p> 6215 6216 <pre> 6217 var i int 6218 var i int = 0 6219 </pre> 6220 6221 <p> 6222 After 6223 </p> 6224 6225 <pre> 6226 type T struct { i int; f float64; next *T } 6227 t := new(T) 6228 </pre> 6229 6230 <p> 6231 the following holds: 6232 </p> 6233 6234 <pre> 6235 t.i == 0 6236 t.f == 0.0 6237 t.next == nil 6238 </pre> 6239 6240 <p> 6241 The same would also be true after 6242 </p> 6243 6244 <pre> 6245 var t T 6246 </pre> 6247 6248 <h3 id="Package_initialization">Package initialization</h3> 6249 6250 <p> 6251 Within a package, package-level variables are initialized in 6252 <i>declaration order</i> but after any of the variables 6253 they <i>depend</i> on. 6254 </p> 6255 6256 <p> 6257 More precisely, a package-level variable is considered <i>ready for 6258 initialization</i> if it is not yet initialized and either has 6259 no <a href="#Variable_declarations">initialization expression</a> or 6260 its initialization expression has no dependencies on uninitialized variables. 6261 Initialization proceeds by repeatedly initializing the next package-level 6262 variable that is earliest in declaration order and ready for initialization, 6263 until there are no variables ready for initialization. 6264 </p> 6265 6266 <p> 6267 If any variables are still uninitialized when this 6268 process ends, those variables are part of one or more initialization cycles, 6269 and the program is not valid. 6270 </p> 6271 6272 <p> 6273 The declaration order of variables declared in multiple files is determined 6274 by the order in which the files are presented to the compiler: Variables 6275 declared in the first file are declared before any of the variables declared 6276 in the second file, and so on. 6277 </p> 6278 6279 <p> 6280 Dependency analysis does not rely on the actual values of the 6281 variables, only on lexical <i>references</i> to them in the source, 6282 analyzed transitively. For instance, if a variable <code>x</code>'s 6283 initialization expression refers to a function whose body refers to 6284 variable <code>y</code> then <code>x</code> depends on <code>y</code>. 6285 Specifically: 6286 </p> 6287 6288 <ul> 6289 <li> 6290 A reference to a variable or function is an identifier denoting that 6291 variable or function. 6292 </li> 6293 6294 <li> 6295 A reference to a method <code>m</code> is a 6296 <a href="#Method_values">method value</a> or 6297 <a href="#Method_expressions">method expression</a> of the form 6298 <code>t.m</code>, where the (static) type of <code>t</code> is 6299 not an interface type, and the method <code>m</code> is in the 6300 <a href="#Method_sets">method set</a> of <code>t</code>. 6301 It is immaterial whether the resulting function value 6302 <code>t.m</code> is invoked. 6303 </li> 6304 6305 <li> 6306 A variable, function, or method <code>x</code> depends on a variable 6307 <code>y</code> if <code>x</code>'s initialization expression or body 6308 (for functions and methods) contains a reference to <code>y</code> 6309 or to a function or method that depends on <code>y</code>. 6310 </li> 6311 </ul> 6312 6313 <p> 6314 Dependency analysis is performed per package; only references referring 6315 to variables, functions, and methods declared in the current package 6316 are considered. 6317 </p> 6318 6319 <p> 6320 For example, given the declarations 6321 </p> 6322 6323 <pre> 6324 var ( 6325 a = c + b 6326 b = f() 6327 c = f() 6328 d = 3 6329 ) 6330 6331 func f() int { 6332 d++ 6333 return d 6334 } 6335 </pre> 6336 6337 <p> 6338 the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>. 6339 </p> 6340 6341 <p> 6342 Variables may also be initialized using functions named <code>init</code> 6343 declared in the package block, with no arguments and no result parameters. 6344 </p> 6345 6346 <pre> 6347 func init() { } 6348 </pre> 6349 6350 <p> 6351 Multiple such functions may be defined per package, even within a single 6352 source file. In the package block, the <code>init</code> identifier can 6353 be used only to declare <code>init</code> functions, yet the identifier 6354 itself is not <a href="#Declarations_and_scope">declared</a>. Thus 6355 <code>init</code> functions cannot be referred to from anywhere 6356 in a program. 6357 </p> 6358 6359 <p> 6360 A package with no imports is initialized by assigning initial values 6361 to all its package-level variables followed by calling all <code>init</code> 6362 functions in the order they appear in the source, possibly in multiple files, 6363 as presented to the compiler. 6364 If a package has imports, the imported packages are initialized 6365 before initializing the package itself. If multiple packages import 6366 a package, the imported package will be initialized only once. 6367 The importing of packages, by construction, guarantees that there 6368 can be no cyclic initialization dependencies. 6369 </p> 6370 6371 <p> 6372 Package initialization—variable initialization and the invocation of 6373 <code>init</code> functions—happens in a single goroutine, 6374 sequentially, one package at a time. 6375 An <code>init</code> function may launch other goroutines, which can run 6376 concurrently with the initialization code. However, initialization 6377 always sequences 6378 the <code>init</code> functions: it will not invoke the next one 6379 until the previous one has returned. 6380 </p> 6381 6382 <p> 6383 To ensure reproducible initialization behavior, build systems are encouraged 6384 to present multiple files belonging to the same package in lexical file name 6385 order to a compiler. 6386 </p> 6387 6388 6389 <h3 id="Program_execution">Program execution</h3> 6390 <p> 6391 A complete program is created by linking a single, unimported package 6392 called the <i>main package</i> with all the packages it imports, transitively. 6393 The main package must 6394 have package name <code>main</code> and 6395 declare a function <code>main</code> that takes no 6396 arguments and returns no value. 6397 </p> 6398 6399 <pre> 6400 func main() { } 6401 </pre> 6402 6403 <p> 6404 Program execution begins by initializing the main package and then 6405 invoking the function <code>main</code>. 6406 When that function invocation returns, the program exits. 6407 It does not wait for other (non-<code>main</code>) goroutines to complete. 6408 </p> 6409 6410 <h2 id="Errors">Errors</h2> 6411 6412 <p> 6413 The predeclared type <code>error</code> is defined as 6414 </p> 6415 6416 <pre> 6417 type error interface { 6418 Error() string 6419 } 6420 </pre> 6421 6422 <p> 6423 It is the conventional interface for representing an error condition, 6424 with the nil value representing no error. 6425 For instance, a function to read data from a file might be defined: 6426 </p> 6427 6428 <pre> 6429 func Read(f *File, b []byte) (n int, err error) 6430 </pre> 6431 6432 <h2 id="Run_time_panics">Run-time panics</h2> 6433 6434 <p> 6435 Execution errors such as attempting to index an array out 6436 of bounds trigger a <i>run-time panic</i> equivalent to a call of 6437 the built-in function <a href="#Handling_panics"><code>panic</code></a> 6438 with a value of the implementation-defined interface type <code>runtime.Error</code>. 6439 That type satisfies the predeclared interface type 6440 <a href="#Errors"><code>error</code></a>. 6441 The exact error values that 6442 represent distinct run-time error conditions are unspecified. 6443 </p> 6444 6445 <pre> 6446 package runtime 6447 6448 type Error interface { 6449 error 6450 // and perhaps other methods 6451 } 6452 </pre> 6453 6454 <h2 id="System_considerations">System considerations</h2> 6455 6456 <h3 id="Package_unsafe">Package <code>unsafe</code></h3> 6457 6458 <p> 6459 The built-in package <code>unsafe</code>, known to the compiler 6460 and accessible through the <a href="#Import_declarations">import path</a> <code>"unsafe"</code>, 6461 provides facilities for low-level programming including operations 6462 that violate the type system. A package using <code>unsafe</code> 6463 must be vetted manually for type safety and may not be portable. 6464 The package provides the following interface: 6465 </p> 6466 6467 <pre class="grammar"> 6468 package unsafe 6469 6470 type ArbitraryType int // shorthand for an arbitrary Go type; it is not a real type 6471 type Pointer *ArbitraryType 6472 6473 func Alignof(variable ArbitraryType) uintptr 6474 func Offsetof(selector ArbitraryType) uintptr 6475 func Sizeof(variable ArbitraryType) uintptr 6476 </pre> 6477 6478 <p> 6479 A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code> 6480 value may not be <a href="#Address_operators">dereferenced</a>. 6481 Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to 6482 a type of underlying type <code>Pointer</code> and vice versa. 6483 The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined. 6484 </p> 6485 6486 <pre> 6487 var f float64 6488 bits = *(*uint64)(unsafe.Pointer(&f)) 6489 6490 type ptr unsafe.Pointer 6491 bits = *(*uint64)(ptr(&f)) 6492 6493 var p ptr = nil 6494 </pre> 6495 6496 <p> 6497 The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code> 6498 of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code> 6499 as if <code>v</code> was declared via <code>var v = x</code>. 6500 </p> 6501 <p> 6502 The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a> 6503 <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code> 6504 or <code>*s</code>, and returns the field offset in bytes relative to the struct's address. 6505 If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable 6506 without pointer indirections through fields of the struct. 6507 For a struct <code>s</code> with field <code>f</code>: 6508 </p> 6509 6510 <pre> 6511 uintptr(unsafe.Pointer(&s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&s.f)) 6512 </pre> 6513 6514 <p> 6515 Computer architectures may require memory addresses to be <i>aligned</i>; 6516 that is, for addresses of a variable to be a multiple of a factor, 6517 the variable's type's <i>alignment</i>. The function <code>Alignof</code> 6518 takes an expression denoting a variable of any type and returns the 6519 alignment of the (type of the) variable in bytes. For a variable 6520 <code>x</code>: 6521 </p> 6522 6523 <pre> 6524 uintptr(unsafe.Pointer(&x)) % unsafe.Alignof(x) == 0 6525 </pre> 6526 6527 <p> 6528 Calls to <code>Alignof</code>, <code>Offsetof</code>, and 6529 <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>. 6530 </p> 6531 6532 <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3> 6533 6534 <p> 6535 For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed: 6536 </p> 6537 6538 <pre class="grammar"> 6539 type size in bytes 6540 6541 byte, uint8, int8 1 6542 uint16, int16 2 6543 uint32, int32, float32 4 6544 uint64, int64, float64, complex64 8 6545 complex128 16 6546 </pre> 6547 6548 <p> 6549 The following minimal alignment properties are guaranteed: 6550 </p> 6551 <ol> 6552 <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1. 6553 </li> 6554 6555 <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of 6556 all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1. 6557 </li> 6558 6559 <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as 6560 the alignment of a variable of the array's element type. 6561 </li> 6562 </ol> 6563 6564 <p> 6565 A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory. 6566 </p> 6567