Home | History | Annotate | Download | only in doc
      1 <!--{
      2 	"Title": "The Go Programming Language Specification",
      3 	"Subtitle": "Version of February 1, 2018",
      4 	"Path": "/ref/spec"
      5 }-->
      6 
      7 <h2 id="Introduction">Introduction</h2>
      8 
      9 <p>
     10 This is a reference manual for the Go programming language. For
     11 more information and other documents, see <a href="/">golang.org</a>.
     12 </p>
     13 
     14 <p>
     15 Go is a general-purpose language designed with systems programming
     16 in mind. It is strongly typed and garbage-collected and has explicit
     17 support for concurrent programming.  Programs are constructed from
     18 <i>packages</i>, whose properties allow efficient management of
     19 dependencies.
     20 </p>
     21 
     22 <p>
     23 The grammar is compact and regular, allowing for easy analysis by
     24 automatic tools such as integrated development environments.
     25 </p>
     26 
     27 <h2 id="Notation">Notation</h2>
     28 <p>
     29 The syntax is specified using Extended Backus-Naur Form (EBNF):
     30 </p>
     31 
     32 <pre class="grammar">
     33 Production  = production_name "=" [ Expression ] "." .
     34 Expression  = Alternative { "|" Alternative } .
     35 Alternative = Term { Term } .
     36 Term        = production_name | token [ "" token ] | Group | Option | Repetition .
     37 Group       = "(" Expression ")" .
     38 Option      = "[" Expression "]" .
     39 Repetition  = "{" Expression "}" .
     40 </pre>
     41 
     42 <p>
     43 Productions are expressions constructed from terms and the following
     44 operators, in increasing precedence:
     45 </p>
     46 <pre class="grammar">
     47 |   alternation
     48 ()  grouping
     49 []  option (0 or 1 times)
     50 {}  repetition (0 to n times)
     51 </pre>
     52 
     53 <p>
     54 Lower-case production names are used to identify lexical tokens.
     55 Non-terminals are in CamelCase. Lexical tokens are enclosed in
     56 double quotes <code>""</code> or back quotes <code>``</code>.
     57 </p>
     58 
     59 <p>
     60 The form <code>a  b</code> represents the set of characters from
     61 <code>a</code> through <code>b</code> as alternatives. The horizontal
     62 ellipsis <code></code> is also used elsewhere in the spec to informally denote various
     63 enumerations or code snippets that are not further specified. The character <code></code>
     64 (as opposed to the three characters <code>...</code>) is not a token of the Go
     65 language.
     66 </p>
     67 
     68 <h2 id="Source_code_representation">Source code representation</h2>
     69 
     70 <p>
     71 Source code is Unicode text encoded in
     72 <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
     73 canonicalized, so a single accented code point is distinct from the
     74 same character constructed from combining an accent and a letter;
     75 those are treated as two code points.  For simplicity, this document
     76 will use the unqualified term <i>character</i> to refer to a Unicode code point
     77 in the source text.
     78 </p>
     79 <p>
     80 Each code point is distinct; for instance, upper and lower case letters
     81 are different characters.
     82 </p>
     83 <p>
     84 Implementation restriction: For compatibility with other tools, a
     85 compiler may disallow the NUL character (U+0000) in the source text.
     86 </p>
     87 <p>
     88 Implementation restriction: For compatibility with other tools, a
     89 compiler may ignore a UTF-8-encoded byte order mark
     90 (U+FEFF) if it is the first Unicode code point in the source text.
     91 A byte order mark may be disallowed anywhere else in the source.
     92 </p>
     93 
     94 <h3 id="Characters">Characters</h3>
     95 
     96 <p>
     97 The following terms are used to denote specific Unicode character classes:
     98 </p>
     99 <pre class="ebnf">
    100 newline        = /* the Unicode code point U+000A */ .
    101 unicode_char   = /* an arbitrary Unicode code point except newline */ .
    102 unicode_letter = /* a Unicode code point classified as "Letter" */ .
    103 unicode_digit  = /* a Unicode code point classified as "Number, decimal digit" */ .
    104 </pre>
    105 
    106 <p>
    107 In <a href="http://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>,
    108 Section 4.5 "General Category" defines a set of character categories.
    109 Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo
    110 as Unicode letters, and those in the Number category Nd as Unicode digits.
    111 </p>
    112 
    113 <h3 id="Letters_and_digits">Letters and digits</h3>
    114 
    115 <p>
    116 The underscore character <code>_</code> (U+005F) is considered a letter.
    117 </p>
    118 <pre class="ebnf">
    119 letter        = unicode_letter | "_" .
    120 decimal_digit = "0"  "9" .
    121 octal_digit   = "0"  "7" .
    122 hex_digit     = "0"  "9" | "A"  "F" | "a"  "f" .
    123 </pre>
    124 
    125 <h2 id="Lexical_elements">Lexical elements</h2>
    126 
    127 <h3 id="Comments">Comments</h3>
    128 
    129 <p>
    130 Comments serve as program documentation. There are two forms:
    131 </p>
    132 
    133 <ol>
    134 <li>
    135 <i>Line comments</i> start with the character sequence <code>//</code>
    136 and stop at the end of the line.
    137 </li>
    138 <li>
    139 <i>General comments</i> start with the character sequence <code>/*</code>
    140 and stop with the first subsequent character sequence <code>*/</code>.
    141 </li>
    142 </ol>
    143 
    144 <p>
    145 A comment cannot start inside a <a href="#Rune_literals">rune</a> or
    146 <a href="#String_literals">string literal</a>, or inside a comment.
    147 A general comment containing no newlines acts like a space.
    148 Any other comment acts like a newline.
    149 </p>
    150 
    151 <h3 id="Tokens">Tokens</h3>
    152 
    153 <p>
    154 Tokens form the vocabulary of the Go language.
    155 There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
    156 and punctuation</i>, and <i>literals</i>.  <i>White space</i>, formed from
    157 spaces (U+0020), horizontal tabs (U+0009),
    158 carriage returns (U+000D), and newlines (U+000A),
    159 is ignored except as it separates tokens
    160 that would otherwise combine into a single token. Also, a newline or end of file
    161 may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
    162 While breaking the input into tokens,
    163 the next token is the longest sequence of characters that form a
    164 valid token.
    165 </p>
    166 
    167 <h3 id="Semicolons">Semicolons</h3>
    168 
    169 <p>
    170 The formal grammar uses semicolons <code>";"</code> as terminators in
    171 a number of productions. Go programs may omit most of these semicolons
    172 using the following two rules:
    173 </p>
    174 
    175 <ol>
    176 <li>
    177 When the input is broken into tokens, a semicolon is automatically inserted
    178 into the token stream immediately after a line's final token if that token is
    179 <ul>
    180 	<li>an
    181 	    <a href="#Identifiers">identifier</a>
    182 	</li>
    183 
    184 	<li>an
    185 	    <a href="#Integer_literals">integer</a>,
    186 	    <a href="#Floating-point_literals">floating-point</a>,
    187 	    <a href="#Imaginary_literals">imaginary</a>,
    188 	    <a href="#Rune_literals">rune</a>, or
    189 	    <a href="#String_literals">string</a> literal
    190 	</li>
    191 
    192 	<li>one of the <a href="#Keywords">keywords</a>
    193 	    <code>break</code>,
    194 	    <code>continue</code>,
    195 	    <code>fallthrough</code>, or
    196 	    <code>return</code>
    197 	</li>
    198 
    199 	<li>one of the <a href="#Operators_and_punctuation">operators and punctuation</a>
    200 	    <code>++</code>,
    201 	    <code>--</code>,
    202 	    <code>)</code>,
    203 	    <code>]</code>, or
    204 	    <code>}</code>
    205 	</li>
    206 </ul>
    207 </li>
    208 
    209 <li>
    210 To allow complex statements to occupy a single line, a semicolon
    211 may be omitted before a closing <code>")"</code> or <code>"}"</code>.
    212 </li>
    213 </ol>
    214 
    215 <p>
    216 To reflect idiomatic use, code examples in this document elide semicolons
    217 using these rules.
    218 </p>
    219 
    220 
    221 <h3 id="Identifiers">Identifiers</h3>
    222 
    223 <p>
    224 Identifiers name program entities such as variables and types.
    225 An identifier is a sequence of one or more letters and digits.
    226 The first character in an identifier must be a letter.
    227 </p>
    228 <pre class="ebnf">
    229 identifier = letter { letter | unicode_digit } .
    230 </pre>
    231 <pre>
    232 a
    233 _x9
    234 ThisVariableIsExported
    235 
    236 </pre>
    237 
    238 <p>
    239 Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
    240 </p>
    241 
    242 
    243 <h3 id="Keywords">Keywords</h3>
    244 
    245 <p>
    246 The following keywords are reserved and may not be used as identifiers.
    247 </p>
    248 <pre class="grammar">
    249 break        default      func         interface    select
    250 case         defer        go           map          struct
    251 chan         else         goto         package      switch
    252 const        fallthrough  if           range        type
    253 continue     for          import       return       var
    254 </pre>
    255 
    256 <h3 id="Operators_and_punctuation">Operators and punctuation</h3>
    257 
    258 <p>
    259 The following character sequences represent <a href="#Operators">operators</a>
    260 (including <a href="#assign_op">assignment operators</a>) and punctuation:
    261 </p>
    262 <pre class="grammar">
    263 +    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
    264 -    |     -=    |=     ||    &lt;     &lt;=    [    ]
    265 *    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
    266 /    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
    267 %    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
    268      &amp;^          &amp;^=
    269 </pre>
    270 
    271 <h3 id="Integer_literals">Integer literals</h3>
    272 
    273 <p>
    274 An integer literal is a sequence of digits representing an
    275 <a href="#Constants">integer constant</a>.
    276 An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
    277 <code>0X</code> for hexadecimal.  In hexadecimal literals, letters
    278 <code>a-f</code> and <code>A-F</code> represent values 10 through 15.
    279 </p>
    280 <pre class="ebnf">
    281 int_lit     = decimal_lit | octal_lit | hex_lit .
    282 decimal_lit = ( "1"  "9" ) { decimal_digit } .
    283 octal_lit   = "0" { octal_digit } .
    284 hex_lit     = "0" ( "x" | "X" ) hex_digit { hex_digit } .
    285 </pre>
    286 
    287 <pre>
    288 42
    289 0600
    290 0xBadFace
    291 170141183460469231731687303715884105727
    292 </pre>
    293 
    294 <h3 id="Floating-point_literals">Floating-point literals</h3>
    295 <p>
    296 A floating-point literal is a decimal representation of a
    297 <a href="#Constants">floating-point constant</a>.
    298 It has an integer part, a decimal point, a fractional part,
    299 and an exponent part.  The integer and fractional part comprise
    300 decimal digits; the exponent part is an <code>e</code> or <code>E</code>
    301 followed by an optionally signed decimal exponent.  One of the
    302 integer part or the fractional part may be elided; one of the decimal
    303 point or the exponent may be elided.
    304 </p>
    305 <pre class="ebnf">
    306 float_lit = decimals "." [ decimals ] [ exponent ] |
    307             decimals exponent |
    308             "." decimals [ exponent ] .
    309 decimals  = decimal_digit { decimal_digit } .
    310 exponent  = ( "e" | "E" ) [ "+" | "-" ] decimals .
    311 </pre>
    312 
    313 <pre>
    314 0.
    315 72.40
    316 072.40  // == 72.40
    317 2.71828
    318 1.e+0
    319 6.67428e-11
    320 1E6
    321 .25
    322 .12345E+5
    323 </pre>
    324 
    325 <h3 id="Imaginary_literals">Imaginary literals</h3>
    326 <p>
    327 An imaginary literal is a decimal representation of the imaginary part of a
    328 <a href="#Constants">complex constant</a>.
    329 It consists of a
    330 <a href="#Floating-point_literals">floating-point literal</a>
    331 or decimal integer followed
    332 by the lower-case letter <code>i</code>.
    333 </p>
    334 <pre class="ebnf">
    335 imaginary_lit = (decimals | float_lit) "i" .
    336 </pre>
    337 
    338 <pre>
    339 0i
    340 011i  // == 11i
    341 0.i
    342 2.71828i
    343 1.e+0i
    344 6.67428e-11i
    345 1E6i
    346 .25i
    347 .12345E+5i
    348 </pre>
    349 
    350 
    351 <h3 id="Rune_literals">Rune literals</h3>
    352 
    353 <p>
    354 A rune literal represents a <a href="#Constants">rune constant</a>,
    355 an integer value identifying a Unicode code point.
    356 A rune literal is expressed as one or more characters enclosed in single quotes,
    357 as in <code>'x'</code> or <code>'\n'</code>.
    358 Within the quotes, any character may appear except newline and unescaped single
    359 quote. A single quoted character represents the Unicode value
    360 of the character itself,
    361 while multi-character sequences beginning with a backslash encode
    362 values in various formats.
    363 </p>
    364 <p>
    365 The simplest form represents the single character within the quotes;
    366 since Go source text is Unicode characters encoded in UTF-8, multiple
    367 UTF-8-encoded bytes may represent a single integer value.  For
    368 instance, the literal <code>'a'</code> holds a single byte representing
    369 a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
    370 <code>''</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
    371 a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
    372 </p>
    373 <p>
    374 Several backslash escapes allow arbitrary values to be encoded as
    375 ASCII text.  There are four ways to represent the integer value
    376 as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
    377 digits; <code>\u</code> followed by exactly four hexadecimal digits;
    378 <code>\U</code> followed by exactly eight hexadecimal digits, and a
    379 plain backslash <code>\</code> followed by exactly three octal digits.
    380 In each case the value of the literal is the value represented by
    381 the digits in the corresponding base.
    382 </p>
    383 <p>
    384 Although these representations all result in an integer, they have
    385 different valid ranges.  Octal escapes must represent a value between
    386 0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
    387 by construction. The escapes <code>\u</code> and <code>\U</code>
    388 represent Unicode code points so within them some values are illegal,
    389 in particular those above <code>0x10FFFF</code> and surrogate halves.
    390 </p>
    391 <p>
    392 After a backslash, certain single-character escapes represent special values:
    393 </p>
    394 <pre class="grammar">
    395 \a   U+0007 alert or bell
    396 \b   U+0008 backspace
    397 \f   U+000C form feed
    398 \n   U+000A line feed or newline
    399 \r   U+000D carriage return
    400 \t   U+0009 horizontal tab
    401 \v   U+000b vertical tab
    402 \\   U+005c backslash
    403 \'   U+0027 single quote  (valid escape only within rune literals)
    404 \"   U+0022 double quote  (valid escape only within string literals)
    405 </pre>
    406 <p>
    407 All other sequences starting with a backslash are illegal inside rune literals.
    408 </p>
    409 <pre class="ebnf">
    410 rune_lit         = "'" ( unicode_value | byte_value ) "'" .
    411 unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
    412 byte_value       = octal_byte_value | hex_byte_value .
    413 octal_byte_value = `\` octal_digit octal_digit octal_digit .
    414 hex_byte_value   = `\` "x" hex_digit hex_digit .
    415 little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
    416 big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
    417                            hex_digit hex_digit hex_digit hex_digit .
    418 escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
    419 </pre>
    420 
    421 <pre>
    422 'a'
    423 ''
    424 ''
    425 '\t'
    426 '\000'
    427 '\007'
    428 '\377'
    429 '\x07'
    430 '\xff'
    431 '\u12e4'
    432 '\U00101234'
    433 '\''         // rune literal containing single quote character
    434 'aa'         // illegal: too many characters
    435 '\xa'        // illegal: too few hexadecimal digits
    436 '\0'         // illegal: too few octal digits
    437 '\uDFFF'     // illegal: surrogate half
    438 '\U00110000' // illegal: invalid Unicode code point
    439 </pre>
    440 
    441 
    442 <h3 id="String_literals">String literals</h3>
    443 
    444 <p>
    445 A string literal represents a <a href="#Constants">string constant</a>
    446 obtained from concatenating a sequence of characters. There are two forms:
    447 raw string literals and interpreted string literals.
    448 </p>
    449 <p>
    450 Raw string literals are character sequences between back quotes, as in
    451 <code>`foo`</code>.  Within the quotes, any character may appear except
    452 back quote. The value of a raw string literal is the
    453 string composed of the uninterpreted (implicitly UTF-8-encoded) characters
    454 between the quotes;
    455 in particular, backslashes have no special meaning and the string may
    456 contain newlines.
    457 Carriage return characters ('\r') inside raw string literals
    458 are discarded from the raw string value.
    459 </p>
    460 <p>
    461 Interpreted string literals are character sequences between double
    462 quotes, as in <code>&quot;bar&quot;</code>.
    463 Within the quotes, any character may appear except newline and unescaped double quote.
    464 The text between the quotes forms the
    465 value of the literal, with backslash escapes interpreted as they
    466 are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and
    467 <code>\"</code> is legal), with the same restrictions.
    468 The three-digit octal (<code>\</code><i>nnn</i>)
    469 and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
    470 <i>bytes</i> of the resulting string; all other escapes represent
    471 the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
    472 Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
    473 a single byte of value <code>0xFF</code>=255, while <code></code>,
    474 <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
    475 the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
    476 U+00FF.
    477 </p>
    478 
    479 <pre class="ebnf">
    480 string_lit             = raw_string_lit | interpreted_string_lit .
    481 raw_string_lit         = "`" { unicode_char | newline } "`" .
    482 interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
    483 </pre>
    484 
    485 <pre>
    486 `abc`                // same as "abc"
    487 `\n
    488 \n`                  // same as "\\n\n\\n"
    489 "\n"
    490 "\""                 // same as `"`
    491 "Hello, world!\n"
    492 ""
    493 "\u65e5\U00008a9e"
    494 "\xff\u00FF"
    495 "\uD800"             // illegal: surrogate half
    496 "\U00110000"         // illegal: invalid Unicode code point
    497 </pre>
    498 
    499 <p>
    500 These examples all represent the same string:
    501 </p>
    502 
    503 <pre>
    504 ""                                 // UTF-8 input text
    505 ``                                 // UTF-8 input text as a raw literal
    506 "\u65e5\u672c\u8a9e"                    // the explicit Unicode code points
    507 "\U000065e5\U0000672c\U00008a9e"        // the explicit Unicode code points
    508 "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // the explicit UTF-8 bytes
    509 </pre>
    510 
    511 <p>
    512 If the source code represents a character as two code points, such as
    513 a combining form involving an accent and a letter, the result will be
    514 an error if placed in a rune literal (it is not a single code
    515 point), and will appear as two code points if placed in a string
    516 literal.
    517 </p>
    518 
    519 
    520 <h2 id="Constants">Constants</h2>
    521 
    522 <p>There are <i>boolean constants</i>,
    523 <i>rune constants</i>,
    524 <i>integer constants</i>,
    525 <i>floating-point constants</i>, <i>complex constants</i>,
    526 and <i>string constants</i>. Rune, integer, floating-point,
    527 and complex constants are
    528 collectively called <i>numeric constants</i>.
    529 </p>
    530 
    531 <p>
    532 A constant value is represented by a
    533 <a href="#Rune_literals">rune</a>,
    534 <a href="#Integer_literals">integer</a>,
    535 <a href="#Floating-point_literals">floating-point</a>,
    536 <a href="#Imaginary_literals">imaginary</a>,
    537 or
    538 <a href="#String_literals">string</a> literal,
    539 an identifier denoting a constant,
    540 a <a href="#Constant_expressions">constant expression</a>,
    541 a <a href="#Conversions">conversion</a> with a result that is a constant, or
    542 the result value of some built-in functions such as
    543 <code>unsafe.Sizeof</code> applied to any value,
    544 <code>cap</code> or <code>len</code> applied to
    545 <a href="#Length_and_capacity">some expressions</a>,
    546 <code>real</code> and <code>imag</code> applied to a complex constant
    547 and <code>complex</code> applied to numeric constants.
    548 The boolean truth values are represented by the predeclared constants
    549 <code>true</code> and <code>false</code>. The predeclared identifier
    550 <a href="#Iota">iota</a> denotes an integer constant.
    551 </p>
    552 
    553 <p>
    554 In general, complex constants are a form of
    555 <a href="#Constant_expressions">constant expression</a>
    556 and are discussed in that section.
    557 </p>
    558 
    559 <p>
    560 Numeric constants represent exact values of arbitrary precision and do not overflow.
    561 Consequently, there are no constants denoting the IEEE-754 negative zero, infinity,
    562 and not-a-number values.
    563 </p>
    564 
    565 <p>
    566 Constants may be <a href="#Types">typed</a> or <i>untyped</i>.
    567 Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
    568 and certain <a href="#Constant_expressions">constant expressions</a>
    569 containing only untyped constant operands are untyped.
    570 </p>
    571 
    572 <p>
    573 A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
    574 or <a href="#Conversions">conversion</a>, or implicitly when used in a
    575 <a href="#Variable_declarations">variable declaration</a> or an
    576 <a href="#Assignments">assignment</a> or as an
    577 operand in an <a href="#Expressions">expression</a>.
    578 It is an error if the constant value
    579 cannot be <a href="#Representability">represented</a> as a value of the respective type.
    580 </p>
    581 
    582 <p>
    583 An untyped constant has a <i>default type</i> which is the type to which the
    584 constant is implicitly converted in contexts where a typed value is required,
    585 for instance, in a <a href="#Short_variable_declarations">short variable declaration</a>
    586 such as <code>i := 0</code> where there is no explicit type.
    587 The default type of an untyped constant is <code>bool</code>, <code>rune</code>,
    588 <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code>
    589 respectively, depending on whether it is a boolean, rune, integer, floating-point,
    590 complex, or string constant.
    591 </p>
    592 
    593 <p>
    594 Implementation restriction: Although numeric constants have arbitrary
    595 precision in the language, a compiler may implement them using an
    596 internal representation with limited precision.  That said, every
    597 implementation must:
    598 </p>
    599 <ul>
    600 	<li>Represent integer constants with at least 256 bits.</li>
    601 
    602 	<li>Represent floating-point constants, including the parts of
    603 	    a complex constant, with a mantissa of at least 256 bits
    604 	    and a signed binary exponent of at least 16 bits.</li>
    605 
    606 	<li>Give an error if unable to represent an integer constant
    607 	    precisely.</li>
    608 
    609 	<li>Give an error if unable to represent a floating-point or
    610 	    complex constant due to overflow.</li>
    611 
    612 	<li>Round to the nearest representable constant if unable to
    613 	    represent a floating-point or complex constant due to limits
    614 	    on precision.</li>
    615 </ul>
    616 <p>
    617 These requirements apply both to literal constants and to the result
    618 of evaluating <a href="#Constant_expressions">constant
    619 expressions</a>.
    620 </p>
    621 
    622 <h2 id="Variables">Variables</h2>
    623 
    624 <p>
    625 A variable is a storage location for holding a <i>value</i>.
    626 The set of permissible values is determined by the
    627 variable's <i><a href="#Types">type</a></i>.
    628 </p>
    629 
    630 <p>
    631 A <a href="#Variable_declarations">variable declaration</a>
    632 or, for function parameters and results, the signature
    633 of a <a href="#Function_declarations">function declaration</a>
    634 or <a href="#Function_literals">function literal</a> reserves
    635 storage for a named variable.
    636 
    637 Calling the built-in function <a href="#Allocation"><code>new</code></a>
    638 or taking the address of a <a href="#Composite_literals">composite literal</a>
    639 allocates storage for a variable at run time.
    640 Such an anonymous variable is referred to via a (possibly implicit)
    641 <a href="#Address_operators">pointer indirection</a>.
    642 </p>
    643 
    644 <p>
    645 <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>,
    646 and <a href="#Struct_types">struct</a> types have elements and fields that may
    647 be <a href="#Address_operators">addressed</a> individually. Each such element
    648 acts like a variable.
    649 </p>
    650 
    651 <p>
    652 The <i>static type</i> (or just <i>type</i>) of a variable is the
    653 type given in its declaration, the type provided in the
    654 <code>new</code> call or composite literal, or the type of
    655 an element of a structured variable.
    656 Variables of interface type also have a distinct <i>dynamic type</i>,
    657 which is the concrete type of the value assigned to the variable at run time
    658 (unless the value is the predeclared identifier <code>nil</code>,
    659 which has no type).
    660 The dynamic type may vary during execution but values stored in interface
    661 variables are always <a href="#Assignability">assignable</a>
    662 to the static type of the variable.
    663 </p>
    664 
    665 <pre>
    666 var x interface{}  // x is nil and has static type interface{}
    667 var v *T           // v has value nil, static type *T
    668 x = 42             // x has value 42 and dynamic type int
    669 x = v              // x has value (*T)(nil) and dynamic type *T
    670 </pre>
    671 
    672 <p>
    673 A variable's value is retrieved by referring to the variable in an
    674 <a href="#Expressions">expression</a>; it is the most recent value
    675 <a href="#Assignments">assigned</a> to the variable.
    676 If a variable has not yet been assigned a value, its value is the
    677 <a href="#The_zero_value">zero value</a> for its type.
    678 </p>
    679 
    680 
    681 <h2 id="Types">Types</h2>
    682 
    683 <p>
    684 A type determines a set of values together with operations and methods specific
    685 to those values. A type may be denoted by a <i>type name</i>, if it has one,
    686 or specified using a <i>type literal</i>, which composes a type from existing types.
    687 </p>
    688 
    689 <pre class="ebnf">
    690 Type      = TypeName | TypeLit | "(" Type ")" .
    691 TypeName  = identifier | QualifiedIdent .
    692 TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
    693 	    SliceType | MapType | ChannelType .
    694 </pre>
    695 
    696 <p>
    697 The language <a href="#Predeclared_identifiers">predeclares</a> certain type names.
    698 Others are introduced with <a href="#Type_declarations">type declarations</a>.
    699 <i>Composite types</i>&mdash;array, struct, pointer, function,
    700 interface, slice, map, and channel types&mdash;may be constructed using
    701 type literals.
    702 </p>
    703 
    704 <p>
    705 Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
    706 is one of the predeclared boolean, numeric, or string types, or a type literal,
    707 the corresponding underlying
    708 type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type
    709 is the underlying type of the type to which <code>T</code> refers in its
    710 <a href="#Type_declarations">type declaration</a>.
    711 </p>
    712 
    713 <pre>
    714 type (
    715 	A1 = string
    716 	A2 = A1
    717 )
    718 
    719 type (
    720 	B1 string
    721 	B2 B1
    722 	B3 []B1
    723 	B4 B3
    724 )
    725 </pre>
    726 
    727 <p>
    728 The underlying type of <code>string</code>, <code>A1</code>, <code>A2</code>, <code>B1</code>,
    729 and <code>B2</code> is <code>string</code>.
    730 The underlying type of <code>[]B1</code>, <code>B3</code>, and <code>B4</code> is <code>[]B1</code>.
    731 </p>
    732 
    733 <h3 id="Method_sets">Method sets</h3>
    734 <p>
    735 A type may have a <i>method set</i> associated with it.
    736 The method set of an <a href="#Interface_types">interface type</a> is its interface.
    737 The method set of any other type <code>T</code> consists of all
    738 <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.
    739 The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code>
    740 is the set of all methods declared with receiver <code>*T</code> or <code>T</code>
    741 (that is, it also contains the method set of <code>T</code>).
    742 Further rules apply to structs containing embedded fields, as described
    743 in the section on <a href="#Struct_types">struct types</a>.
    744 Any other type has an empty method set.
    745 In a method set, each method must have a
    746 <a href="#Uniqueness_of_identifiers">unique</a>
    747 non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>.
    748 </p>
    749 
    750 <p>
    751 The method set of a type determines the interfaces that the
    752 type <a href="#Interface_types">implements</a>
    753 and the methods that can be <a href="#Calls">called</a>
    754 using a receiver of that type.
    755 </p>
    756 
    757 <h3 id="Boolean_types">Boolean types</h3>
    758 
    759 <p>
    760 A <i>boolean type</i> represents the set of Boolean truth values
    761 denoted by the predeclared constants <code>true</code>
    762 and <code>false</code>. The predeclared boolean type is <code>bool</code>;
    763 it is a <a href="#Type_definitions">defined type</a>.
    764 </p>
    765 
    766 <h3 id="Numeric_types">Numeric types</h3>
    767 
    768 <p>
    769 A <i>numeric type</i> represents sets of integer or floating-point values.
    770 The predeclared architecture-independent numeric types are:
    771 </p>
    772 
    773 <pre class="grammar">
    774 uint8       the set of all unsigned  8-bit integers (0 to 255)
    775 uint16      the set of all unsigned 16-bit integers (0 to 65535)
    776 uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
    777 uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)
    778 
    779 int8        the set of all signed  8-bit integers (-128 to 127)
    780 int16       the set of all signed 16-bit integers (-32768 to 32767)
    781 int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
    782 int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
    783 
    784 float32     the set of all IEEE-754 32-bit floating-point numbers
    785 float64     the set of all IEEE-754 64-bit floating-point numbers
    786 
    787 complex64   the set of all complex numbers with float32 real and imaginary parts
    788 complex128  the set of all complex numbers with float64 real and imaginary parts
    789 
    790 byte        alias for uint8
    791 rune        alias for int32
    792 </pre>
    793 
    794 <p>
    795 The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
    796 <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
    797 </p>
    798 
    799 <p>
    800 There is also a set of predeclared numeric types with implementation-specific sizes:
    801 </p>
    802 
    803 <pre class="grammar">
    804 uint     either 32 or 64 bits
    805 int      same size as uint
    806 uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
    807 </pre>
    808 
    809 <p>
    810 To avoid portability issues all numeric types are <a href="#Type_definitions">defined
    811 types</a> and thus distinct except
    812 <code>byte</code>, which is an <a href="#Alias_declarations">alias</a> for <code>uint8</code>, and
    813 <code>rune</code>, which is an alias for <code>int32</code>.
    814 Conversions
    815 are required when different numeric types are mixed in an expression
    816 or assignment. For instance, <code>int32</code> and <code>int</code>
    817 are not the same type even though they may have the same size on a
    818 particular architecture.
    819 
    820 
    821 <h3 id="String_types">String types</h3>
    822 
    823 <p>
    824 A <i>string type</i> represents the set of string values.
    825 A string value is a (possibly empty) sequence of bytes.
    826 Strings are immutable: once created,
    827 it is impossible to change the contents of a string.
    828 The predeclared string type is <code>string</code>;
    829 it is a <a href="#Type_definitions">defined type</a>.
    830 </p>
    831 
    832 <p>
    833 The length of a string <code>s</code> (its size in bytes) can be discovered using
    834 the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
    835 The length is a compile-time constant if the string is a constant.
    836 A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a>
    837 0 through <code>len(s)-1</code>.
    838 It is illegal to take the address of such an element; if
    839 <code>s[i]</code> is the <code>i</code>'th byte of a
    840 string, <code>&amp;s[i]</code> is invalid.
    841 </p>
    842 
    843 
    844 <h3 id="Array_types">Array types</h3>
    845 
    846 <p>
    847 An array is a numbered sequence of elements of a single
    848 type, called the element type.
    849 The number of elements is called the length and is never
    850 negative.
    851 </p>
    852 
    853 <pre class="ebnf">
    854 ArrayType   = "[" ArrayLength "]" ElementType .
    855 ArrayLength = Expression .
    856 ElementType = Type .
    857 </pre>
    858 
    859 <p>
    860 The length is part of the array's type; it must evaluate to a
    861 non-negative <a href="#Constants">constant</a>
    862 <a href="#Representability">representable</a> by a value
    863 of type <code>int</code>.
    864 The length of array <code>a</code> can be discovered
    865 using the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
    866 The elements can be addressed by integer <a href="#Index_expressions">indices</a>
    867 0 through <code>len(a)-1</code>.
    868 Array types are always one-dimensional but may be composed to form
    869 multi-dimensional types.
    870 </p>
    871 
    872 <pre>
    873 [32]byte
    874 [2*N] struct { x, y int32 }
    875 [1000]*float64
    876 [3][5]int
    877 [2][2][2]float64  // same as [2]([2]([2]float64))
    878 </pre>
    879 
    880 <h3 id="Slice_types">Slice types</h3>
    881 
    882 <p>
    883 A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and
    884 provides access to a numbered sequence of elements from that array.
    885 A slice type denotes the set of all slices of arrays of its element type.
    886 The value of an uninitialized slice is <code>nil</code>.
    887 </p>
    888 
    889 <pre class="ebnf">
    890 SliceType = "[" "]" ElementType .
    891 </pre>
    892 
    893 <p>
    894 Like arrays, slices are indexable and have a length.  The length of a
    895 slice <code>s</code> can be discovered by the built-in function
    896 <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during
    897 execution.  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
    898 0 through <code>len(s)-1</code>.  The slice index of a
    899 given element may be less than the index of the same element in the
    900 underlying array.
    901 </p>
    902 <p>
    903 A slice, once initialized, is always associated with an underlying
    904 array that holds its elements.  A slice therefore shares storage
    905 with its array and with other slices of the same array; by contrast,
    906 distinct arrays always represent distinct storage.
    907 </p>
    908 <p>
    909 The array underlying a slice may extend past the end of the slice.
    910 The <i>capacity</i> is a measure of that extent: it is the sum of
    911 the length of the slice and the length of the array beyond the slice;
    912 a slice of length up to that capacity can be created by
    913 <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice.
    914 The capacity of a slice <code>a</code> can be discovered using the
    915 built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
    916 </p>
    917 
    918 <p>
    919 A new, initialized slice value for a given element type <code>T</code> is
    920 made using the built-in function
    921 <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
    922 which takes a slice type
    923 and parameters specifying the length and optionally the capacity.
    924 A slice created with <code>make</code> always allocates a new, hidden array
    925 to which the returned slice value refers. That is, executing
    926 </p>
    927 
    928 <pre>
    929 make([]T, length, capacity)
    930 </pre>
    931 
    932 <p>
    933 produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a>
    934 it, so these two expressions are equivalent:
    935 </p>
    936 
    937 <pre>
    938 make([]int, 50, 100)
    939 new([100]int)[0:50]
    940 </pre>
    941 
    942 <p>
    943 Like arrays, slices are always one-dimensional but may be composed to construct
    944 higher-dimensional objects.
    945 With arrays of arrays, the inner arrays are, by construction, always the same length;
    946 however with slices of slices (or arrays of slices), the inner lengths may vary dynamically.
    947 Moreover, the inner slices must be initialized individually.
    948 </p>
    949 
    950 <h3 id="Struct_types">Struct types</h3>
    951 
    952 <p>
    953 A struct is a sequence of named elements, called fields, each of which has a
    954 name and a type. Field names may be specified explicitly (IdentifierList) or
    955 implicitly (EmbeddedField).
    956 Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
    957 be <a href="#Uniqueness_of_identifiers">unique</a>.
    958 </p>
    959 
    960 <pre class="ebnf">
    961 StructType    = "struct" "{" { FieldDecl ";" } "}" .
    962 FieldDecl     = (IdentifierList Type | EmbeddedField) [ Tag ] .
    963 EmbeddedField = [ "*" ] TypeName .
    964 Tag           = string_lit .
    965 </pre>
    966 
    967 <pre>
    968 // An empty struct.
    969 struct {}
    970 
    971 // A struct with 6 fields.
    972 struct {
    973 	x, y int
    974 	u float32
    975 	_ float32  // padding
    976 	A *[]int
    977 	F func()
    978 }
    979 </pre>
    980 
    981 <p>
    982 A field declared with a type but no explicit field name is called an <i>embedded field</i>.
    983 An embedded field must be specified as
    984 a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
    985 and <code>T</code> itself may not be
    986 a pointer type. The unqualified type name acts as the field name.
    987 </p>
    988 
    989 <pre>
    990 // A struct with four embedded fields of types T1, *T2, P.T3 and *P.T4
    991 struct {
    992 	T1        // field name is T1
    993 	*T2       // field name is T2
    994 	P.T3      // field name is T3
    995 	*P.T4     // field name is T4
    996 	x, y int  // field names are x and y
    997 }
    998 </pre>
    999 
   1000 <p>
   1001 The following declaration is illegal because field names must be unique
   1002 in a struct type:
   1003 </p>
   1004 
   1005 <pre>
   1006 struct {
   1007 	T     // conflicts with embedded field *T and *P.T
   1008 	*T    // conflicts with embedded field T and *P.T
   1009 	*P.T  // conflicts with embedded field T and *T
   1010 }
   1011 </pre>
   1012 
   1013 <p>
   1014 A field or <a href="#Method_declarations">method</a> <code>f</code> of an
   1015 embedded field in a struct <code>x</code> is called <i>promoted</i> if
   1016 <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes
   1017 that field or method <code>f</code>.
   1018 </p>
   1019 
   1020 <p>
   1021 Promoted fields act like ordinary fields
   1022 of a struct except that they cannot be used as field names in
   1023 <a href="#Composite_literals">composite literals</a> of the struct.
   1024 </p>
   1025 
   1026 <p>
   1027 Given a struct type <code>S</code> and a <a href="#Type_definitions">defined type</a>
   1028 <code>T</code>, promoted methods are included in the method set of the struct as follows:
   1029 </p>
   1030 <ul>
   1031 	<li>
   1032 	If <code>S</code> contains an embedded field <code>T</code>,
   1033 	the <a href="#Method_sets">method sets</a> of <code>S</code>
   1034 	and <code>*S</code> both include promoted methods with receiver
   1035 	<code>T</code>. The method set of <code>*S</code> also
   1036 	includes promoted methods with receiver <code>*T</code>.
   1037 	</li>
   1038 
   1039 	<li>
   1040 	If <code>S</code> contains an embedded field <code>*T</code>,
   1041 	the method sets of <code>S</code> and <code>*S</code> both
   1042 	include promoted methods with receiver <code>T</code> or
   1043 	<code>*T</code>.
   1044 	</li>
   1045 </ul>
   1046 
   1047 <p>
   1048 A field declaration may be followed by an optional string literal <i>tag</i>,
   1049 which becomes an attribute for all the fields in the corresponding
   1050 field declaration. An empty tag string is equivalent to an absent tag.
   1051 The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a>
   1052 and take part in <a href="#Type_identity">type identity</a> for structs
   1053 but are otherwise ignored.
   1054 </p>
   1055 
   1056 <pre>
   1057 struct {
   1058 	x, y float64 ""  // an empty tag string is like an absent tag
   1059 	name string  "any string is permitted as a tag"
   1060 	_    [4]byte "ceci n'est pas un champ de structure"
   1061 }
   1062 
   1063 // A struct corresponding to a TimeStamp protocol buffer.
   1064 // The tag strings define the protocol buffer field numbers;
   1065 // they follow the convention outlined by the reflect package.
   1066 struct {
   1067 	microsec  uint64 `protobuf:"1"`
   1068 	serverIP6 uint64 `protobuf:"2"`
   1069 }
   1070 </pre>
   1071 
   1072 <h3 id="Pointer_types">Pointer types</h3>
   1073 
   1074 <p>
   1075 A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given
   1076 type, called the <i>base type</i> of the pointer.
   1077 The value of an uninitialized pointer is <code>nil</code>.
   1078 </p>
   1079 
   1080 <pre class="ebnf">
   1081 PointerType = "*" BaseType .
   1082 BaseType    = Type .
   1083 </pre>
   1084 
   1085 <pre>
   1086 *Point
   1087 *[4]int
   1088 </pre>
   1089 
   1090 <h3 id="Function_types">Function types</h3>
   1091 
   1092 <p>
   1093 A function type denotes the set of all functions with the same parameter
   1094 and result types. The value of an uninitialized variable of function type
   1095 is <code>nil</code>.
   1096 </p>
   1097 
   1098 <pre class="ebnf">
   1099 FunctionType   = "func" Signature .
   1100 Signature      = Parameters [ Result ] .
   1101 Result         = Parameters | Type .
   1102 Parameters     = "(" [ ParameterList [ "," ] ] ")" .
   1103 ParameterList  = ParameterDecl { "," ParameterDecl } .
   1104 ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
   1105 </pre>
   1106 
   1107 <p>
   1108 Within a list of parameters or results, the names (IdentifierList)
   1109 must either all be present or all be absent. If present, each name
   1110 stands for one item (parameter or result) of the specified type and
   1111 all non-<a href="#Blank_identifier">blank</a> names in the signature
   1112 must be <a href="#Uniqueness_of_identifiers">unique</a>.
   1113 If absent, each type stands for one item of that type.
   1114 Parameter and result
   1115 lists are always parenthesized except that if there is exactly
   1116 one unnamed result it may be written as an unparenthesized type.
   1117 </p>
   1118 
   1119 <p>
   1120 The final incoming parameter in a function signature may have
   1121 a type prefixed with <code>...</code>.
   1122 A function with such a parameter is called <i>variadic</i> and
   1123 may be invoked with zero or more arguments for that parameter.
   1124 </p>
   1125 
   1126 <pre>
   1127 func()
   1128 func(x int) int
   1129 func(a, _ int, z float32) bool
   1130 func(a, b int, z float32) (bool)
   1131 func(prefix string, values ...int)
   1132 func(a, b int, z float64, opt ...interface{}) (success bool)
   1133 func(int, int, float64) (float64, *[]int)
   1134 func(n int) func(p *T)
   1135 </pre>
   1136 
   1137 
   1138 <h3 id="Interface_types">Interface types</h3>
   1139 
   1140 <p>
   1141 An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>.
   1142 A variable of interface type can store a value of any type with a method set
   1143 that is any superset of the interface. Such a type is said to
   1144 <i>implement the interface</i>.
   1145 The value of an uninitialized variable of interface type is <code>nil</code>.
   1146 </p>
   1147 
   1148 <pre class="ebnf">
   1149 InterfaceType      = "interface" "{" { MethodSpec ";" } "}" .
   1150 MethodSpec         = MethodName Signature | InterfaceTypeName .
   1151 MethodName         = identifier .
   1152 InterfaceTypeName  = TypeName .
   1153 </pre>
   1154 
   1155 <p>
   1156 As with all method sets, in an interface type, each method must have a
   1157 <a href="#Uniqueness_of_identifiers">unique</a>
   1158 non-<a href="#Blank_identifier">blank</a> name.
   1159 </p>
   1160 
   1161 <pre>
   1162 // A simple File interface
   1163 interface {
   1164 	Read(b Buffer) bool
   1165 	Write(b Buffer) bool
   1166 	Close()
   1167 }
   1168 </pre>
   1169 
   1170 <p>
   1171 More than one type may implement an interface.
   1172 For instance, if two types <code>S1</code> and <code>S2</code>
   1173 have the method set
   1174 </p>
   1175 
   1176 <pre>
   1177 func (p T) Read(b Buffer) bool { return  }
   1178 func (p T) Write(b Buffer) bool { return  }
   1179 func (p T) Close() {  }
   1180 </pre>
   1181 
   1182 <p>
   1183 (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
   1184 then the <code>File</code> interface is implemented by both <code>S1</code> and
   1185 <code>S2</code>, regardless of what other methods
   1186 <code>S1</code> and <code>S2</code> may have or share.
   1187 </p>
   1188 
   1189 <p>
   1190 A type implements any interface comprising any subset of its methods
   1191 and may therefore implement several distinct interfaces. For
   1192 instance, all types implement the <i>empty interface</i>:
   1193 </p>
   1194 
   1195 <pre>
   1196 interface{}
   1197 </pre>
   1198 
   1199 <p>
   1200 Similarly, consider this interface specification,
   1201 which appears within a <a href="#Type_declarations">type declaration</a>
   1202 to define an interface called <code>Locker</code>:
   1203 </p>
   1204 
   1205 <pre>
   1206 type Locker interface {
   1207 	Lock()
   1208 	Unlock()
   1209 }
   1210 </pre>
   1211 
   1212 <p>
   1213 If <code>S1</code> and <code>S2</code> also implement
   1214 </p>
   1215 
   1216 <pre>
   1217 func (p T) Lock() {  }
   1218 func (p T) Unlock() {  }
   1219 </pre>
   1220 
   1221 <p>
   1222 they implement the <code>Locker</code> interface as well
   1223 as the <code>File</code> interface.
   1224 </p>
   1225 
   1226 <p>
   1227 An interface <code>T</code> may use a (possibly qualified) interface type
   1228 name <code>E</code> in place of a method specification. This is called
   1229 <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds
   1230 all (exported and non-exported) methods of <code>E</code> to the interface
   1231 <code>T</code>.
   1232 </p>
   1233 
   1234 <pre>
   1235 type ReadWriter interface {
   1236 	Read(b Buffer) bool
   1237 	Write(b Buffer) bool
   1238 }
   1239 
   1240 type File interface {
   1241 	ReadWriter  // same as adding the methods of ReadWriter
   1242 	Locker      // same as adding the methods of Locker
   1243 	Close()
   1244 }
   1245 
   1246 type LockedFile interface {
   1247 	Locker
   1248 	File        // illegal: Lock, Unlock not unique
   1249 	Lock()      // illegal: Lock not unique
   1250 }
   1251 </pre>
   1252 
   1253 <p>
   1254 An interface type <code>T</code> may not embed itself
   1255 or any interface type that embeds <code>T</code>, recursively.
   1256 </p>
   1257 
   1258 <pre>
   1259 // illegal: Bad cannot embed itself
   1260 type Bad interface {
   1261 	Bad
   1262 }
   1263 
   1264 // illegal: Bad1 cannot embed itself using Bad2
   1265 type Bad1 interface {
   1266 	Bad2
   1267 }
   1268 type Bad2 interface {
   1269 	Bad1
   1270 }
   1271 </pre>
   1272 
   1273 <h3 id="Map_types">Map types</h3>
   1274 
   1275 <p>
   1276 A map is an unordered group of elements of one type, called the
   1277 element type, indexed by a set of unique <i>keys</i> of another type,
   1278 called the key type.
   1279 The value of an uninitialized map is <code>nil</code>.
   1280 </p>
   1281 
   1282 <pre class="ebnf">
   1283 MapType     = "map" "[" KeyType "]" ElementType .
   1284 KeyType     = Type .
   1285 </pre>
   1286 
   1287 <p>
   1288 The <a href="#Comparison_operators">comparison operators</a>
   1289 <code>==</code> and <code>!=</code> must be fully defined
   1290 for operands of the key type; thus the key type must not be a function, map, or
   1291 slice.
   1292 If the key type is an interface type, these
   1293 comparison operators must be defined for the dynamic key values;
   1294 failure will cause a <a href="#Run_time_panics">run-time panic</a>.
   1295 
   1296 </p>
   1297 
   1298 <pre>
   1299 map[string]int
   1300 map[*T]struct{ x, y float64 }
   1301 map[string]interface{}
   1302 </pre>
   1303 
   1304 <p>
   1305 The number of map elements is called its length.
   1306 For a map <code>m</code>, it can be discovered using the
   1307 built-in function <a href="#Length_and_capacity"><code>len</code></a>
   1308 and may change during execution. Elements may be added during execution
   1309 using <a href="#Assignments">assignments</a> and retrieved with
   1310 <a href="#Index_expressions">index expressions</a>; they may be removed with the
   1311 <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function.
   1312 </p>
   1313 <p>
   1314 A new, empty map value is made using the built-in
   1315 function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   1316 which takes the map type and an optional capacity hint as arguments:
   1317 </p>
   1318 
   1319 <pre>
   1320 make(map[string]int)
   1321 make(map[string]int, 100)
   1322 </pre>
   1323 
   1324 <p>
   1325 The initial capacity does not bound its size:
   1326 maps grow to accommodate the number of items
   1327 stored in them, with the exception of <code>nil</code> maps.
   1328 A <code>nil</code> map is equivalent to an empty map except that no elements
   1329 may be added.
   1330 
   1331 <h3 id="Channel_types">Channel types</h3>
   1332 
   1333 <p>
   1334 A channel provides a mechanism for
   1335 <a href="#Go_statements">concurrently executing functions</a>
   1336 to communicate by
   1337 <a href="#Send_statements">sending</a> and
   1338 <a href="#Receive_operator">receiving</a>
   1339 values of a specified element type.
   1340 The value of an uninitialized channel is <code>nil</code>.
   1341 </p>
   1342 
   1343 <pre class="ebnf">
   1344 ChannelType = ( "chan" | "chan" "&lt;-" | "&lt;-" "chan" ) ElementType .
   1345 </pre>
   1346 
   1347 <p>
   1348 The optional <code>&lt;-</code> operator specifies the channel <i>direction</i>,
   1349 <i>send</i> or <i>receive</i>. If no direction is given, the channel is
   1350 <i>bidirectional</i>.
   1351 A channel may be constrained only to send or only to receive by
   1352 <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
   1353 </p>
   1354 
   1355 <pre>
   1356 chan T          // can be used to send and receive values of type T
   1357 chan&lt;- float64  // can only be used to send float64s
   1358 &lt;-chan int      // can only be used to receive ints
   1359 </pre>
   1360 
   1361 <p>
   1362 The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
   1363 possible:
   1364 </p>
   1365 
   1366 <pre>
   1367 chan&lt;- chan int    // same as chan&lt;- (chan int)
   1368 chan&lt;- &lt;-chan int  // same as chan&lt;- (&lt;-chan int)
   1369 &lt;-chan &lt;-chan int  // same as &lt;-chan (&lt;-chan int)
   1370 chan (&lt;-chan int)
   1371 </pre>
   1372 
   1373 <p>
   1374 A new, initialized channel
   1375 value can be made using the built-in function
   1376 <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   1377 which takes the channel type and an optional <i>capacity</i> as arguments:
   1378 </p>
   1379 
   1380 <pre>
   1381 make(chan int, 100)
   1382 </pre>
   1383 
   1384 <p>
   1385 The capacity, in number of elements, sets the size of the buffer in the channel.
   1386 If the capacity is zero or absent, the channel is unbuffered and communication
   1387 succeeds only when both a sender and receiver are ready. Otherwise, the channel
   1388 is buffered and communication succeeds without blocking if the buffer
   1389 is not full (sends) or not empty (receives).
   1390 A <code>nil</code> channel is never ready for communication.
   1391 </p>
   1392 
   1393 <p>
   1394 A channel may be closed with the built-in function
   1395 <a href="#Close"><code>close</code></a>.
   1396 The multi-valued assignment form of the
   1397 <a href="#Receive_operator">receive operator</a>
   1398 reports whether a received value was sent before
   1399 the channel was closed.
   1400 </p>
   1401 
   1402 <p>
   1403 A single channel may be used in
   1404 <a href="#Send_statements">send statements</a>,
   1405 <a href="#Receive_operator">receive operations</a>,
   1406 and calls to the built-in functions
   1407 <a href="#Length_and_capacity"><code>cap</code></a> and
   1408 <a href="#Length_and_capacity"><code>len</code></a>
   1409 by any number of goroutines without further synchronization.
   1410 Channels act as first-in-first-out queues.
   1411 For example, if one goroutine sends values on a channel
   1412 and a second goroutine receives them, the values are
   1413 received in the order sent.
   1414 </p>
   1415 
   1416 <h2 id="Properties_of_types_and_values">Properties of types and values</h2>
   1417 
   1418 <h3 id="Type_identity">Type identity</h3>
   1419 
   1420 <p>
   1421 Two types are either <i>identical</i> or <i>different</i>.
   1422 </p>
   1423 
   1424 <p>
   1425 A <a href="#Type_definitions">defined type</a> is always different from any other type.
   1426 Otherwise, two types are identical if their <a href="#Types">underlying</a> type literals are
   1427 structurally equivalent; that is, they have the same literal structure and corresponding
   1428 components have identical types. In detail:
   1429 </p>
   1430 
   1431 <ul>
   1432 	<li>Two array types are identical if they have identical element types and
   1433 	    the same array length.</li>
   1434 
   1435 	<li>Two slice types are identical if they have identical element types.</li>
   1436 
   1437 	<li>Two struct types are identical if they have the same sequence of fields,
   1438 	    and if corresponding fields have the same names, and identical types,
   1439 	    and identical tags.
   1440 	    <a href="#Exported_identifiers">Non-exported</a> field names from different
   1441 	    packages are always different.</li>
   1442 
   1443 	<li>Two pointer types are identical if they have identical base types.</li>
   1444 
   1445 	<li>Two function types are identical if they have the same number of parameters
   1446 	    and result values, corresponding parameter and result types are
   1447 	    identical, and either both functions are variadic or neither is.
   1448 	    Parameter and result names are not required to match.</li>
   1449 
   1450 	<li>Two interface types are identical if they have the same set of methods
   1451 	    with the same names and identical function types.
   1452 	    <a href="#Exported_identifiers">Non-exported</a> method names from different
   1453 	    packages are always different. The order of the methods is irrelevant.</li>
   1454 
   1455 	<li>Two map types are identical if they have identical key and element types.</li>
   1456 
   1457 	<li>Two channel types are identical if they have identical element types and
   1458 	    the same direction.</li>
   1459 </ul>
   1460 
   1461 <p>
   1462 Given the declarations
   1463 </p>
   1464 
   1465 <pre>
   1466 type (
   1467 	A0 = []string
   1468 	A1 = A0
   1469 	A2 = struct{ a, b int }
   1470 	A3 = int
   1471 	A4 = func(A3, float64) *A0
   1472 	A5 = func(x int, _ float64) *[]string
   1473 )
   1474 
   1475 type (
   1476 	B0 A0
   1477 	B1 []string
   1478 	B2 struct{ a, b int }
   1479 	B3 struct{ a, c int }
   1480 	B4 func(int, float64) *B0
   1481 	B5 func(x int, y float64) *A1
   1482 )
   1483 
   1484 type	C0 = B0
   1485 </pre>
   1486 
   1487 <p>
   1488 these types are identical:
   1489 </p>
   1490 
   1491 <pre>
   1492 A0, A1, and []string
   1493 A2 and struct{ a, b int }
   1494 A3 and int
   1495 A4, func(int, float64) *[]string, and A5
   1496 
   1497 B0 and C0
   1498 []int and []int
   1499 struct{ a, b *T5 } and struct{ a, b *T5 }
   1500 func(x int, y float64) *[]string, func(int, float64) (result *[]string), and A5
   1501 </pre>
   1502 
   1503 <p>
   1504 <code>B0</code> and <code>B1</code> are different because they are new types
   1505 created by distinct <a href="#Type_definitions">type definitions</a>;
   1506 <code>func(int, float64) *B0</code> and <code>func(x int, y float64) *[]string</code>
   1507 are different because <code>B0</code> is different from <code>[]string</code>.
   1508 </p>
   1509 
   1510 
   1511 <h3 id="Assignability">Assignability</h3>
   1512 
   1513 <p>
   1514 A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code>
   1515 ("<code>x</code> is assignable to <code>T</code>") if one of the following conditions applies:
   1516 </p>
   1517 
   1518 <ul>
   1519 <li>
   1520 <code>x</code>'s type is identical to <code>T</code>.
   1521 </li>
   1522 <li>
   1523 <code>x</code>'s type <code>V</code> and <code>T</code> have identical
   1524 <a href="#Types">underlying types</a> and at least one of <code>V</code>
   1525 or <code>T</code> is not a <a href="#Type_definitions">defined</a> type.
   1526 </li>
   1527 <li>
   1528 <code>T</code> is an interface type and
   1529 <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>.
   1530 </li>
   1531 <li>
   1532 <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type,
   1533 <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types,
   1534 and at least one of <code>V</code> or <code>T</code> is not a defined type.
   1535 </li>
   1536 <li>
   1537 <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
   1538 is a pointer, function, slice, map, channel, or interface type.
   1539 </li>
   1540 <li>
   1541 <code>x</code> is an untyped <a href="#Constants">constant</a>
   1542 <a href="#Representability">representable</a>
   1543 by a value of type <code>T</code>.
   1544 </li>
   1545 </ul>
   1546 
   1547 
   1548 <h3 id="Representability">Representability</h3>
   1549 
   1550 <p>
   1551 A <a href="#Constants">constant</a> <code>x</code> is <i>representable</i>
   1552 by a value of type <code>T</code> if one of the following conditions applies:
   1553 </p>
   1554 
   1555 <ul>
   1556 <li>
   1557 <code>x</code> is in the set of values <a href="#Types">determined</a> by <code>T</code>.
   1558 </li>
   1559 
   1560 <li>
   1561 <code>T</code> is a floating-point type and <code>x</code> can be rounded to <code>T</code>'s
   1562 precision without overflow. Rounding uses IEEE 754 round-to-even rules but with an IEEE
   1563 negative zero further simplified to an unsigned zero. Note that constant values never result
   1564 in an IEEE negative zero, NaN, or infinity.
   1565 </li>
   1566 
   1567 <li>
   1568 <code>T</code> is a complex type, and <code>x</code>'s
   1569 <a href="#Complex_numbers">components</a> <code>real(x)</code> and <code>imag(x)</code>
   1570 are representable by values of <code>T</code>'s component type (<code>float32</code> or
   1571 <code>float64</code>).
   1572 </li>
   1573 </ul>
   1574 
   1575 <pre>
   1576 x                   T           x is representable by a value of T because
   1577 
   1578 'a'                 byte        97 is in the set of byte values
   1579 97                  rune        rune is an alias for int32, and 97 is in the set of 32-bit integers
   1580 "foo"               string      "foo" is in the set of string values
   1581 1024                int16       1024 is in the set of 16-bit integers
   1582 42.0                byte        42 is in the set of unsigned 8-bit integers
   1583 1e10                uint64      10000000000 is in the set of unsigned 64-bit integers
   1584 2.718281828459045   float32     2.718281828459045 rounds to 2.7182817 which is in the set of float32 values
   1585 -1e-1000            float64     -1e-1000 rounds to IEEE -0.0 which is further simplified to 0.0
   1586 0i                  int         0 is an integer value
   1587 (42 + 0i)           float32     42.0 (with zero imaginary part) is in the set of float32 values
   1588 </pre>
   1589 
   1590 <pre>
   1591 x                   T           x is not representable by a value of T because
   1592 
   1593 0                   bool        0 is not in the set of boolean values
   1594 'a'                 string      'a' is a rune, it is not in the set of string values
   1595 1024                byte        1024 is not in the set of unsigned 8-bit integers
   1596 -1                  uint16      -1 is not in the set of unsigned 16-bit integers
   1597 1.1                 int         1.1 is not an integer value
   1598 42i                 float32     (0 + 42i) is not in the set of float32 values
   1599 1e1000              float64     1e1000 overflows to IEEE +Inf after rounding
   1600 </pre>
   1601 
   1602 
   1603 <h2 id="Blocks">Blocks</h2>
   1604 
   1605 <p>
   1606 A <i>block</i> is a possibly empty sequence of declarations and statements
   1607 within matching brace brackets.
   1608 </p>
   1609 
   1610 <pre class="ebnf">
   1611 Block = "{" StatementList "}" .
   1612 StatementList = { Statement ";" } .
   1613 </pre>
   1614 
   1615 <p>
   1616 In addition to explicit blocks in the source code, there are implicit blocks:
   1617 </p>
   1618 
   1619 <ol>
   1620 	<li>The <i>universe block</i> encompasses all Go source text.</li>
   1621 
   1622 	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
   1623 	    Go source text for that package.</li>
   1624 
   1625 	<li>Each file has a <i>file block</i> containing all Go source text
   1626 	    in that file.</li>
   1627 
   1628 	<li>Each <a href="#If_statements">"if"</a>,
   1629 	    <a href="#For_statements">"for"</a>, and
   1630 	    <a href="#Switch_statements">"switch"</a>
   1631 	    statement is considered to be in its own implicit block.</li>
   1632 
   1633 	<li>Each clause in a <a href="#Switch_statements">"switch"</a>
   1634 	    or <a href="#Select_statements">"select"</a> statement
   1635 	    acts as an implicit block.</li>
   1636 </ol>
   1637 
   1638 <p>
   1639 Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
   1640 </p>
   1641 
   1642 
   1643 <h2 id="Declarations_and_scope">Declarations and scope</h2>
   1644 
   1645 <p>
   1646 A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a
   1647 <a href="#Constant_declarations">constant</a>,
   1648 <a href="#Type_declarations">type</a>,
   1649 <a href="#Variable_declarations">variable</a>,
   1650 <a href="#Function_declarations">function</a>,
   1651 <a href="#Labeled_statements">label</a>, or
   1652 <a href="#Import_declarations">package</a>.
   1653 Every identifier in a program must be declared.
   1654 No identifier may be declared twice in the same block, and
   1655 no identifier may be declared in both the file and package block.
   1656 </p>
   1657 
   1658 <p>
   1659 The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier
   1660 in a declaration, but it does not introduce a binding and thus is not declared.
   1661 In the package block, the identifier <code>init</code> may only be used for
   1662 <a href="#Package_initialization"><code>init</code> function</a> declarations,
   1663 and like the blank identifier it does not introduce a new binding.
   1664 </p>
   1665 
   1666 <pre class="ebnf">
   1667 Declaration   = ConstDecl | TypeDecl | VarDecl .
   1668 TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
   1669 </pre>
   1670 
   1671 <p>
   1672 The <i>scope</i> of a declared identifier is the extent of source text in which
   1673 the identifier denotes the specified constant, type, variable, function, label, or package.
   1674 </p>
   1675 
   1676 <p>
   1677 Go is lexically scoped using <a href="#Blocks">blocks</a>:
   1678 </p>
   1679 
   1680 <ol>
   1681 	<li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li>
   1682 
   1683 	<li>The scope of an identifier denoting a constant, type, variable,
   1684 	    or function (but not method) declared at top level (outside any
   1685 	    function) is the package block.</li>
   1686 
   1687 	<li>The scope of the package name of an imported package is the file block
   1688 	    of the file containing the import declaration.</li>
   1689 
   1690 	<li>The scope of an identifier denoting a method receiver, function parameter,
   1691 	    or result variable is the function body.</li>
   1692 
   1693 	<li>The scope of a constant or variable identifier declared
   1694 	    inside a function begins at the end of the ConstSpec or VarSpec
   1695 	    (ShortVarDecl for short variable declarations)
   1696 	    and ends at the end of the innermost containing block.</li>
   1697 
   1698 	<li>The scope of a type identifier declared inside a function
   1699 	    begins at the identifier in the TypeSpec
   1700 	    and ends at the end of the innermost containing block.</li>
   1701 </ol>
   1702 
   1703 <p>
   1704 An identifier declared in a block may be redeclared in an inner block.
   1705 While the identifier of the inner declaration is in scope, it denotes
   1706 the entity declared by the inner declaration.
   1707 </p>
   1708 
   1709 <p>
   1710 The <a href="#Package_clause">package clause</a> is not a declaration; the package name
   1711 does not appear in any scope. Its purpose is to identify the files belonging
   1712 to the same <a href="#Packages">package</a> and to specify the default package name for import
   1713 declarations.
   1714 </p>
   1715 
   1716 
   1717 <h3 id="Label_scopes">Label scopes</h3>
   1718 
   1719 <p>
   1720 Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
   1721 used in the <a href="#Break_statements">"break"</a>,
   1722 <a href="#Continue_statements">"continue"</a>, and
   1723 <a href="#Goto_statements">"goto"</a> statements.
   1724 It is illegal to define a label that is never used.
   1725 In contrast to other identifiers, labels are not block scoped and do
   1726 not conflict with identifiers that are not labels. The scope of a label
   1727 is the body of the function in which it is declared and excludes
   1728 the body of any nested function.
   1729 </p>
   1730 
   1731 
   1732 <h3 id="Blank_identifier">Blank identifier</h3>
   1733 
   1734 <p>
   1735 The <i>blank identifier</i> is represented by the underscore character <code>_</code>.
   1736 It serves as an anonymous placeholder instead of a regular (non-blank)
   1737 identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>,
   1738 as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>.
   1739 </p>
   1740 
   1741 
   1742 <h3 id="Predeclared_identifiers">Predeclared identifiers</h3>
   1743 
   1744 <p>
   1745 The following identifiers are implicitly declared in the
   1746 <a href="#Blocks">universe block</a>:
   1747 </p>
   1748 <pre class="grammar">
   1749 Types:
   1750 	bool byte complex64 complex128 error float32 float64
   1751 	int int8 int16 int32 int64 rune string
   1752 	uint uint8 uint16 uint32 uint64 uintptr
   1753 
   1754 Constants:
   1755 	true false iota
   1756 
   1757 Zero value:
   1758 	nil
   1759 
   1760 Functions:
   1761 	append cap close complex copy delete imag len
   1762 	make new panic print println real recover
   1763 </pre>
   1764 
   1765 
   1766 <h3 id="Exported_identifiers">Exported identifiers</h3>
   1767 
   1768 <p>
   1769 An identifier may be <i>exported</i> to permit access to it from another package.
   1770 An identifier is exported if both:
   1771 </p>
   1772 <ol>
   1773 	<li>the first character of the identifier's name is a Unicode upper case
   1774 	letter (Unicode class "Lu"); and</li>
   1775 	<li>the identifier is declared in the <a href="#Blocks">package block</a>
   1776 	or it is a <a href="#Struct_types">field name</a> or
   1777 	<a href="#MethodName">method name</a>.</li>
   1778 </ol>
   1779 <p>
   1780 All other identifiers are not exported.
   1781 </p>
   1782 
   1783 
   1784 <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3>
   1785 
   1786 <p>
   1787 Given a set of identifiers, an identifier is called <i>unique</i> if it is
   1788 <i>different</i> from every other in the set.
   1789 Two identifiers are different if they are spelled differently, or if they
   1790 appear in different <a href="#Packages">packages</a> and are not
   1791 <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same.
   1792 </p>
   1793 
   1794 <h3 id="Constant_declarations">Constant declarations</h3>
   1795 
   1796 <p>
   1797 A constant declaration binds a list of identifiers (the names of
   1798 the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
   1799 The number of identifiers must be equal
   1800 to the number of expressions, and the <i>n</i>th identifier on
   1801 the left is bound to the value of the <i>n</i>th expression on the
   1802 right.
   1803 </p>
   1804 
   1805 <pre class="ebnf">
   1806 ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
   1807 ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .
   1808 
   1809 IdentifierList = identifier { "," identifier } .
   1810 ExpressionList = Expression { "," Expression } .
   1811 </pre>
   1812 
   1813 <p>
   1814 If the type is present, all constants take the type specified, and
   1815 the expressions must be <a href="#Assignability">assignable</a> to that type.
   1816 If the type is omitted, the constants take the
   1817 individual types of the corresponding expressions.
   1818 If the expression values are untyped <a href="#Constants">constants</a>,
   1819 the declared constants remain untyped and the constant identifiers
   1820 denote the constant values. For instance, if the expression is a
   1821 floating-point literal, the constant identifier denotes a floating-point
   1822 constant, even if the literal's fractional part is zero.
   1823 </p>
   1824 
   1825 <pre>
   1826 const Pi float64 = 3.14159265358979323846
   1827 const zero = 0.0         // untyped floating-point constant
   1828 const (
   1829 	size int64 = 1024
   1830 	eof        = -1  // untyped integer constant
   1831 )
   1832 const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
   1833 const u, v float32 = 0, 3    // u = 0.0, v = 3.0
   1834 </pre>
   1835 
   1836 <p>
   1837 Within a parenthesized <code>const</code> declaration list the
   1838 expression list may be omitted from any but the first ConstSpec.
   1839 Such an empty list is equivalent to the textual substitution of the
   1840 first preceding non-empty expression list and its type if any.
   1841 Omitting the list of expressions is therefore equivalent to
   1842 repeating the previous list.  The number of identifiers must be equal
   1843 to the number of expressions in the previous list.
   1844 Together with the <a href="#Iota"><code>iota</code> constant generator</a>
   1845 this mechanism permits light-weight declaration of sequential values:
   1846 </p>
   1847 
   1848 <pre>
   1849 const (
   1850 	Sunday = iota
   1851 	Monday
   1852 	Tuesday
   1853 	Wednesday
   1854 	Thursday
   1855 	Friday
   1856 	Partyday
   1857 	numberOfDays  // this constant is not exported
   1858 )
   1859 </pre>
   1860 
   1861 
   1862 <h3 id="Iota">Iota</h3>
   1863 
   1864 <p>
   1865 Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
   1866 <code>iota</code> represents successive untyped integer <a href="#Constants">
   1867 constants</a>. Its value is the index of the respective <a href="#ConstSpec">ConstSpec</a>
   1868 in that constant declaration, starting at zero.
   1869 It can be used to construct a set of related constants:
   1870 </p>
   1871 
   1872 <pre>
   1873 const (
   1874 	c0 = iota  // c0 == 0
   1875 	c1 = iota  // c1 == 1
   1876 	c2 = iota  // c2 == 2
   1877 )
   1878 
   1879 const (
   1880 	a = 1 &lt;&lt; iota  // a == 1  (iota == 0)
   1881 	b = 1 &lt;&lt; iota  // b == 2  (iota == 1)
   1882 	c = 3          // c == 3  (iota == 2, unused)
   1883 	d = 1 &lt;&lt; iota  // d == 8  (iota == 3)
   1884 )
   1885 
   1886 const (
   1887 	u         = iota * 42  // u == 0     (untyped integer constant)
   1888 	v float64 = iota * 42  // v == 42.0  (float64 constant)
   1889 	w         = iota * 42  // w == 84    (untyped integer constant)
   1890 )
   1891 
   1892 const x = iota  // x == 0
   1893 const y = iota  // y == 0
   1894 </pre>
   1895 
   1896 <p>
   1897 By definition, multiple uses of <code>iota</code> in the same ConstSpec all have the same value:
   1898 </p>
   1899 
   1900 <pre>
   1901 const (
   1902 	bit0, mask0 = 1 &lt;&lt; iota, 1&lt;&lt;iota - 1  // bit0 == 1, mask0 == 0  (iota == 0)
   1903 	bit1, mask1                           // bit1 == 2, mask1 == 1  (iota == 1)
   1904 	_, _                                  //                        (iota == 2, unused)
   1905 	bit3, mask3                           // bit3 == 8, mask3 == 7  (iota == 3)
   1906 )
   1907 </pre>
   1908 
   1909 <p>
   1910 This last example exploits the <a href="#Constant_declarations">implicit repetition</a>
   1911 of the last non-empty expression list.
   1912 </p>
   1913 
   1914 
   1915 <h3 id="Type_declarations">Type declarations</h3>
   1916 
   1917 <p>
   1918 A type declaration binds an identifier, the <i>type name</i>, to a <a href="#Types">type</a>.
   1919 Type declarations come in two forms: alias declarations and type definitions.
   1920 <p>
   1921 
   1922 <pre class="ebnf">
   1923 TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
   1924 TypeSpec = AliasDecl | TypeDef .
   1925 </pre>
   1926 
   1927 <h4 id="Alias_declarations">Alias declarations</h4>
   1928 
   1929 <p>
   1930 An alias declaration binds an identifier to the given type.
   1931 </p>
   1932 
   1933 <pre class="ebnf">
   1934 AliasDecl = identifier "=" Type .
   1935 </pre>
   1936 
   1937 <p>
   1938 Within the <a href="#Declarations_and_scope">scope</a> of
   1939 the identifier, it serves as an <i>alias</i> for the type.
   1940 </p>
   1941 
   1942 <pre>
   1943 type (
   1944 	nodeList = []*Node  // nodeList and []*Node are identical types
   1945 	Polar    = polar    // Polar and polar denote identical types
   1946 )
   1947 </pre>
   1948 
   1949 
   1950 <h4 id="Type_definitions">Type definitions</h4>
   1951 
   1952 <p>
   1953 A type definition creates a new, distinct type with the same
   1954 <a href="#Types">underlying type</a> and operations as the given type,
   1955 and binds an identifier to it.
   1956 </p>
   1957 
   1958 <pre class="ebnf">
   1959 TypeDef = identifier Type .
   1960 </pre>
   1961 
   1962 <p>
   1963 The new type is called a <i>defined type</i>.
   1964 It is <a href="#Type_identity">different</a> from any other type,
   1965 including the type it is created from.
   1966 </p>
   1967 
   1968 <pre>
   1969 type (
   1970 	Point struct{ x, y float64 }  // Point and struct{ x, y float64 } are different types
   1971 	polar Point                   // polar and Point denote different types
   1972 )
   1973 
   1974 type TreeNode struct {
   1975 	left, right *TreeNode
   1976 	value *Comparable
   1977 }
   1978 
   1979 type Block interface {
   1980 	BlockSize() int
   1981 	Encrypt(src, dst []byte)
   1982 	Decrypt(src, dst []byte)
   1983 }
   1984 </pre>
   1985 
   1986 <p>
   1987 A defined type may have <a href="#Method_declarations">methods</a> associated with it.
   1988 It does not inherit any methods bound to the given type,
   1989 but the <a href="#Method_sets">method set</a>
   1990 of an interface type or of elements of a composite type remains unchanged:
   1991 </p>
   1992 
   1993 <pre>
   1994 // A Mutex is a data type with two methods, Lock and Unlock.
   1995 type Mutex struct         { /* Mutex fields */ }
   1996 func (m *Mutex) Lock()    { /* Lock implementation */ }
   1997 func (m *Mutex) Unlock()  { /* Unlock implementation */ }
   1998 
   1999 // NewMutex has the same composition as Mutex but its method set is empty.
   2000 type NewMutex Mutex
   2001 
   2002 // The method set of PtrMutex's underlying type *Mutex remains unchanged,
   2003 // but the method set of PtrMutex is empty.
   2004 type PtrMutex *Mutex
   2005 
   2006 // The method set of *PrintableMutex contains the methods
   2007 // Lock and Unlock bound to its embedded field Mutex.
   2008 type PrintableMutex struct {
   2009 	Mutex
   2010 }
   2011 
   2012 // MyBlock is an interface type that has the same method set as Block.
   2013 type MyBlock Block
   2014 </pre>
   2015 
   2016 <p>
   2017 Type definitions may be used to define different boolean, numeric,
   2018 or string types and associate methods with them:
   2019 </p>
   2020 
   2021 <pre>
   2022 type TimeZone int
   2023 
   2024 const (
   2025 	EST TimeZone = -(5 + iota)
   2026 	CST
   2027 	MST
   2028 	PST
   2029 )
   2030 
   2031 func (tz TimeZone) String() string {
   2032 	return fmt.Sprintf("GMT%+dh", tz)
   2033 }
   2034 </pre>
   2035 
   2036 
   2037 <h3 id="Variable_declarations">Variable declarations</h3>
   2038 
   2039 <p>
   2040 A variable declaration creates one or more <a href="#Variables">variables</a>,
   2041 binds corresponding identifiers to them, and gives each a type and an initial value.
   2042 </p>
   2043 
   2044 <pre class="ebnf">
   2045 VarDecl     = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
   2046 VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
   2047 </pre>
   2048 
   2049 <pre>
   2050 var i int
   2051 var U, V, W float64
   2052 var k = 0
   2053 var x, y float32 = -1, -2
   2054 var (
   2055 	i       int
   2056 	u, v, s = 2.0, 3.0, "bar"
   2057 )
   2058 var re, im = complexSqrt(-1)
   2059 var _, found = entries[name]  // map lookup; only interested in "found"
   2060 </pre>
   2061 
   2062 <p>
   2063 If a list of expressions is given, the variables are initialized
   2064 with the expressions following the rules for <a href="#Assignments">assignments</a>.
   2065 Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
   2066 </p>
   2067 
   2068 <p>
   2069 If a type is present, each variable is given that type.
   2070 Otherwise, each variable is given the type of the corresponding
   2071 initialization value in the assignment.
   2072 If that value is an untyped constant, it is first
   2073 <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
   2074 if it is an untyped boolean value, it is first converted to type <code>bool</code>.
   2075 The predeclared value <code>nil</code> cannot be used to initialize a variable
   2076 with no explicit type.
   2077 </p>
   2078 
   2079 <pre>
   2080 var d = math.Sin(0.5)  // d is float64
   2081 var i = 42             // i is int
   2082 var t, ok = x.(T)      // t is T, ok is bool
   2083 var n = nil            // illegal
   2084 </pre>
   2085 
   2086 <p>
   2087 Implementation restriction: A compiler may make it illegal to declare a variable
   2088 inside a <a href="#Function_declarations">function body</a> if the variable is
   2089 never used.
   2090 </p>
   2091 
   2092 <h3 id="Short_variable_declarations">Short variable declarations</h3>
   2093 
   2094 <p>
   2095 A <i>short variable declaration</i> uses the syntax:
   2096 </p>
   2097 
   2098 <pre class="ebnf">
   2099 ShortVarDecl = IdentifierList ":=" ExpressionList .
   2100 </pre>
   2101 
   2102 <p>
   2103 It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a>
   2104 with initializer expressions but no types:
   2105 </p>
   2106 
   2107 <pre class="grammar">
   2108 "var" IdentifierList = ExpressionList .
   2109 </pre>
   2110 
   2111 <pre>
   2112 i, j := 0, 10
   2113 f := func() int { return 7 }
   2114 ch := make(chan int)
   2115 r, w := os.Pipe(fd)  // os.Pipe() returns two values
   2116 _, y, _ := coord(p)  // coord() returns three values; only interested in y coordinate
   2117 </pre>
   2118 
   2119 <p>
   2120 Unlike regular variable declarations, a short variable declaration may <i>redeclare</i>
   2121 variables provided they were originally declared earlier in the same block
   2122 (or the parameter lists if the block is the function body) with the same type,
   2123 and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new.
   2124 As a consequence, redeclaration can only appear in a multi-variable short declaration.
   2125 Redeclaration does not introduce a new variable; it just assigns a new value to the original.
   2126 </p>
   2127 
   2128 <pre>
   2129 field1, offset := nextField(str, 0)
   2130 field2, offset := nextField(str, offset)  // redeclares offset
   2131 a, a := 1, 2                              // illegal: double declaration of a or no new variable if a was declared elsewhere
   2132 </pre>
   2133 
   2134 <p>
   2135 Short variable declarations may appear only inside functions.
   2136 In some contexts such as the initializers for
   2137 <a href="#If_statements">"if"</a>,
   2138 <a href="#For_statements">"for"</a>, or
   2139 <a href="#Switch_statements">"switch"</a> statements,
   2140 they can be used to declare local temporary variables.
   2141 </p>
   2142 
   2143 <h3 id="Function_declarations">Function declarations</h3>
   2144 
   2145 <p>
   2146 A function declaration binds an identifier, the <i>function name</i>,
   2147 to a function.
   2148 </p>
   2149 
   2150 <pre class="ebnf">
   2151 FunctionDecl = "func" FunctionName Signature [ FunctionBody ] .
   2152 FunctionName = identifier .
   2153 FunctionBody = Block .
   2154 </pre>
   2155 
   2156 <p>
   2157 If the function's <a href="#Function_types">signature</a> declares
   2158 result parameters, the function body's statement list must end in
   2159 a <a href="#Terminating_statements">terminating statement</a>.
   2160 </p>
   2161 
   2162 <pre>
   2163 func IndexRune(s string, r rune) int {
   2164 	for i, c := range s {
   2165 		if c == r {
   2166 			return i
   2167 		}
   2168 	}
   2169 	// invalid: missing return statement
   2170 }
   2171 </pre>
   2172 
   2173 <p>
   2174 A function declaration may omit the body. Such a declaration provides the
   2175 signature for a function implemented outside Go, such as an assembly routine.
   2176 </p>
   2177 
   2178 <pre>
   2179 func min(x int, y int) int {
   2180 	if x &lt; y {
   2181 		return x
   2182 	}
   2183 	return y
   2184 }
   2185 
   2186 func flushICache(begin, end uintptr)  // implemented externally
   2187 </pre>
   2188 
   2189 <h3 id="Method_declarations">Method declarations</h3>
   2190 
   2191 <p>
   2192 A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>.
   2193 A method declaration binds an identifier, the <i>method name</i>, to a method,
   2194 and associates the method with the receiver's <i>base type</i>.
   2195 </p>
   2196 
   2197 <pre class="ebnf">
   2198 MethodDecl = "func" Receiver MethodName Signature [ FunctionBody ] .
   2199 Receiver   = Parameters .
   2200 </pre>
   2201 
   2202 <p>
   2203 The receiver is specified via an extra parameter section preceding the method
   2204 name. That parameter section must declare a single non-variadic parameter, the receiver.
   2205 Its type must be of the form <code>T</code> or <code>*T</code> (possibly using
   2206 parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called
   2207 the receiver <i>base type</i>; it must not be a pointer or interface type and
   2208 it must be <a href="#Type_definitions">defined</a> in the same package as the method.
   2209 The method is said to be <i>bound</i> to the base type and the method name
   2210 is visible only within <a href="#Selectors">selectors</a> for type <code>T</code>
   2211 or <code>*T</code>.
   2212 </p>
   2213 
   2214 <p>
   2215 A non-<a href="#Blank_identifier">blank</a> receiver identifier must be
   2216 <a href="#Uniqueness_of_identifiers">unique</a> in the method signature.
   2217 If the receiver's value is not referenced inside the body of the method,
   2218 its identifier may be omitted in the declaration. The same applies in
   2219 general to parameters of functions and methods.
   2220 </p>
   2221 
   2222 <p>
   2223 For a base type, the non-blank names of methods bound to it must be unique.
   2224 If the base type is a <a href="#Struct_types">struct type</a>,
   2225 the non-blank method and field names must be distinct.
   2226 </p>
   2227 
   2228 <p>
   2229 Given type <code>Point</code>, the declarations
   2230 </p>
   2231 
   2232 <pre>
   2233 func (p *Point) Length() float64 {
   2234 	return math.Sqrt(p.x * p.x + p.y * p.y)
   2235 }
   2236 
   2237 func (p *Point) Scale(factor float64) {
   2238 	p.x *= factor
   2239 	p.y *= factor
   2240 }
   2241 </pre>
   2242 
   2243 <p>
   2244 bind the methods <code>Length</code> and <code>Scale</code>,
   2245 with receiver type <code>*Point</code>,
   2246 to the base type <code>Point</code>.
   2247 </p>
   2248 
   2249 <p>
   2250 The type of a method is the type of a function with the receiver as first
   2251 argument.  For instance, the method <code>Scale</code> has type
   2252 </p>
   2253 
   2254 <pre>
   2255 func(p *Point, factor float64)
   2256 </pre>
   2257 
   2258 <p>
   2259 However, a function declared this way is not a method.
   2260 </p>
   2261 
   2262 
   2263 <h2 id="Expressions">Expressions</h2>
   2264 
   2265 <p>
   2266 An expression specifies the computation of a value by applying
   2267 operators and functions to operands.
   2268 </p>
   2269 
   2270 <h3 id="Operands">Operands</h3>
   2271 
   2272 <p>
   2273 Operands denote the elementary values in an expression. An operand may be a
   2274 literal, a (possibly <a href="#Qualified_identifiers">qualified</a>)
   2275 non-<a href="#Blank_identifier">blank</a> identifier denoting a
   2276 <a href="#Constant_declarations">constant</a>,
   2277 <a href="#Variable_declarations">variable</a>, or
   2278 <a href="#Function_declarations">function</a>,
   2279 or a parenthesized expression.
   2280 </p>
   2281 
   2282 <p>
   2283 The <a href="#Blank_identifier">blank identifier</a> may appear as an
   2284 operand only on the left-hand side of an <a href="#Assignments">assignment</a>.
   2285 </p>
   2286 
   2287 <pre class="ebnf">
   2288 Operand     = Literal | OperandName | "(" Expression ")" .
   2289 Literal     = BasicLit | CompositeLit | FunctionLit .
   2290 BasicLit    = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
   2291 OperandName = identifier | QualifiedIdent.
   2292 </pre>
   2293 
   2294 <h3 id="Qualified_identifiers">Qualified identifiers</h3>
   2295 
   2296 <p>
   2297 A qualified identifier is an identifier qualified with a package name prefix.
   2298 Both the package name and the identifier must not be
   2299 <a href="#Blank_identifier">blank</a>.
   2300 </p>
   2301 
   2302 <pre class="ebnf">
   2303 QualifiedIdent = PackageName "." identifier .
   2304 </pre>
   2305 
   2306 <p>
   2307 A qualified identifier accesses an identifier in a different package, which
   2308 must be <a href="#Import_declarations">imported</a>.
   2309 The identifier must be <a href="#Exported_identifiers">exported</a> and
   2310 declared in the <a href="#Blocks">package block</a> of that package.
   2311 </p>
   2312 
   2313 <pre>
   2314 math.Sin	// denotes the Sin function in package math
   2315 </pre>
   2316 
   2317 <h3 id="Composite_literals">Composite literals</h3>
   2318 
   2319 <p>
   2320 Composite literals construct values for structs, arrays, slices, and maps
   2321 and create a new value each time they are evaluated.
   2322 They consist of the type of the literal followed by a brace-bound list of elements.
   2323 Each element may optionally be preceded by a corresponding key.
   2324 </p>
   2325 
   2326 <pre class="ebnf">
   2327 CompositeLit  = LiteralType LiteralValue .
   2328 LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
   2329                 SliceType | MapType | TypeName .
   2330 LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
   2331 ElementList   = KeyedElement { "," KeyedElement } .
   2332 KeyedElement  = [ Key ":" ] Element .
   2333 Key           = FieldName | Expression | LiteralValue .
   2334 FieldName     = identifier .
   2335 Element       = Expression | LiteralValue .
   2336 </pre>
   2337 
   2338 <p>
   2339 The LiteralType's underlying type must be a struct, array, slice, or map type
   2340 (the grammar enforces this constraint except when the type is given
   2341 as a TypeName).
   2342 The types of the elements and keys must be <a href="#Assignability">assignable</a>
   2343 to the respective field, element, and key types of the literal type;
   2344 there is no additional conversion.
   2345 The key is interpreted as a field name for struct literals,
   2346 an index for array and slice literals, and a key for map literals.
   2347 For map literals, all elements must have a key. It is an error
   2348 to specify multiple elements with the same field name or
   2349 constant key value. For non-constant map keys, see the section on
   2350 <a href="#Order_of_evaluation">evaluation order</a>.
   2351 </p>
   2352 
   2353 <p>
   2354 For struct literals the following rules apply:
   2355 </p>
   2356 <ul>
   2357 	<li>A key must be a field name declared in the struct type.
   2358 	</li>
   2359 	<li>An element list that does not contain any keys must
   2360 	    list an element for each struct field in the
   2361 	    order in which the fields are declared.
   2362 	</li>
   2363 	<li>If any element has a key, every element must have a key.
   2364 	</li>
   2365 	<li>An element list that contains keys does not need to
   2366 	    have an element for each struct field. Omitted fields
   2367 	    get the zero value for that field.
   2368 	</li>
   2369 	<li>A literal may omit the element list; such a literal evaluates
   2370 	    to the zero value for its type.
   2371 	</li>
   2372 	<li>It is an error to specify an element for a non-exported
   2373 	    field of a struct belonging to a different package.
   2374 	</li>
   2375 </ul>
   2376 
   2377 <p>
   2378 Given the declarations
   2379 </p>
   2380 <pre>
   2381 type Point3D struct { x, y, z float64 }
   2382 type Line struct { p, q Point3D }
   2383 </pre>
   2384 
   2385 <p>
   2386 one may write
   2387 </p>
   2388 
   2389 <pre>
   2390 origin := Point3D{}                            // zero value for Point3D
   2391 line := Line{origin, Point3D{y: -4, z: 12.3}}  // zero value for line.q.x
   2392 </pre>
   2393 
   2394 <p>
   2395 For array and slice literals the following rules apply:
   2396 </p>
   2397 <ul>
   2398 	<li>Each element has an associated integer index marking
   2399 	    its position in the array.
   2400 	</li>
   2401 	<li>An element with a key uses the key as its index. The
   2402 	    key must be a non-negative constant
   2403 	    <a href="#Representability">representable</a> by
   2404 	    a value of type <code>int</code>; and if it is typed
   2405 	    it must be of integer type.
   2406 	</li>
   2407 	<li>An element without a key uses the previous element's index plus one.
   2408 	    If the first element has no key, its index is zero.
   2409 	</li>
   2410 </ul>
   2411 
   2412 <p>
   2413 <a href="#Address_operators">Taking the address</a> of a composite literal
   2414 generates a pointer to a unique <a href="#Variables">variable</a> initialized
   2415 with the literal's value.
   2416 </p>
   2417 <pre>
   2418 var pointer *Point3D = &amp;Point3D{y: 1000}
   2419 </pre>
   2420 
   2421 <p>
   2422 The length of an array literal is the length specified in the literal type.
   2423 If fewer elements than the length are provided in the literal, the missing
   2424 elements are set to the zero value for the array element type.
   2425 It is an error to provide elements with index values outside the index range
   2426 of the array. The notation <code>...</code> specifies an array length equal
   2427 to the maximum element index plus one.
   2428 </p>
   2429 
   2430 <pre>
   2431 buffer := [10]string{}             // len(buffer) == 10
   2432 intSet := [6]int{1, 2, 3, 5}       // len(intSet) == 6
   2433 days := [...]string{"Sat", "Sun"}  // len(days) == 2
   2434 </pre>
   2435 
   2436 <p>
   2437 A slice literal describes the entire underlying array literal.
   2438 Thus the length and capacity of a slice literal are the maximum
   2439 element index plus one. A slice literal has the form
   2440 </p>
   2441 
   2442 <pre>
   2443 []T{x1, x2,  xn}
   2444 </pre>
   2445 
   2446 <p>
   2447 and is shorthand for a slice operation applied to an array:
   2448 </p>
   2449 
   2450 <pre>
   2451 tmp := [n]T{x1, x2,  xn}
   2452 tmp[0 : n]
   2453 </pre>
   2454 
   2455 <p>
   2456 Within a composite literal of array, slice, or map type <code>T</code>,
   2457 elements or map keys that are themselves composite literals may elide the respective
   2458 literal type if it is identical to the element or key type of <code>T</code>.
   2459 Similarly, elements or keys that are addresses of composite literals may elide
   2460 the <code>&amp;T</code> when the element or key type is <code>*T</code>.
   2461 </p>
   2462 
   2463 <pre>
   2464 [...]Point{{1.5, -3.5}, {0, 0}}     // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
   2465 [][]int{{1, 2, 3}, {4, 5}}          // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
   2466 [][]Point{{{0, 1}, {1, 2}}}         // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}}
   2467 map[string]Point{"orig": {0, 0}}    // same as map[string]Point{"orig": Point{0, 0}}
   2468 map[Point]string{{0, 0}: "orig"}    // same as map[Point]string{Point{0, 0}: "orig"}
   2469 
   2470 type PPoint *Point
   2471 [2]*Point{{1.5, -3.5}, {}}          // same as [2]*Point{&amp;Point{1.5, -3.5}, &amp;Point{}}
   2472 [2]PPoint{{1.5, -3.5}, {}}          // same as [2]PPoint{PPoint(&amp;Point{1.5, -3.5}), PPoint(&amp;Point{})}
   2473 </pre>
   2474 
   2475 <p>
   2476 A parsing ambiguity arises when a composite literal using the
   2477 TypeName form of the LiteralType appears as an operand between the
   2478 <a href="#Keywords">keyword</a> and the opening brace of the block
   2479 of an "if", "for", or "switch" statement, and the composite literal
   2480 is not enclosed in parentheses, square brackets, or curly braces.
   2481 In this rare case, the opening brace of the literal is erroneously parsed
   2482 as the one introducing the block of statements. To resolve the ambiguity,
   2483 the composite literal must appear within parentheses.
   2484 </p>
   2485 
   2486 <pre>
   2487 if x == (T{a,b,c}[i]) {  }
   2488 if (x == T{a,b,c}[i]) {  }
   2489 </pre>
   2490 
   2491 <p>
   2492 Examples of valid array, slice, and map literals:
   2493 </p>
   2494 
   2495 <pre>
   2496 // list of prime numbers
   2497 primes := []int{2, 3, 5, 7, 9, 2147483647}
   2498 
   2499 // vowels[ch] is true if ch is a vowel
   2500 vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
   2501 
   2502 // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
   2503 filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
   2504 
   2505 // frequencies in Hz for equal-tempered scale (A4 = 440Hz)
   2506 noteFrequency := map[string]float32{
   2507 	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
   2508 	"G0": 24.50, "A0": 27.50, "B0": 30.87,
   2509 }
   2510 </pre>
   2511 
   2512 
   2513 <h3 id="Function_literals">Function literals</h3>
   2514 
   2515 <p>
   2516 A function literal represents an anonymous <a href="#Function_declarations">function</a>.
   2517 </p>
   2518 
   2519 <pre class="ebnf">
   2520 FunctionLit = "func" Signature FunctionBody .
   2521 </pre>
   2522 
   2523 <pre>
   2524 func(a, b int, z float64) bool { return a*b &lt; int(z) }
   2525 </pre>
   2526 
   2527 <p>
   2528 A function literal can be assigned to a variable or invoked directly.
   2529 </p>
   2530 
   2531 <pre>
   2532 f := func(x, y int) int { return x + y }
   2533 func(ch chan int) { ch &lt;- ACK }(replyChan)
   2534 </pre>
   2535 
   2536 <p>
   2537 Function literals are <i>closures</i>: they may refer to variables
   2538 defined in a surrounding function. Those variables are then shared between
   2539 the surrounding function and the function literal, and they survive as long
   2540 as they are accessible.
   2541 </p>
   2542 
   2543 
   2544 <h3 id="Primary_expressions">Primary expressions</h3>
   2545 
   2546 <p>
   2547 Primary expressions are the operands for unary and binary expressions.
   2548 </p>
   2549 
   2550 <pre class="ebnf">
   2551 PrimaryExpr =
   2552 	Operand |
   2553 	Conversion |
   2554 	MethodExpr |
   2555 	PrimaryExpr Selector |
   2556 	PrimaryExpr Index |
   2557 	PrimaryExpr Slice |
   2558 	PrimaryExpr TypeAssertion |
   2559 	PrimaryExpr Arguments .
   2560 
   2561 Selector       = "." identifier .
   2562 Index          = "[" Expression "]" .
   2563 Slice          = "[" [ Expression ] ":" [ Expression ] "]" |
   2564                  "[" [ Expression ] ":" Expression ":" Expression "]" .
   2565 TypeAssertion  = "." "(" Type ")" .
   2566 Arguments      = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
   2567 </pre>
   2568 
   2569 
   2570 <pre>
   2571 x
   2572 2
   2573 (s + ".txt")
   2574 f(3.1415, true)
   2575 Point{1, 2}
   2576 m["foo"]
   2577 s[i : j + 1]
   2578 obj.color
   2579 f.p[i].x()
   2580 </pre>
   2581 
   2582 
   2583 <h3 id="Selectors">Selectors</h3>
   2584 
   2585 <p>
   2586 For a <a href="#Primary_expressions">primary expression</a> <code>x</code>
   2587 that is not a <a href="#Package_clause">package name</a>, the
   2588 <i>selector expression</i>
   2589 </p>
   2590 
   2591 <pre>
   2592 x.f
   2593 </pre>
   2594 
   2595 <p>
   2596 denotes the field or method <code>f</code> of the value <code>x</code>
   2597 (or sometimes <code>*x</code>; see below).
   2598 The identifier <code>f</code> is called the (field or method) <i>selector</i>;
   2599 it must not be the <a href="#Blank_identifier">blank identifier</a>.
   2600 The type of the selector expression is the type of <code>f</code>.
   2601 If <code>x</code> is a package name, see the section on
   2602 <a href="#Qualified_identifiers">qualified identifiers</a>.
   2603 </p>
   2604 
   2605 <p>
   2606 A selector <code>f</code> may denote a field or method <code>f</code> of
   2607 a type <code>T</code>, or it may refer
   2608 to a field or method <code>f</code> of a nested
   2609 <a href="#Struct_types">embedded field</a> of <code>T</code>.
   2610 The number of embedded fields traversed
   2611 to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
   2612 The depth of a field or method <code>f</code>
   2613 declared in <code>T</code> is zero.
   2614 The depth of a field or method <code>f</code> declared in
   2615 an embedded field <code>A</code> in <code>T</code> is the
   2616 depth of <code>f</code> in <code>A</code> plus one.
   2617 </p>
   2618 
   2619 <p>
   2620 The following rules apply to selectors:
   2621 </p>
   2622 
   2623 <ol>
   2624 <li>
   2625 For a value <code>x</code> of type <code>T</code> or <code>*T</code>
   2626 where <code>T</code> is not a pointer or interface type,
   2627 <code>x.f</code> denotes the field or method at the shallowest depth
   2628 in <code>T</code> where there
   2629 is such an <code>f</code>.
   2630 If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a>
   2631 with shallowest depth, the selector expression is illegal.
   2632 </li>
   2633 
   2634 <li>
   2635 For a value <code>x</code> of type <code>I</code> where <code>I</code>
   2636 is an interface type, <code>x.f</code> denotes the actual method with name
   2637 <code>f</code> of the dynamic value of <code>x</code>.
   2638 If there is no method with name <code>f</code> in the
   2639 <a href="#Method_sets">method set</a> of <code>I</code>, the selector
   2640 expression is illegal.
   2641 </li>
   2642 
   2643 <li>
   2644 As an exception, if the type of <code>x</code> is a <a href="#Type_definitions">defined</a>
   2645 pointer type and <code>(*x).f</code> is a valid selector expression denoting a field
   2646 (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>.
   2647 </li>
   2648 
   2649 <li>
   2650 In all other cases, <code>x.f</code> is illegal.
   2651 </li>
   2652 
   2653 <li>
   2654 If <code>x</code> is of pointer type and has the value
   2655 <code>nil</code> and <code>x.f</code> denotes a struct field,
   2656 assigning to or evaluating <code>x.f</code>
   2657 causes a <a href="#Run_time_panics">run-time panic</a>.
   2658 </li>
   2659 
   2660 <li>
   2661 If <code>x</code> is of interface type and has the value
   2662 <code>nil</code>, <a href="#Calls">calling</a> or
   2663 <a href="#Method_values">evaluating</a> the method <code>x.f</code>
   2664 causes a <a href="#Run_time_panics">run-time panic</a>.
   2665 </li>
   2666 </ol>
   2667 
   2668 <p>
   2669 For example, given the declarations:
   2670 </p>
   2671 
   2672 <pre>
   2673 type T0 struct {
   2674 	x int
   2675 }
   2676 
   2677 func (*T0) M0()
   2678 
   2679 type T1 struct {
   2680 	y int
   2681 }
   2682 
   2683 func (T1) M1()
   2684 
   2685 type T2 struct {
   2686 	z int
   2687 	T1
   2688 	*T0
   2689 }
   2690 
   2691 func (*T2) M2()
   2692 
   2693 type Q *T2
   2694 
   2695 var t T2     // with t.T0 != nil
   2696 var p *T2    // with p != nil and (*p).T0 != nil
   2697 var q Q = p
   2698 </pre>
   2699 
   2700 <p>
   2701 one may write:
   2702 </p>
   2703 
   2704 <pre>
   2705 t.z          // t.z
   2706 t.y          // t.T1.y
   2707 t.x          // (*t.T0).x
   2708 
   2709 p.z          // (*p).z
   2710 p.y          // (*p).T1.y
   2711 p.x          // (*(*p).T0).x
   2712 
   2713 q.x          // (*(*q).T0).x        (*q).x is a valid field selector
   2714 
   2715 p.M0()       // ((*p).T0).M0()      M0 expects *T0 receiver
   2716 p.M1()       // ((*p).T1).M1()      M1 expects T1 receiver
   2717 p.M2()       // p.M2()              M2 expects *T2 receiver
   2718 t.M2()       // (&amp;t).M2()           M2 expects *T2 receiver, see section on Calls
   2719 </pre>
   2720 
   2721 <p>
   2722 but the following is invalid:
   2723 </p>
   2724 
   2725 <pre>
   2726 q.M0()       // (*q).M0 is valid but not a field selector
   2727 </pre>
   2728 
   2729 
   2730 <h3 id="Method_expressions">Method expressions</h3>
   2731 
   2732 <p>
   2733 If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
   2734 <code>T.M</code> is a function that is callable as a regular function
   2735 with the same arguments as <code>M</code> prefixed by an additional
   2736 argument that is the receiver of the method.
   2737 </p>
   2738 
   2739 <pre class="ebnf">
   2740 MethodExpr    = ReceiverType "." MethodName .
   2741 ReceiverType  = Type .
   2742 </pre>
   2743 
   2744 <p>
   2745 Consider a struct type <code>T</code> with two methods,
   2746 <code>Mv</code>, whose receiver is of type <code>T</code>, and
   2747 <code>Mp</code>, whose receiver is of type <code>*T</code>.
   2748 </p>
   2749 
   2750 <pre>
   2751 type T struct {
   2752 	a int
   2753 }
   2754 func (tv  T) Mv(a int) int         { return 0 }  // value receiver
   2755 func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
   2756 
   2757 var t T
   2758 </pre>
   2759 
   2760 <p>
   2761 The expression
   2762 </p>
   2763 
   2764 <pre>
   2765 T.Mv
   2766 </pre>
   2767 
   2768 <p>
   2769 yields a function equivalent to <code>Mv</code> but
   2770 with an explicit receiver as its first argument; it has signature
   2771 </p>
   2772 
   2773 <pre>
   2774 func(tv T, a int) int
   2775 </pre>
   2776 
   2777 <p>
   2778 That function may be called normally with an explicit receiver, so
   2779 these five invocations are equivalent:
   2780 </p>
   2781 
   2782 <pre>
   2783 t.Mv(7)
   2784 T.Mv(t, 7)
   2785 (T).Mv(t, 7)
   2786 f1 := T.Mv; f1(t, 7)
   2787 f2 := (T).Mv; f2(t, 7)
   2788 </pre>
   2789 
   2790 <p>
   2791 Similarly, the expression
   2792 </p>
   2793 
   2794 <pre>
   2795 (*T).Mp
   2796 </pre>
   2797 
   2798 <p>
   2799 yields a function value representing <code>Mp</code> with signature
   2800 </p>
   2801 
   2802 <pre>
   2803 func(tp *T, f float32) float32
   2804 </pre>
   2805 
   2806 <p>
   2807 For a method with a value receiver, one can derive a function
   2808 with an explicit pointer receiver, so
   2809 </p>
   2810 
   2811 <pre>
   2812 (*T).Mv
   2813 </pre>
   2814 
   2815 <p>
   2816 yields a function value representing <code>Mv</code> with signature
   2817 </p>
   2818 
   2819 <pre>
   2820 func(tv *T, a int) int
   2821 </pre>
   2822 
   2823 <p>
   2824 Such a function indirects through the receiver to create a value
   2825 to pass as the receiver to the underlying method;
   2826 the method does not overwrite the value whose address is passed in
   2827 the function call.
   2828 </p>
   2829 
   2830 <p>
   2831 The final case, a value-receiver function for a pointer-receiver method,
   2832 is illegal because pointer-receiver methods are not in the method set
   2833 of the value type.
   2834 </p>
   2835 
   2836 <p>
   2837 Function values derived from methods are called with function call syntax;
   2838 the receiver is provided as the first argument to the call.
   2839 That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
   2840 as <code>f(t, 7)</code> not <code>t.f(7)</code>.
   2841 To construct a function that binds the receiver, use a
   2842 <a href="#Function_literals">function literal</a> or
   2843 <a href="#Method_values">method value</a>.
   2844 </p>
   2845 
   2846 <p>
   2847 It is legal to derive a function value from a method of an interface type.
   2848 The resulting function takes an explicit receiver of that interface type.
   2849 </p>
   2850 
   2851 <h3 id="Method_values">Method values</h3>
   2852 
   2853 <p>
   2854 If the expression <code>x</code> has static type <code>T</code> and
   2855 <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
   2856 <code>x.M</code> is called a <i>method value</i>.
   2857 The method value <code>x.M</code> is a function value that is callable
   2858 with the same arguments as a method call of <code>x.M</code>.
   2859 The expression <code>x</code> is evaluated and saved during the evaluation of the
   2860 method value; the saved copy is then used as the receiver in any calls,
   2861 which may be executed later.
   2862 </p>
   2863 
   2864 <p>
   2865 The type <code>T</code> may be an interface or non-interface type.
   2866 </p>
   2867 
   2868 <p>
   2869 As in the discussion of <a href="#Method_expressions">method expressions</a> above,
   2870 consider a struct type <code>T</code> with two methods,
   2871 <code>Mv</code>, whose receiver is of type <code>T</code>, and
   2872 <code>Mp</code>, whose receiver is of type <code>*T</code>.
   2873 </p>
   2874 
   2875 <pre>
   2876 type T struct {
   2877 	a int
   2878 }
   2879 func (tv  T) Mv(a int) int         { return 0 }  // value receiver
   2880 func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
   2881 
   2882 var t T
   2883 var pt *T
   2884 func makeT() T
   2885 </pre>
   2886 
   2887 <p>
   2888 The expression
   2889 </p>
   2890 
   2891 <pre>
   2892 t.Mv
   2893 </pre>
   2894 
   2895 <p>
   2896 yields a function value of type
   2897 </p>
   2898 
   2899 <pre>
   2900 func(int) int
   2901 </pre>
   2902 
   2903 <p>
   2904 These two invocations are equivalent:
   2905 </p>
   2906 
   2907 <pre>
   2908 t.Mv(7)
   2909 f := t.Mv; f(7)
   2910 </pre>
   2911 
   2912 <p>
   2913 Similarly, the expression
   2914 </p>
   2915 
   2916 <pre>
   2917 pt.Mp
   2918 </pre>
   2919 
   2920 <p>
   2921 yields a function value of type
   2922 </p>
   2923 
   2924 <pre>
   2925 func(float32) float32
   2926 </pre>
   2927 
   2928 <p>
   2929 As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver
   2930 using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>.
   2931 </p>
   2932 
   2933 <p>
   2934 As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver
   2935 using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&amp;t).Mp</code>.
   2936 </p>
   2937 
   2938 <pre>
   2939 f := t.Mv; f(7)   // like t.Mv(7)
   2940 f := pt.Mp; f(7)  // like pt.Mp(7)
   2941 f := pt.Mv; f(7)  // like (*pt).Mv(7)
   2942 f := t.Mp; f(7)   // like (&amp;t).Mp(7)
   2943 f := makeT().Mp   // invalid: result of makeT() is not addressable
   2944 </pre>
   2945 
   2946 <p>
   2947 Although the examples above use non-interface types, it is also legal to create a method value
   2948 from a value of interface type.
   2949 </p>
   2950 
   2951 <pre>
   2952 var i interface { M(int) } = myVal
   2953 f := i.M; f(7)  // like i.M(7)
   2954 </pre>
   2955 
   2956 
   2957 <h3 id="Index_expressions">Index expressions</h3>
   2958 
   2959 <p>
   2960 A primary expression of the form
   2961 </p>
   2962 
   2963 <pre>
   2964 a[x]
   2965 </pre>
   2966 
   2967 <p>
   2968 denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>.
   2969 The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively.
   2970 The following rules apply:
   2971 </p>
   2972 
   2973 <p>
   2974 If <code>a</code> is not a map:
   2975 </p>
   2976 <ul>
   2977 	<li>the index <code>x</code> must be of integer type or an untyped constant</li>
   2978 	<li>a constant index must be non-negative and
   2979 	    <a href="#Representability">representable</a> by a value of type <code>int</code></li>
   2980 	<li>a constant index that is untyped is given type <code>int</code></li>
   2981 	<li>the index <code>x</code> is <i>in range</i> if <code>0 &lt;= x &lt; len(a)</code>,
   2982 	    otherwise it is <i>out of range</i></li>
   2983 </ul>
   2984 
   2985 <p>
   2986 For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>:
   2987 </p>
   2988 <ul>
   2989 	<li>a <a href="#Constants">constant</a> index must be in range</li>
   2990 	<li>if <code>x</code> is out of range at run time,
   2991 	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
   2992 	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
   2993 	    <code>a[x]</code> is the element type of <code>A</code></li>
   2994 </ul>
   2995 
   2996 <p>
   2997 For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type:
   2998 </p>
   2999 <ul>
   3000 	<li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li>
   3001 </ul>
   3002 
   3003 <p>
   3004 For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>:
   3005 </p>
   3006 <ul>
   3007 	<li>if <code>x</code> is out of range at run time,
   3008 	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
   3009 	<li><code>a[x]</code> is the slice element at index <code>x</code> and the type of
   3010 	    <code>a[x]</code> is the element type of <code>S</code></li>
   3011 </ul>
   3012 
   3013 <p>
   3014 For <code>a</code> of <a href="#String_types">string type</a>:
   3015 </p>
   3016 <ul>
   3017 	<li>a <a href="#Constants">constant</a> index must be in range
   3018 	    if the string <code>a</code> is also constant</li>
   3019 	<li>if <code>x</code> is out of range at run time,
   3020 	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
   3021 	<li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of
   3022 	    <code>a[x]</code> is <code>byte</code></li>
   3023 	<li><code>a[x]</code> may not be assigned to</li>
   3024 </ul>
   3025 
   3026 <p>
   3027 For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>:
   3028 </p>
   3029 <ul>
   3030 	<li><code>x</code>'s type must be
   3031 	    <a href="#Assignability">assignable</a>
   3032 	    to the key type of <code>M</code></li>
   3033 	<li>if the map contains an entry with key <code>x</code>,
   3034 	    <code>a[x]</code> is the map element with key <code>x</code>
   3035 	    and the type of <code>a[x]</code> is the element type of <code>M</code></li>
   3036 	<li>if the map is <code>nil</code> or does not contain such an entry,
   3037 	    <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
   3038 	    for the element type of <code>M</code></li>
   3039 </ul>
   3040 
   3041 <p>
   3042 Otherwise <code>a[x]</code> is illegal.
   3043 </p>
   3044 
   3045 <p>
   3046 An index expression on a map <code>a</code> of type <code>map[K]V</code>
   3047 used in an <a href="#Assignments">assignment</a> or initialization of the special form
   3048 </p>
   3049 
   3050 <pre>
   3051 v, ok = a[x]
   3052 v, ok := a[x]
   3053 var v, ok = a[x]
   3054 var v, ok T = a[x]
   3055 </pre>
   3056 
   3057 <p>
   3058 yields an additional untyped boolean value. The value of <code>ok</code> is
   3059 <code>true</code> if the key <code>x</code> is present in the map, and
   3060 <code>false</code> otherwise.
   3061 </p>
   3062 
   3063 <p>
   3064 Assigning to an element of a <code>nil</code> map causes a
   3065 <a href="#Run_time_panics">run-time panic</a>.
   3066 </p>
   3067 
   3068 
   3069 <h3 id="Slice_expressions">Slice expressions</h3>
   3070 
   3071 <p>
   3072 Slice expressions construct a substring or slice from a string, array, pointer
   3073 to array, or slice. There are two variants: a simple form that specifies a low
   3074 and high bound, and a full form that also specifies a bound on the capacity.
   3075 </p>
   3076 
   3077 <h4>Simple slice expressions</h4>
   3078 
   3079 <p>
   3080 For a string, array, pointer to array, or slice <code>a</code>, the primary expression
   3081 </p>
   3082 
   3083 <pre>
   3084 a[low : high]
   3085 </pre>
   3086 
   3087 <p>
   3088 constructs a substring or slice. The <i>indices</i> <code>low</code> and
   3089 <code>high</code> select which elements of operand <code>a</code> appear
   3090 in the result. The result has indices starting at 0 and length equal to
   3091 <code>high</code>&nbsp;-&nbsp;<code>low</code>.
   3092 After slicing the array <code>a</code>
   3093 </p>
   3094 
   3095 <pre>
   3096 a := [5]int{1, 2, 3, 4, 5}
   3097 s := a[1:4]
   3098 </pre>
   3099 
   3100 <p>
   3101 the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
   3102 </p>
   3103 
   3104 <pre>
   3105 s[0] == 2
   3106 s[1] == 3
   3107 s[2] == 4
   3108 </pre>
   3109 
   3110 <p>
   3111 For convenience, any of the indices may be omitted. A missing <code>low</code>
   3112 index defaults to zero; a missing <code>high</code> index defaults to the length of the
   3113 sliced operand:
   3114 </p>
   3115 
   3116 <pre>
   3117 a[2:]  // same as a[2 : len(a)]
   3118 a[:3]  // same as a[0 : 3]
   3119 a[:]   // same as a[0 : len(a)]
   3120 </pre>
   3121 
   3122 <p>
   3123 If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for
   3124 <code>(*a)[low : high]</code>.
   3125 </p>
   3126 
   3127 <p>
   3128 For arrays or strings, the indices are <i>in range</i> if
   3129 <code>0</code> &lt;= <code>low</code> &lt;= <code>high</code> &lt;= <code>len(a)</code>,
   3130 otherwise they are <i>out of range</i>.
   3131 For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length.
   3132 A <a href="#Constants">constant</a> index must be non-negative and
   3133 <a href="#Representability">representable</a> by a value of type
   3134 <code>int</code>; for arrays or constant strings, constant indices must also be in range.
   3135 If both indices are constant, they must satisfy <code>low &lt;= high</code>.
   3136 If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
   3137 </p>
   3138 
   3139 <p>
   3140 Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice,
   3141 the result of the slice operation is a non-constant value of the same type as the operand.
   3142 For untyped string operands the result is a non-constant value of type <code>string</code>.
   3143 If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
   3144 and the result of the slice operation is a slice with the same element type as the array.
   3145 </p>
   3146 
   3147 <p>
   3148 If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result
   3149 is a <code>nil</code> slice. Otherwise, if the result is a slice, it shares its underlying
   3150 array with the operand.
   3151 </p>
   3152 
   3153 <h4>Full slice expressions</h4>
   3154 
   3155 <p>
   3156 For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression
   3157 </p>
   3158 
   3159 <pre>
   3160 a[low : high : max]
   3161 </pre>
   3162 
   3163 <p>
   3164 constructs a slice of the same type, and with the same length and elements as the simple slice
   3165 expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity
   3166 by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0.
   3167 After slicing the array <code>a</code>
   3168 </p>
   3169 
   3170 <pre>
   3171 a := [5]int{1, 2, 3, 4, 5}
   3172 t := a[1:3:5]
   3173 </pre>
   3174 
   3175 <p>
   3176 the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements
   3177 </p>
   3178 
   3179 <pre>
   3180 t[0] == 2
   3181 t[1] == 3
   3182 </pre>
   3183 
   3184 <p>
   3185 As for simple slice expressions, if <code>a</code> is a pointer to an array,
   3186 <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>.
   3187 If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>.
   3188 </p>
   3189 
   3190 <p>
   3191 The indices are <i>in range</i> if <code>0 &lt;= low &lt;= high &lt;= max &lt;= cap(a)</code>,
   3192 otherwise they are <i>out of range</i>.
   3193 A <a href="#Constants">constant</a> index must be non-negative and
   3194 <a href="#Representability">representable</a> by a value of type
   3195 <code>int</code>; for arrays, constant indices must also be in range.
   3196 If multiple indices are constant, the constants that are present must be in range relative to each
   3197 other.
   3198 If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
   3199 </p>
   3200 
   3201 <h3 id="Type_assertions">Type assertions</h3>
   3202 
   3203 <p>
   3204 For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
   3205 and a type <code>T</code>, the primary expression
   3206 </p>
   3207 
   3208 <pre>
   3209 x.(T)
   3210 </pre>
   3211 
   3212 <p>
   3213 asserts that <code>x</code> is not <code>nil</code>
   3214 and that the value stored in <code>x</code> is of type <code>T</code>.
   3215 The notation <code>x.(T)</code> is called a <i>type assertion</i>.
   3216 </p>
   3217 <p>
   3218 More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
   3219 that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
   3220 to the type <code>T</code>.
   3221 In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>;
   3222 otherwise the type assertion is invalid since it is not possible for <code>x</code>
   3223 to store a value of type <code>T</code>.
   3224 If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
   3225 of <code>x</code> implements the interface <code>T</code>.
   3226 </p>
   3227 <p>
   3228 If the type assertion holds, the value of the expression is the value
   3229 stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
   3230 a <a href="#Run_time_panics">run-time panic</a> occurs.
   3231 In other words, even though the dynamic type of <code>x</code>
   3232 is known only at run time, the type of <code>x.(T)</code> is
   3233 known to be <code>T</code> in a correct program.
   3234 </p>
   3235 
   3236 <pre>
   3237 var x interface{} = 7          // x has dynamic type int and value 7
   3238 i := x.(int)                   // i has type int and value 7
   3239 
   3240 type I interface { m() }
   3241 
   3242 func f(y I) {
   3243 	s := y.(string)        // illegal: string does not implement I (missing method m)
   3244 	r := y.(io.Reader)     // r has type io.Reader and the dynamic type of y must implement both I and io.Reader
   3245 	
   3246 }
   3247 </pre>
   3248 
   3249 <p>
   3250 A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form
   3251 </p>
   3252 
   3253 <pre>
   3254 v, ok = x.(T)
   3255 v, ok := x.(T)
   3256 var v, ok = x.(T)
   3257 var v, ok T1 = x.(T)
   3258 </pre>
   3259 
   3260 <p>
   3261 yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code>
   3262 if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is
   3263 the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
   3264 No run-time panic occurs in this case.
   3265 </p>
   3266 
   3267 
   3268 <h3 id="Calls">Calls</h3>
   3269 
   3270 <p>
   3271 Given an expression <code>f</code> of function type
   3272 <code>F</code>,
   3273 </p>
   3274 
   3275 <pre>
   3276 f(a1, a2,  an)
   3277 </pre>
   3278 
   3279 <p>
   3280 calls <code>f</code> with arguments <code>a1, a2,  an</code>.
   3281 Except for one special case, arguments must be single-valued expressions
   3282 <a href="#Assignability">assignable</a> to the parameter types of
   3283 <code>F</code> and are evaluated before the function is called.
   3284 The type of the expression is the result type
   3285 of <code>F</code>.
   3286 A method invocation is similar but the method itself
   3287 is specified as a selector upon a value of the receiver type for
   3288 the method.
   3289 </p>
   3290 
   3291 <pre>
   3292 math.Atan2(x, y)  // function call
   3293 var pt *Point
   3294 pt.Scale(3.5)     // method call with receiver pt
   3295 </pre>
   3296 
   3297 <p>
   3298 In a function call, the function value and arguments are evaluated in
   3299 <a href="#Order_of_evaluation">the usual order</a>.
   3300 After they are evaluated, the parameters of the call are passed by value to the function
   3301 and the called function begins execution.
   3302 The return parameters of the function are passed by value
   3303 back to the calling function when the function returns.
   3304 </p>
   3305 
   3306 <p>
   3307 Calling a <code>nil</code> function value
   3308 causes a <a href="#Run_time_panics">run-time panic</a>.
   3309 </p>
   3310 
   3311 <p>
   3312 As a special case, if the return values of a function or method
   3313 <code>g</code> are equal in number and individually
   3314 assignable to the parameters of another function or method
   3315 <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
   3316 will invoke <code>f</code> after binding the return values of
   3317 <code>g</code> to the parameters of <code>f</code> in order.  The call
   3318 of <code>f</code> must contain no parameters other than the call of <code>g</code>,
   3319 and <code>g</code> must have at least one return value.
   3320 If <code>f</code> has a final <code>...</code> parameter, it is
   3321 assigned the return values of <code>g</code> that remain after
   3322 assignment of regular parameters.
   3323 </p>
   3324 
   3325 <pre>
   3326 func Split(s string, pos int) (string, string) {
   3327 	return s[0:pos], s[pos:]
   3328 }
   3329 
   3330 func Join(s, t string) string {
   3331 	return s + t
   3332 }
   3333 
   3334 if Join(Split(value, len(value)/2)) != value {
   3335 	log.Panic("test fails")
   3336 }
   3337 </pre>
   3338 
   3339 <p>
   3340 A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
   3341 of (the type of) <code>x</code> contains <code>m</code> and the
   3342 argument list can be assigned to the parameter list of <code>m</code>.
   3343 If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
   3344 set contains <code>m</code>, <code>x.m()</code> is shorthand
   3345 for <code>(&amp;x).m()</code>:
   3346 </p>
   3347 
   3348 <pre>
   3349 var p Point
   3350 p.Scale(3.5)
   3351 </pre>
   3352 
   3353 <p>
   3354 There is no distinct method type and there are no method literals.
   3355 </p>
   3356 
   3357 <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>
   3358 
   3359 <p>
   3360 If <code>f</code> is <a href="#Function_types">variadic</a> with a final
   3361 parameter <code>p</code> of type <code>...T</code>, then within <code>f</code>
   3362 the type of <code>p</code> is equivalent to type <code>[]T</code>.
   3363 If <code>f</code> is invoked with no actual arguments for <code>p</code>,
   3364 the value passed to <code>p</code> is <code>nil</code>.
   3365 Otherwise, the value passed is a new slice
   3366 of type <code>[]T</code> with a new underlying array whose successive elements
   3367 are the actual arguments, which all must be <a href="#Assignability">assignable</a>
   3368 to <code>T</code>. The length and capacity of the slice is therefore
   3369 the number of arguments bound to <code>p</code> and may differ for each
   3370 call site.
   3371 </p>
   3372 
   3373 <p>
   3374 Given the function and calls
   3375 </p>
   3376 <pre>
   3377 func Greeting(prefix string, who ...string)
   3378 Greeting("nobody")
   3379 Greeting("hello:", "Joe", "Anna", "Eileen")
   3380 </pre>
   3381 
   3382 <p>
   3383 within <code>Greeting</code>, <code>who</code> will have the value
   3384 <code>nil</code> in the first call, and
   3385 <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second.
   3386 </p>
   3387 
   3388 <p>
   3389 If the final argument is assignable to a slice type <code>[]T</code>, it may be
   3390 passed unchanged as the value for a <code>...T</code> parameter if the argument
   3391 is followed by <code>...</code>. In this case no new slice is created.
   3392 </p>
   3393 
   3394 <p>
   3395 Given the slice <code>s</code> and call
   3396 </p>
   3397 
   3398 <pre>
   3399 s := []string{"James", "Jasmine"}
   3400 Greeting("goodbye:", s...)
   3401 </pre>
   3402 
   3403 <p>
   3404 within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
   3405 with the same underlying array.
   3406 </p>
   3407 
   3408 
   3409 <h3 id="Operators">Operators</h3>
   3410 
   3411 <p>
   3412 Operators combine operands into expressions.
   3413 </p>
   3414 
   3415 <pre class="ebnf">
   3416 Expression = UnaryExpr | Expression binary_op Expression .
   3417 UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .
   3418 
   3419 binary_op  = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
   3420 rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
   3421 add_op     = "+" | "-" | "|" | "^" .
   3422 mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .
   3423 
   3424 unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
   3425 </pre>
   3426 
   3427 <p>
   3428 Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
   3429 For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
   3430 unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
   3431 For operations involving constants only, see the section on
   3432 <a href="#Constant_expressions">constant expressions</a>.
   3433 </p>
   3434 
   3435 <p>
   3436 Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
   3437 and the other operand is not, the constant is <a href="#Conversions">converted</a>
   3438 to the type of the other operand.
   3439 </p>
   3440 
   3441 <p>
   3442 The right operand in a shift expression must have unsigned integer type
   3443 or be an untyped constant <a href="#Representability">representable</a> by a
   3444 value of type <code>uint</code>.
   3445 If the left operand of a non-constant shift expression is an untyped constant,
   3446 it is first converted to the type it would assume if the shift expression were
   3447 replaced by its left operand alone.
   3448 </p>
   3449 
   3450 <pre>
   3451 var s uint = 33
   3452 var i = 1&lt;&lt;s                  // 1 has type int
   3453 var j int32 = 1&lt;&lt;s            // 1 has type int32; j == 0
   3454 var k = uint64(1&lt;&lt;s)          // 1 has type uint64; k == 1&lt;&lt;33
   3455 var m int = 1.0&lt;&lt;s            // 1.0 has type int; m == 0 if ints are 32bits in size
   3456 var n = 1.0&lt;&lt;s == j           // 1.0 has type int32; n == true
   3457 var o = 1&lt;&lt;s == 2&lt;&lt;s          // 1 and 2 have type int; o == true if ints are 32bits in size
   3458 var p = 1&lt;&lt;s == 1&lt;&lt;33         // illegal if ints are 32bits in size: 1 has type int, but 1&lt;&lt;33 overflows int
   3459 var u = 1.0&lt;&lt;s                // illegal: 1.0 has type float64, cannot shift
   3460 var u1 = 1.0&lt;&lt;s != 0          // illegal: 1.0 has type float64, cannot shift
   3461 var u2 = 1&lt;&lt;s != 1.0          // illegal: 1 has type float64, cannot shift
   3462 var v float32 = 1&lt;&lt;s          // illegal: 1 has type float32, cannot shift
   3463 var w int64 = 1.0&lt;&lt;33         // 1.0&lt;&lt;33 is a constant shift expression
   3464 var x = a[1.0&lt;&lt;s]             // 1.0 has type int; x == a[0] if ints are 32bits in size
   3465 var a = make([]byte, 1.0&lt;&lt;s)  // 1.0 has type int; len(a) == 0 if ints are 32bits in size
   3466 </pre>
   3467 
   3468 
   3469 <h4 id="Operator_precedence">Operator precedence</h4>
   3470 <p>
   3471 Unary operators have the highest precedence.
   3472 As the  <code>++</code> and <code>--</code> operators form
   3473 statements, not expressions, they fall
   3474 outside the operator hierarchy.
   3475 As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
   3476 <p>
   3477 There are five precedence levels for binary operators.
   3478 Multiplication operators bind strongest, followed by addition
   3479 operators, comparison operators, <code>&amp;&amp;</code> (logical AND),
   3480 and finally <code>||</code> (logical OR):
   3481 </p>
   3482 
   3483 <pre class="grammar">
   3484 Precedence    Operator
   3485     5             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
   3486     4             +  -  |  ^
   3487     3             ==  !=  &lt;  &lt;=  &gt;  &gt;=
   3488     2             &amp;&amp;
   3489     1             ||
   3490 </pre>
   3491 
   3492 <p>
   3493 Binary operators of the same precedence associate from left to right.
   3494 For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
   3495 </p>
   3496 
   3497 <pre>
   3498 +x
   3499 23 + 3*x[i]
   3500 x &lt;= f()
   3501 ^a &gt;&gt; b
   3502 f() || g()
   3503 x == y+1 &amp;&amp; &lt;-chanPtr &gt; 0
   3504 </pre>
   3505 
   3506 
   3507 <h3 id="Arithmetic_operators">Arithmetic operators</h3>
   3508 <p>
   3509 Arithmetic operators apply to numeric values and yield a result of the same
   3510 type as the first operand. The four standard arithmetic operators (<code>+</code>,
   3511 <code>-</code>, <code>*</code>, <code>/</code>) apply to integer,
   3512 floating-point, and complex types; <code>+</code> also applies to strings.
   3513 The bitwise logical and shift operators apply to integers only.
   3514 </p>
   3515 
   3516 <pre class="grammar">
   3517 +    sum                    integers, floats, complex values, strings
   3518 -    difference             integers, floats, complex values
   3519 *    product                integers, floats, complex values
   3520 /    quotient               integers, floats, complex values
   3521 %    remainder              integers
   3522 
   3523 &amp;    bitwise AND            integers
   3524 |    bitwise OR             integers
   3525 ^    bitwise XOR            integers
   3526 &amp;^   bit clear (AND NOT)    integers
   3527 
   3528 &lt;&lt;   left shift             integer &lt;&lt; unsigned integer
   3529 &gt;&gt;   right shift            integer &gt;&gt; unsigned integer
   3530 </pre>
   3531 
   3532 
   3533 <h4 id="Integer_operators">Integer operators</h4>
   3534 
   3535 <p>
   3536 For two integer values <code>x</code> and <code>y</code>, the integer quotient
   3537 <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
   3538 relationships:
   3539 </p>
   3540 
   3541 <pre>
   3542 x = q*y + r  and  |r| &lt; |y|
   3543 </pre>
   3544 
   3545 <p>
   3546 with <code>x / y</code> truncated towards zero
   3547 (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
   3548 </p>
   3549 
   3550 <pre>
   3551  x     y     x / y     x % y
   3552  5     3       1         2
   3553 -5     3      -1        -2
   3554  5    -3      -1         2
   3555 -5    -3       1        -2
   3556 </pre>
   3557 
   3558 <p>
   3559 The one exception to this rule is that if the dividend <code>x</code> is
   3560 the most negative value for the int type of <code>x</code>, the quotient
   3561 <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>)
   3562 due to two's-complement <a href="#Integer_overflow">integer overflow</a>:
   3563 </p>
   3564 
   3565 <pre>
   3566 			 x, q
   3567 int8                     -128
   3568 int16                  -32768
   3569 int32             -2147483648
   3570 int64    -9223372036854775808
   3571 </pre>
   3572 
   3573 <p>
   3574 If the divisor is a <a href="#Constants">constant</a>, it must not be zero.
   3575 If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
   3576 If the dividend is non-negative and the divisor is a constant power of 2,
   3577 the division may be replaced by a right shift, and computing the remainder may
   3578 be replaced by a bitwise AND operation:
   3579 </p>
   3580 
   3581 <pre>
   3582  x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
   3583  11      2         3         2          3
   3584 -11     -2        -3        -3          1
   3585 </pre>
   3586 
   3587 <p>
   3588 The shift operators shift the left operand by the shift count specified by the
   3589 right operand. They implement arithmetic shifts if the left operand is a signed
   3590 integer and logical shifts if it is an unsigned integer.
   3591 There is no upper limit on the shift count. Shifts behave
   3592 as if the left operand is shifted <code>n</code> times by 1 for a shift
   3593 count of <code>n</code>.
   3594 As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
   3595 and <code>x &gt;&gt; 1</code> is the same as
   3596 <code>x/2</code> but truncated towards negative infinity.
   3597 </p>
   3598 
   3599 <p>
   3600 For integer operands, the unary operators
   3601 <code>+</code>, <code>-</code>, and <code>^</code> are defined as
   3602 follows:
   3603 </p>
   3604 
   3605 <pre class="grammar">
   3606 +x                          is 0 + x
   3607 -x    negation              is 0 - x
   3608 ^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
   3609                                       and  m = -1 for signed x
   3610 </pre>
   3611 
   3612 
   3613 <h4 id="Integer_overflow">Integer overflow</h4>
   3614 
   3615 <p>
   3616 For unsigned integer values, the operations <code>+</code>,
   3617 <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
   3618 computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
   3619 the <a href="#Numeric_types">unsigned integer</a>'s type.
   3620 Loosely speaking, these unsigned integer operations
   3621 discard high bits upon overflow, and programs may rely on "wrap around".
   3622 </p>
   3623 <p>
   3624 For signed integers, the operations <code>+</code>,
   3625 <code>-</code>, <code>*</code>, <code>/</code>, and <code>&lt;&lt;</code> may legally
   3626 overflow and the resulting value exists and is deterministically defined
   3627 by the signed integer representation, the operation, and its operands.
   3628 No exception is raised as a result of overflow.
   3629 A compiler may not optimize code under the assumption that overflow does
   3630 not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
   3631 </p>
   3632 
   3633 
   3634 <h4 id="Floating_point_operators">Floating-point operators</h4>
   3635 
   3636 <p>
   3637 For floating-point and complex numbers,
   3638 <code>+x</code> is the same as <code>x</code>,
   3639 while <code>-x</code> is the negation of <code>x</code>.
   3640 The result of a floating-point or complex division by zero is not specified beyond the
   3641 IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
   3642 occurs is implementation-specific.
   3643 </p>
   3644 
   3645 <p>
   3646 An implementation may combine multiple floating-point operations into a single
   3647 fused operation, possibly across statements, and produce a result that differs
   3648 from the value obtained by executing and rounding the instructions individually.
   3649 A floating-point type <a href="#Conversions">conversion</a> explicitly rounds to
   3650 the precision of the target type, preventing fusion that would discard that rounding.
   3651 </p>
   3652 
   3653 <p>
   3654 For instance, some architectures provide a "fused multiply and add" (FMA) instruction
   3655 that computes <code>x*y + z</code> without rounding the intermediate result <code>x*y</code>.
   3656 These examples show when a Go implementation can use that instruction:
   3657 </p>
   3658 
   3659 <pre>
   3660 // FMA allowed for computing r, because x*y is not explicitly rounded:
   3661 r  = x*y + z
   3662 r  = z;   r += x*y
   3663 t  = x*y; r = t + z
   3664 *p = x*y; r = *p + z
   3665 r  = x*y + float64(z)
   3666 
   3667 // FMA disallowed for computing r, because it would omit rounding of x*y:
   3668 r  = float64(x*y) + z
   3669 r  = z; r += float64(x*y)
   3670 t  = float64(x*y); r = t + z
   3671 </pre>
   3672 
   3673 <h4 id="String_concatenation">String concatenation</h4>
   3674 
   3675 <p>
   3676 Strings can be concatenated using the <code>+</code> operator
   3677 or the <code>+=</code> assignment operator:
   3678 </p>
   3679 
   3680 <pre>
   3681 s := "hi" + string(c)
   3682 s += " and good bye"
   3683 </pre>
   3684 
   3685 <p>
   3686 String addition creates a new string by concatenating the operands.
   3687 </p>
   3688 
   3689 
   3690 <h3 id="Comparison_operators">Comparison operators</h3>
   3691 
   3692 <p>
   3693 Comparison operators compare two operands and yield an untyped boolean value.
   3694 </p>
   3695 
   3696 <pre class="grammar">
   3697 ==    equal
   3698 !=    not equal
   3699 &lt;     less
   3700 &lt;=    less or equal
   3701 &gt;     greater
   3702 &gt;=    greater or equal
   3703 </pre>
   3704 
   3705 <p>
   3706 In any comparison, the first operand
   3707 must be <a href="#Assignability">assignable</a>
   3708 to the type of the second operand, or vice versa.
   3709 </p>
   3710 <p>
   3711 The equality operators <code>==</code> and <code>!=</code> apply
   3712 to operands that are <i>comparable</i>.
   3713 The ordering operators <code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, and <code>&gt;=</code>
   3714 apply to operands that are <i>ordered</i>.
   3715 These terms and the result of the comparisons are defined as follows:
   3716 </p>
   3717 
   3718 <ul>
   3719 	<li>
   3720 	Boolean values are comparable.
   3721 	Two boolean values are equal if they are either both
   3722 	<code>true</code> or both <code>false</code>.
   3723 	</li>
   3724 
   3725 	<li>
   3726 	Integer values are comparable and ordered, in the usual way.
   3727 	</li>
   3728 
   3729 	<li>
   3730 	Floating-point values are comparable and ordered,
   3731 	as defined by the IEEE-754 standard.
   3732 	</li>
   3733 
   3734 	<li>
   3735 	Complex values are comparable.
   3736 	Two complex values <code>u</code> and <code>v</code> are
   3737 	equal if both <code>real(u) == real(v)</code> and
   3738 	<code>imag(u) == imag(v)</code>.
   3739 	</li>
   3740 
   3741 	<li>
   3742 	String values are comparable and ordered, lexically byte-wise.
   3743 	</li>
   3744 
   3745 	<li>
   3746 	Pointer values are comparable.
   3747 	Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>.
   3748 	Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal.
   3749 	</li>
   3750 
   3751 	<li>
   3752 	Channel values are comparable.
   3753 	Two channel values are equal if they were created by the same call to
   3754 	<a href="#Making_slices_maps_and_channels"><code>make</code></a>
   3755 	or if both have value <code>nil</code>.
   3756 	</li>
   3757 
   3758 	<li>
   3759 	Interface values are comparable.
   3760 	Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types
   3761 	and equal dynamic values or if both have value <code>nil</code>.
   3762 	</li>
   3763 
   3764 	<li>
   3765 	A value <code>x</code> of non-interface type <code>X</code> and
   3766 	a value <code>t</code> of interface type <code>T</code> are comparable when values
   3767 	of type <code>X</code> are comparable and
   3768 	<code>X</code> implements <code>T</code>.
   3769 	They are equal if <code>t</code>'s dynamic type is identical to <code>X</code>
   3770 	and <code>t</code>'s dynamic value is equal to <code>x</code>.
   3771 	</li>
   3772 
   3773 	<li>
   3774 	Struct values are comparable if all their fields are comparable.
   3775 	Two struct values are equal if their corresponding
   3776 	non-<a href="#Blank_identifier">blank</a> fields are equal.
   3777 	</li>
   3778 
   3779 	<li>
   3780 	Array values are comparable if values of the array element type are comparable.
   3781 	Two array values are equal if their corresponding elements are equal.
   3782 	</li>
   3783 </ul>
   3784 
   3785 <p>
   3786 A comparison of two interface values with identical dynamic types
   3787 causes a <a href="#Run_time_panics">run-time panic</a> if values
   3788 of that type are not comparable.  This behavior applies not only to direct interface
   3789 value comparisons but also when comparing arrays of interface values
   3790 or structs with interface-valued fields.
   3791 </p>
   3792 
   3793 <p>
   3794 Slice, map, and function values are not comparable.
   3795 However, as a special case, a slice, map, or function value may
   3796 be compared to the predeclared identifier <code>nil</code>.
   3797 Comparison of pointer, channel, and interface values to <code>nil</code>
   3798 is also allowed and follows from the general rules above.
   3799 </p>
   3800 
   3801 <pre>
   3802 const c = 3 &lt; 4            // c is the untyped boolean constant true
   3803 
   3804 type MyBool bool
   3805 var x, y int
   3806 var (
   3807 	// The result of a comparison is an untyped boolean.
   3808 	// The usual assignment rules apply.
   3809 	b3        = x == y // b3 has type bool
   3810 	b4 bool   = x == y // b4 has type bool
   3811 	b5 MyBool = x == y // b5 has type MyBool
   3812 )
   3813 </pre>
   3814 
   3815 <h3 id="Logical_operators">Logical operators</h3>
   3816 
   3817 <p>
   3818 Logical operators apply to <a href="#Boolean_types">boolean</a> values
   3819 and yield a result of the same type as the operands.
   3820 The right operand is evaluated conditionally.
   3821 </p>
   3822 
   3823 <pre class="grammar">
   3824 &amp;&amp;    conditional AND    p &amp;&amp; q  is  "if p then q else false"
   3825 ||    conditional OR     p || q  is  "if p then true else q"
   3826 !     NOT                !p      is  "not p"
   3827 </pre>
   3828 
   3829 
   3830 <h3 id="Address_operators">Address operators</h3>
   3831 
   3832 <p>
   3833 For an operand <code>x</code> of type <code>T</code>, the address operation
   3834 <code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
   3835 The operand must be <i>addressable</i>,
   3836 that is, either a variable, pointer indirection, or slice indexing
   3837 operation; or a field selector of an addressable struct operand;
   3838 or an array indexing operation of an addressable array.
   3839 As an exception to the addressability requirement, <code>x</code> may also be a
   3840 (possibly parenthesized)
   3841 <a href="#Composite_literals">composite literal</a>.
   3842 If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>,
   3843 then the evaluation of <code>&amp;x</code> does too.
   3844 </p>
   3845 
   3846 <p>
   3847 For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
   3848 indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed
   3849 to by <code>x</code>.
   3850 If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code>
   3851 will cause a <a href="#Run_time_panics">run-time panic</a>.
   3852 </p>
   3853 
   3854 <pre>
   3855 &amp;x
   3856 &amp;a[f(2)]
   3857 &amp;Point{2, 3}
   3858 *p
   3859 *pf(x)
   3860 
   3861 var x *int = nil
   3862 *x   // causes a run-time panic
   3863 &amp;*x  // causes a run-time panic
   3864 </pre>
   3865 
   3866 
   3867 <h3 id="Receive_operator">Receive operator</h3>
   3868 
   3869 <p>
   3870 For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>,
   3871 the value of the receive operation <code>&lt;-ch</code> is the value received
   3872 from the channel <code>ch</code>. The channel direction must permit receive operations,
   3873 and the type of the receive operation is the element type of the channel.
   3874 The expression blocks until a value is available.
   3875 Receiving from a <code>nil</code> channel blocks forever.
   3876 A receive operation on a <a href="#Close">closed</a> channel can always proceed
   3877 immediately, yielding the element type's <a href="#The_zero_value">zero value</a>
   3878 after any previously sent values have been received.
   3879 </p>
   3880 
   3881 <pre>
   3882 v1 := &lt;-ch
   3883 v2 = &lt;-ch
   3884 f(&lt;-ch)
   3885 &lt;-strobe  // wait until clock pulse and discard received value
   3886 </pre>
   3887 
   3888 <p>
   3889 A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form
   3890 </p>
   3891 
   3892 <pre>
   3893 x, ok = &lt;-ch
   3894 x, ok := &lt;-ch
   3895 var x, ok = &lt;-ch
   3896 var x, ok T = &lt;-ch
   3897 </pre>
   3898 
   3899 <p>
   3900 yields an additional untyped boolean result reporting whether the
   3901 communication succeeded. The value of <code>ok</code> is <code>true</code>
   3902 if the value received was delivered by a successful send operation to the
   3903 channel, or <code>false</code> if it is a zero value generated because the
   3904 channel is closed and empty.
   3905 </p>
   3906 
   3907 
   3908 <h3 id="Conversions">Conversions</h3>
   3909 
   3910 <p>
   3911 Conversions are expressions of the form <code>T(x)</code>
   3912 where <code>T</code> is a type and <code>x</code> is an expression
   3913 that can be converted to type <code>T</code>.
   3914 </p>
   3915 
   3916 <pre class="ebnf">
   3917 Conversion = Type "(" Expression [ "," ] ")" .
   3918 </pre>
   3919 
   3920 <p>
   3921 If the type starts with the operator <code>*</code> or <code>&lt;-</code>,
   3922 or if the type starts with the keyword <code>func</code>
   3923 and has no result list, it must be parenthesized when
   3924 necessary to avoid ambiguity:
   3925 </p>
   3926 
   3927 <pre>
   3928 *Point(p)        // same as *(Point(p))
   3929 (*Point)(p)      // p is converted to *Point
   3930 &lt;-chan int(c)    // same as &lt;-(chan int(c))
   3931 (&lt;-chan int)(c)  // c is converted to &lt;-chan int
   3932 func()(x)        // function signature func() x
   3933 (func())(x)      // x is converted to func()
   3934 (func() int)(x)  // x is converted to func() int
   3935 func() int(x)    // x is converted to func() int (unambiguous)
   3936 </pre>
   3937 
   3938 <p>
   3939 A <a href="#Constants">constant</a> value <code>x</code> can be converted to
   3940 type <code>T</code> if <code>x</code> is <a href="#Representability">representable</a>
   3941 by a value of <code>T</code>.
   3942 As a special case, an integer constant <code>x</code> can be converted to a
   3943 <a href="#String_types">string type</a> using the
   3944 <a href="#Conversions_to_and_from_a_string_type">same rule</a>
   3945 as for non-constant <code>x</code>.
   3946 </p>
   3947 
   3948 <p>
   3949 Converting a constant yields a typed constant as result.
   3950 </p>
   3951 
   3952 <pre>
   3953 uint(iota)               // iota value of type uint
   3954 float32(2.718281828)     // 2.718281828 of type float32
   3955 complex128(1)            // 1.0 + 0.0i of type complex128
   3956 float32(0.49999999)      // 0.5 of type float32
   3957 float64(-1e-1000)        // 0.0 of type float64
   3958 string('x')              // "x" of type string
   3959 string(0x266c)           // "" of type string
   3960 MyString("foo" + "bar")  // "foobar" of type MyString
   3961 string([]byte{'a'})      // not a constant: []byte{'a'} is not a constant
   3962 (*int)(nil)              // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
   3963 int(1.2)                 // illegal: 1.2 cannot be represented as an int
   3964 string(65.0)             // illegal: 65.0 is not an integer constant
   3965 </pre>
   3966 
   3967 <p>
   3968 A non-constant value <code>x</code> can be converted to type <code>T</code>
   3969 in any of these cases:
   3970 </p>
   3971 
   3972 <ul>
   3973 	<li>
   3974 	<code>x</code> is <a href="#Assignability">assignable</a>
   3975 	to <code>T</code>.
   3976 	</li>
   3977 	<li>
   3978 	ignoring struct tags (see below),
   3979 	<code>x</code>'s type and <code>T</code> have <a href="#Type_identity">identical</a>
   3980 	<a href="#Types">underlying types</a>.
   3981 	</li>
   3982 	<li>
   3983 	ignoring struct tags (see below),
   3984 	<code>x</code>'s type and <code>T</code> are pointer types
   3985 	that are not <a href="#Type_definitions">defined types</a>,
   3986 	and their pointer base types have identical underlying types.
   3987 	</li>
   3988 	<li>
   3989 	<code>x</code>'s type and <code>T</code> are both integer or floating
   3990 	point types.
   3991 	</li>
   3992 	<li>
   3993 	<code>x</code>'s type and <code>T</code> are both complex types.
   3994 	</li>
   3995 	<li>
   3996 	<code>x</code> is an integer or a slice of bytes or runes
   3997 	and <code>T</code> is a string type.
   3998 	</li>
   3999 	<li>
   4000 	<code>x</code> is a string and <code>T</code> is a slice of bytes or runes.
   4001 	</li>
   4002 </ul>
   4003 
   4004 <p>
   4005 <a href="#Struct_types">Struct tags</a> are ignored when comparing struct types
   4006 for identity for the purpose of conversion:
   4007 </p>
   4008 
   4009 <pre>
   4010 type Person struct {
   4011 	Name    string
   4012 	Address *struct {
   4013 		Street string
   4014 		City   string
   4015 	}
   4016 }
   4017 
   4018 var data *struct {
   4019 	Name    string `json:"name"`
   4020 	Address *struct {
   4021 		Street string `json:"street"`
   4022 		City   string `json:"city"`
   4023 	} `json:"address"`
   4024 }
   4025 
   4026 var person = (*Person)(data)  // ignoring tags, the underlying types are identical
   4027 </pre>
   4028 
   4029 <p>
   4030 Specific rules apply to (non-constant) conversions between numeric types or
   4031 to and from a string type.
   4032 These conversions may change the representation of <code>x</code>
   4033 and incur a run-time cost.
   4034 All other conversions only change the type but not the representation
   4035 of <code>x</code>.
   4036 </p>
   4037 
   4038 <p>
   4039 There is no linguistic mechanism to convert between pointers and integers.
   4040 The package <a href="#Package_unsafe"><code>unsafe</code></a>
   4041 implements this functionality under
   4042 restricted circumstances.
   4043 </p>
   4044 
   4045 <h4>Conversions between numeric types</h4>
   4046 
   4047 <p>
   4048 For the conversion of non-constant numeric values, the following rules apply:
   4049 </p>
   4050 
   4051 <ol>
   4052 <li>
   4053 When converting between integer types, if the value is a signed integer, it is
   4054 sign extended to implicit infinite precision; otherwise it is zero extended.
   4055 It is then truncated to fit in the result type's size.
   4056 For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
   4057 The conversion always yields a valid value; there is no indication of overflow.
   4058 </li>
   4059 <li>
   4060 When converting a floating-point number to an integer, the fraction is discarded
   4061 (truncation towards zero).
   4062 </li>
   4063 <li>
   4064 When converting an integer or floating-point number to a floating-point type,
   4065 or a complex number to another complex type, the result value is rounded
   4066 to the precision specified by the destination type.
   4067 For instance, the value of a variable <code>x</code> of type <code>float32</code>
   4068 may be stored using additional precision beyond that of an IEEE-754 32-bit number,
   4069 but float32(x) represents the result of rounding <code>x</code>'s value to
   4070 32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
   4071 of precision, but <code>float32(x + 0.1)</code> does not.
   4072 </li>
   4073 </ol>
   4074 
   4075 <p>
   4076 In all non-constant conversions involving floating-point or complex values,
   4077 if the result type cannot represent the value the conversion
   4078 succeeds but the result value is implementation-dependent.
   4079 </p>
   4080 
   4081 <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>
   4082 
   4083 <ol>
   4084 <li>
   4085 Converting a signed or unsigned integer value to a string type yields a
   4086 string containing the UTF-8 representation of the integer. Values outside
   4087 the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.
   4088 
   4089 <pre>
   4090 string('a')       // "a"
   4091 string(-1)        // "\ufffd" == "\xef\xbf\xbd"
   4092 string(0xf8)      // "\u00f8" == "" == "\xc3\xb8"
   4093 type MyString string
   4094 MyString(0x65e5)  // "\u65e5" == "" == "\xe6\x97\xa5"
   4095 </pre>
   4096 </li>
   4097 
   4098 <li>
   4099 Converting a slice of bytes to a string type yields
   4100 a string whose successive bytes are the elements of the slice.
   4101 
   4102 <pre>
   4103 string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})   // "hell"
   4104 string([]byte{})                                     // ""
   4105 string([]byte(nil))                                  // ""
   4106 
   4107 type MyBytes []byte
   4108 string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'})  // "hell"
   4109 </pre>
   4110 </li>
   4111 
   4112 <li>
   4113 Converting a slice of runes to a string type yields
   4114 a string that is the concatenation of the individual rune values
   4115 converted to strings.
   4116 
   4117 <pre>
   4118 string([]rune{0x767d, 0x9d6c, 0x7fd4})   // "\u767d\u9d6c\u7fd4" == ""
   4119 string([]rune{})                         // ""
   4120 string([]rune(nil))                      // ""
   4121 
   4122 type MyRunes []rune
   4123 string(MyRunes{0x767d, 0x9d6c, 0x7fd4})  // "\u767d\u9d6c\u7fd4" == ""
   4124 </pre>
   4125 </li>
   4126 
   4127 <li>
   4128 Converting a value of a string type to a slice of bytes type
   4129 yields a slice whose successive elements are the bytes of the string.
   4130 
   4131 <pre>
   4132 []byte("hell")   // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
   4133 []byte("")        // []byte{}
   4134 
   4135 MyBytes("hell")  // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
   4136 </pre>
   4137 </li>
   4138 
   4139 <li>
   4140 Converting a value of a string type to a slice of runes type
   4141 yields a slice containing the individual Unicode code points of the string.
   4142 
   4143 <pre>
   4144 []rune(MyString(""))  // []rune{0x767d, 0x9d6c, 0x7fd4}
   4145 []rune("")                 // []rune{}
   4146 
   4147 MyRunes("")           // []rune{0x767d, 0x9d6c, 0x7fd4}
   4148 </pre>
   4149 </li>
   4150 </ol>
   4151 
   4152 
   4153 <h3 id="Constant_expressions">Constant expressions</h3>
   4154 
   4155 <p>
   4156 Constant expressions may contain only <a href="#Constants">constant</a>
   4157 operands and are evaluated at compile time.
   4158 </p>
   4159 
   4160 <p>
   4161 Untyped boolean, numeric, and string constants may be used as operands
   4162 wherever it is legal to use an operand of boolean, numeric, or string type,
   4163 respectively.
   4164 Except for shift operations, if the operands of a binary operation are
   4165 different kinds of untyped constants, the operation and, for non-boolean operations, the result use
   4166 the kind that appears later in this list: integer, rune, floating-point, complex.
   4167 For example, an untyped integer constant divided by an
   4168 untyped complex constant yields an untyped complex constant.
   4169 </p>
   4170 
   4171 <p>
   4172 A constant <a href="#Comparison_operators">comparison</a> always yields
   4173 an untyped boolean constant.  If the left operand of a constant
   4174 <a href="#Operators">shift expression</a> is an untyped constant, the
   4175 result is an integer constant; otherwise it is a constant of the same
   4176 type as the left operand, which must be of
   4177 <a href="#Numeric_types">integer type</a>.
   4178 Applying all other operators to untyped constants results in an untyped
   4179 constant of the same kind (that is, a boolean, integer, floating-point,
   4180 complex, or string constant).
   4181 </p>
   4182 
   4183 <pre>
   4184 const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
   4185 const b = 15 / 4           // b == 3     (untyped integer constant)
   4186 const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
   4187 const  float64 = 3/2      //  == 1.0   (type float64, 3/2 is integer division)
   4188 const  float64 = 3/2.     //  == 1.5   (type float64, 3/2. is float division)
   4189 const d = 1 &lt;&lt; 3.0         // d == 8     (untyped integer constant)
   4190 const e = 1.0 &lt;&lt; 3         // e == 8     (untyped integer constant)
   4191 const f = int32(1) &lt;&lt; 33   // illegal    (constant 8589934592 overflows int32)
   4192 const g = float64(2) &gt;&gt; 1  // illegal    (float64(2) is a typed floating-point constant)
   4193 const h = "foo" &gt; "bar"    // h == true  (untyped boolean constant)
   4194 const j = true             // j == true  (untyped boolean constant)
   4195 const k = 'w' + 1          // k == 'x'   (untyped rune constant)
   4196 const l = "hi"             // l == "hi"  (untyped string constant)
   4197 const m = string(k)        // m == "x"   (type string)
   4198 const  = 1 - 0.707i       //            (untyped complex constant)
   4199 const  =  + 2.0e-4       //            (untyped complex constant)
   4200 const  = iota*1i - 1/1i   //            (untyped complex constant)
   4201 </pre>
   4202 
   4203 <p>
   4204 Applying the built-in function <code>complex</code> to untyped
   4205 integer, rune, or floating-point constants yields
   4206 an untyped complex constant.
   4207 </p>
   4208 
   4209 <pre>
   4210 const ic = complex(0, c)   // ic == 3.75i  (untyped complex constant)
   4211 const i = complex(0, )   // i == 1i     (type complex128)
   4212 </pre>
   4213 
   4214 <p>
   4215 Constant expressions are always evaluated exactly; intermediate values and the
   4216 constants themselves may require precision significantly larger than supported
   4217 by any predeclared type in the language. The following are legal declarations:
   4218 </p>
   4219 
   4220 <pre>
   4221 const Huge = 1 &lt;&lt; 100         // Huge == 1267650600228229401496703205376  (untyped integer constant)
   4222 const Four int8 = Huge &gt;&gt; 98  // Four == 4                                (type int8)
   4223 </pre>
   4224 
   4225 <p>
   4226 The divisor of a constant division or remainder operation must not be zero:
   4227 </p>
   4228 
   4229 <pre>
   4230 3.14 / 0.0   // illegal: division by zero
   4231 </pre>
   4232 
   4233 <p>
   4234 The values of <i>typed</i> constants must always be accurately
   4235 <a href="#Representability">representable</a> by values
   4236 of the constant type. The following constant expressions are illegal:
   4237 </p>
   4238 
   4239 <pre>
   4240 uint(-1)     // -1 cannot be represented as a uint
   4241 int(3.14)    // 3.14 cannot be represented as an int
   4242 int64(Huge)  // 1267650600228229401496703205376 cannot be represented as an int64
   4243 Four * 300   // operand 300 cannot be represented as an int8 (type of Four)
   4244 Four * 100   // product 400 cannot be represented as an int8 (type of Four)
   4245 </pre>
   4246 
   4247 <p>
   4248 The mask used by the unary bitwise complement operator <code>^</code> matches
   4249 the rule for non-constants: the mask is all 1s for unsigned constants
   4250 and -1 for signed and untyped constants.
   4251 </p>
   4252 
   4253 <pre>
   4254 ^1         // untyped integer constant, equal to -2
   4255 uint8(^1)  // illegal: same as uint8(-2), -2 cannot be represented as a uint8
   4256 ^uint8(1)  // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
   4257 int8(^1)   // same as int8(-2)
   4258 ^int8(1)   // same as -1 ^ int8(1) = -2
   4259 </pre>
   4260 
   4261 <p>
   4262 Implementation restriction: A compiler may use rounding while
   4263 computing untyped floating-point or complex constant expressions; see
   4264 the implementation restriction in the section
   4265 on <a href="#Constants">constants</a>.  This rounding may cause a
   4266 floating-point constant expression to be invalid in an integer
   4267 context, even if it would be integral when calculated using infinite
   4268 precision, and vice versa.
   4269 </p>
   4270 
   4271 
   4272 <h3 id="Order_of_evaluation">Order of evaluation</h3>
   4273 
   4274 <p>
   4275 At package level, <a href="#Package_initialization">initialization dependencies</a>
   4276 determine the evaluation order of individual initialization expressions in
   4277 <a href="#Variable_declarations">variable declarations</a>.
   4278 Otherwise, when evaluating the <a href="#Operands">operands</a> of an
   4279 expression, assignment, or
   4280 <a href="#Return_statements">return statement</a>,
   4281 all function calls, method calls, and
   4282 communication operations are evaluated in lexical left-to-right
   4283 order.
   4284 </p>
   4285 
   4286 <p>
   4287 For example, in the (function-local) assignment
   4288 </p>
   4289 <pre>
   4290 y[f()], ok = g(h(), i()+x[j()], &lt;-c), k()
   4291 </pre>
   4292 <p>
   4293 the function calls and communication happen in the order
   4294 <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
   4295 <code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
   4296 However, the order of those events compared to the evaluation
   4297 and indexing of <code>x</code> and the evaluation
   4298 of <code>y</code> is not specified.
   4299 </p>
   4300 
   4301 <pre>
   4302 a := 1
   4303 f := func() int { a++; return a }
   4304 x := []int{a, f()}            // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified
   4305 m := map[int]int{a: 1, a: 2}  // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified
   4306 n := map[int]int{a: f()}      // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified
   4307 </pre>
   4308 
   4309 <p>
   4310 At package level, initialization dependencies override the left-to-right rule
   4311 for individual initialization expressions, but not for operands within each
   4312 expression:
   4313 </p>
   4314 
   4315 <pre>
   4316 var a, b, c = f() + v(), g(), sqr(u()) + v()
   4317 
   4318 func f() int        { return c }
   4319 func g() int        { return a }
   4320 func sqr(x int) int { return x*x }
   4321 
   4322 // functions u and v are independent of all other variables and functions
   4323 </pre>
   4324 
   4325 <p>
   4326 The function calls happen in the order
   4327 <code>u()</code>, <code>sqr()</code>, <code>v()</code>,
   4328 <code>f()</code>, <code>v()</code>, and <code>g()</code>.
   4329 </p>
   4330 
   4331 <p>
   4332 Floating-point operations within a single expression are evaluated according to
   4333 the associativity of the operators.  Explicit parentheses affect the evaluation
   4334 by overriding the default associativity.
   4335 In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
   4336 is performed before adding <code>x</code>.
   4337 </p>
   4338 
   4339 <h2 id="Statements">Statements</h2>
   4340 
   4341 <p>
   4342 Statements control execution.
   4343 </p>
   4344 
   4345 <pre class="ebnf">
   4346 Statement =
   4347 	Declaration | LabeledStmt | SimpleStmt |
   4348 	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
   4349 	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
   4350 	DeferStmt .
   4351 
   4352 SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
   4353 </pre>
   4354 
   4355 <h3 id="Terminating_statements">Terminating statements</h3>
   4356 
   4357 <p>
   4358 A <i>terminating statement</i> prevents execution of all statements that lexically
   4359 appear after it in the same <a href="#Blocks">block</a>. The following statements
   4360 are terminating:
   4361 </p>
   4362 
   4363 <ol>
   4364 <li>
   4365 	A <a href="#Return_statements">"return"</a> or
   4366     	<a href="#Goto_statements">"goto"</a> statement.
   4367 	<!-- ul below only for regular layout -->
   4368 	<ul> </ul>
   4369 </li>
   4370 
   4371 <li>
   4372 	A call to the built-in function
   4373 	<a href="#Handling_panics"><code>panic</code></a>.
   4374 	<!-- ul below only for regular layout -->
   4375 	<ul> </ul>
   4376 </li>
   4377 
   4378 <li>
   4379 	A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement.
   4380 	<!-- ul below only for regular layout -->
   4381 	<ul> </ul>
   4382 </li>
   4383 
   4384 <li>
   4385 	An <a href="#If_statements">"if" statement</a> in which:
   4386 	<ul>
   4387 	<li>the "else" branch is present, and</li>
   4388 	<li>both branches are terminating statements.</li>
   4389 	</ul>
   4390 </li>
   4391 
   4392 <li>
   4393 	A <a href="#For_statements">"for" statement</a> in which:
   4394 	<ul>
   4395 	<li>there are no "break" statements referring to the "for" statement, and</li>
   4396 	<li>the loop condition is absent.</li>
   4397 	</ul>
   4398 </li>
   4399 
   4400 <li>
   4401 	A <a href="#Switch_statements">"switch" statement</a> in which:
   4402 	<ul>
   4403 	<li>there are no "break" statements referring to the "switch" statement,</li>
   4404 	<li>there is a default case, and</li>
   4405 	<li>the statement lists in each case, including the default, end in a terminating
   4406 	    statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough"
   4407 	    statement</a>.</li>
   4408 	</ul>
   4409 </li>
   4410 
   4411 <li>
   4412 	A <a href="#Select_statements">"select" statement</a> in which:
   4413 	<ul>
   4414 	<li>there are no "break" statements referring to the "select" statement, and</li>
   4415 	<li>the statement lists in each case, including the default if present,
   4416 	    end in a terminating statement.</li>
   4417 	</ul>
   4418 </li>
   4419 
   4420 <li>
   4421 	A <a href="#Labeled_statements">labeled statement</a> labeling
   4422 	a terminating statement.
   4423 </li>
   4424 </ol>
   4425 
   4426 <p>
   4427 All other statements are not terminating.
   4428 </p>
   4429 
   4430 <p>
   4431 A <a href="#Blocks">statement list</a> ends in a terminating statement if the list
   4432 is not empty and its final non-empty statement is terminating.
   4433 </p>
   4434 
   4435 
   4436 <h3 id="Empty_statements">Empty statements</h3>
   4437 
   4438 <p>
   4439 The empty statement does nothing.
   4440 </p>
   4441 
   4442 <pre class="ebnf">
   4443 EmptyStmt = .
   4444 </pre>
   4445 
   4446 
   4447 <h3 id="Labeled_statements">Labeled statements</h3>
   4448 
   4449 <p>
   4450 A labeled statement may be the target of a <code>goto</code>,
   4451 <code>break</code> or <code>continue</code> statement.
   4452 </p>
   4453 
   4454 <pre class="ebnf">
   4455 LabeledStmt = Label ":" Statement .
   4456 Label       = identifier .
   4457 </pre>
   4458 
   4459 <pre>
   4460 Error: log.Panic("error encountered")
   4461 </pre>
   4462 
   4463 
   4464 <h3 id="Expression_statements">Expression statements</h3>
   4465 
   4466 <p>
   4467 With the exception of specific built-in functions,
   4468 function and method <a href="#Calls">calls</a> and
   4469 <a href="#Receive_operator">receive operations</a>
   4470 can appear in statement context. Such statements may be parenthesized.
   4471 </p>
   4472 
   4473 <pre class="ebnf">
   4474 ExpressionStmt = Expression .
   4475 </pre>
   4476 
   4477 <p>
   4478 The following built-in functions are not permitted in statement context:
   4479 </p>
   4480 
   4481 <pre>
   4482 append cap complex imag len make new real
   4483 unsafe.Alignof unsafe.Offsetof unsafe.Sizeof
   4484 </pre>
   4485 
   4486 <pre>
   4487 h(x+y)
   4488 f.Close()
   4489 &lt;-ch
   4490 (&lt;-ch)
   4491 len("foo")  // illegal if len is the built-in function
   4492 </pre>
   4493 
   4494 
   4495 <h3 id="Send_statements">Send statements</h3>
   4496 
   4497 <p>
   4498 A send statement sends a value on a channel.
   4499 The channel expression must be of <a href="#Channel_types">channel type</a>,
   4500 the channel direction must permit send operations,
   4501 and the type of the value to be sent must be <a href="#Assignability">assignable</a>
   4502 to the channel's element type.
   4503 </p>
   4504 
   4505 <pre class="ebnf">
   4506 SendStmt = Channel "&lt;-" Expression .
   4507 Channel  = Expression .
   4508 </pre>
   4509 
   4510 <p>
   4511 Both the channel and the value expression are evaluated before communication
   4512 begins. Communication blocks until the send can proceed.
   4513 A send on an unbuffered channel can proceed if a receiver is ready.
   4514 A send on a buffered channel can proceed if there is room in the buffer.
   4515 A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>.
   4516 A send on a <code>nil</code> channel blocks forever.
   4517 </p>
   4518 
   4519 <pre>
   4520 ch &lt;- 3  // send value 3 to channel ch
   4521 </pre>
   4522 
   4523 
   4524 <h3 id="IncDec_statements">IncDec statements</h3>
   4525 
   4526 <p>
   4527 The "++" and "--" statements increment or decrement their operands
   4528 by the untyped <a href="#Constants">constant</a> <code>1</code>.
   4529 As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
   4530 or a map index expression.
   4531 </p>
   4532 
   4533 <pre class="ebnf">
   4534 IncDecStmt = Expression ( "++" | "--" ) .
   4535 </pre>
   4536 
   4537 <p>
   4538 The following <a href="#Assignments">assignment statements</a> are semantically
   4539 equivalent:
   4540 </p>
   4541 
   4542 <pre class="grammar">
   4543 IncDec statement    Assignment
   4544 x++                 x += 1
   4545 x--                 x -= 1
   4546 </pre>
   4547 
   4548 
   4549 <h3 id="Assignments">Assignments</h3>
   4550 
   4551 <pre class="ebnf">
   4552 Assignment = ExpressionList assign_op ExpressionList .
   4553 
   4554 assign_op = [ add_op | mul_op ] "=" .
   4555 </pre>
   4556 
   4557 <p>
   4558 Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
   4559 a map index expression, or (for <code>=</code> assignments only) the
   4560 <a href="#Blank_identifier">blank identifier</a>.
   4561 Operands may be parenthesized.
   4562 </p>
   4563 
   4564 <pre>
   4565 x = 1
   4566 *p = f()
   4567 a[i] = 23
   4568 (k) = &lt;-ch  // same as: k = &lt;-ch
   4569 </pre>
   4570 
   4571 <p>
   4572 An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
   4573 <code>y</code> where <i>op</i> is a binary <a href="#Arithmetic_operators">arithmetic operator</a>
   4574 is equivalent to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
   4575 <code>(y)</code> but evaluates <code>x</code>
   4576 only once.  The <i>op</i><code>=</code> construct is a single token.
   4577 In assignment operations, both the left- and right-hand expression lists
   4578 must contain exactly one single-valued expression, and the left-hand
   4579 expression must not be the blank identifier.
   4580 </p>
   4581 
   4582 <pre>
   4583 a[i] &lt;&lt;= 2
   4584 i &amp;^= 1&lt;&lt;n
   4585 </pre>
   4586 
   4587 <p>
   4588 A tuple assignment assigns the individual elements of a multi-valued
   4589 operation to a list of variables.  There are two forms.  In the
   4590 first, the right hand operand is a single multi-valued expression
   4591 such as a function call, a <a href="#Channel_types">channel</a> or
   4592 <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>.
   4593 The number of operands on the left
   4594 hand side must match the number of values.  For instance, if
   4595 <code>f</code> is a function returning two values,
   4596 </p>
   4597 
   4598 <pre>
   4599 x, y = f()
   4600 </pre>
   4601 
   4602 <p>
   4603 assigns the first value to <code>x</code> and the second to <code>y</code>.
   4604 In the second form, the number of operands on the left must equal the number
   4605 of expressions on the right, each of which must be single-valued, and the
   4606 <i>n</i>th expression on the right is assigned to the <i>n</i>th
   4607 operand on the left:
   4608 </p>
   4609 
   4610 <pre>
   4611 one, two, three = '', '', ''
   4612 </pre>
   4613 
   4614 <p>
   4615 The <a href="#Blank_identifier">blank identifier</a> provides a way to
   4616 ignore right-hand side values in an assignment:
   4617 </p>
   4618 
   4619 <pre>
   4620 _ = x       // evaluate x but ignore it
   4621 x, _ = f()  // evaluate f() but ignore second result value
   4622 </pre>
   4623 
   4624 <p>
   4625 The assignment proceeds in two phases.
   4626 First, the operands of <a href="#Index_expressions">index expressions</a>
   4627 and <a href="#Address_operators">pointer indirections</a>
   4628 (including implicit pointer indirections in <a href="#Selectors">selectors</a>)
   4629 on the left and the expressions on the right are all
   4630 <a href="#Order_of_evaluation">evaluated in the usual order</a>.
   4631 Second, the assignments are carried out in left-to-right order.
   4632 </p>
   4633 
   4634 <pre>
   4635 a, b = b, a  // exchange a and b
   4636 
   4637 x := []int{1, 2, 3}
   4638 i := 0
   4639 i, x[i] = 1, 2  // set i = 1, x[0] = 2
   4640 
   4641 i = 0
   4642 x[i], i = 2, 1  // set x[0] = 2, i = 1
   4643 
   4644 x[0], x[0] = 1, 2  // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)
   4645 
   4646 x[1], x[3] = 4, 5  // set x[1] = 4, then panic setting x[3] = 5.
   4647 
   4648 type Point struct { x, y int }
   4649 var p *Point
   4650 x[2], p.x = 6, 7  // set x[2] = 6, then panic setting p.x = 7
   4651 
   4652 i = 2
   4653 x = []int{3, 5, 7}
   4654 for i, x[i] = range x {  // set i, x[2] = 0, x[0]
   4655 	break
   4656 }
   4657 // after this loop, i == 0 and x == []int{3, 5, 3}
   4658 </pre>
   4659 
   4660 <p>
   4661 In assignments, each value must be <a href="#Assignability">assignable</a>
   4662 to the type of the operand to which it is assigned, with the following special cases:
   4663 </p>
   4664 
   4665 <ol>
   4666 <li>
   4667 	Any typed value may be assigned to the blank identifier.
   4668 </li>
   4669 
   4670 <li>
   4671 	If an untyped constant
   4672 	is assigned to a variable of interface type or the blank identifier,
   4673 	the constant is first <a href="#Conversions">converted</a> to its
   4674 	 <a href="#Constants">default type</a>.
   4675 </li>
   4676 
   4677 <li>
   4678 	If an untyped boolean value is assigned to a variable of interface type or
   4679 	the blank identifier, it is first converted to type <code>bool</code>.
   4680 </li>
   4681 </ol>
   4682 
   4683 <h3 id="If_statements">If statements</h3>
   4684 
   4685 <p>
   4686 "If" statements specify the conditional execution of two branches
   4687 according to the value of a boolean expression.  If the expression
   4688 evaluates to true, the "if" branch is executed, otherwise, if
   4689 present, the "else" branch is executed.
   4690 </p>
   4691 
   4692 <pre class="ebnf">
   4693 IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
   4694 </pre>
   4695 
   4696 <pre>
   4697 if x &gt; max {
   4698 	x = max
   4699 }
   4700 </pre>
   4701 
   4702 <p>
   4703 The expression may be preceded by a simple statement, which
   4704 executes before the expression is evaluated.
   4705 </p>
   4706 
   4707 <pre>
   4708 if x := f(); x &lt; y {
   4709 	return x
   4710 } else if x &gt; z {
   4711 	return z
   4712 } else {
   4713 	return y
   4714 }
   4715 </pre>
   4716 
   4717 
   4718 <h3 id="Switch_statements">Switch statements</h3>
   4719 
   4720 <p>
   4721 "Switch" statements provide multi-way execution.
   4722 An expression or type specifier is compared to the "cases"
   4723 inside the "switch" to determine which branch
   4724 to execute.
   4725 </p>
   4726 
   4727 <pre class="ebnf">
   4728 SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
   4729 </pre>
   4730 
   4731 <p>
   4732 There are two forms: expression switches and type switches.
   4733 In an expression switch, the cases contain expressions that are compared
   4734 against the value of the switch expression.
   4735 In a type switch, the cases contain types that are compared against the
   4736 type of a specially annotated switch expression.
   4737 The switch expression is evaluated exactly once in a switch statement.
   4738 </p>
   4739 
   4740 <h4 id="Expression_switches">Expression switches</h4>
   4741 
   4742 <p>
   4743 In an expression switch,
   4744 the switch expression is evaluated and
   4745 the case expressions, which need not be constants,
   4746 are evaluated left-to-right and top-to-bottom; the first one that equals the
   4747 switch expression
   4748 triggers execution of the statements of the associated case;
   4749 the other cases are skipped.
   4750 If no case matches and there is a "default" case,
   4751 its statements are executed.
   4752 There can be at most one default case and it may appear anywhere in the
   4753 "switch" statement.
   4754 A missing switch expression is equivalent to the boolean value
   4755 <code>true</code>.
   4756 </p>
   4757 
   4758 <pre class="ebnf">
   4759 ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
   4760 ExprCaseClause = ExprSwitchCase ":" StatementList .
   4761 ExprSwitchCase = "case" ExpressionList | "default" .
   4762 </pre>
   4763 
   4764 <p>
   4765 If the switch expression evaluates to an untyped constant, it is first
   4766 <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
   4767 if it is an untyped boolean value, it is first converted to type <code>bool</code>.
   4768 The predeclared untyped value <code>nil</code> cannot be used as a switch expression.
   4769 </p>
   4770 
   4771 <p>
   4772 If a case expression is untyped, it is first <a href="#Conversions">converted</a>
   4773 to the type of the switch expression.
   4774 For each (possibly converted) case expression <code>x</code> and the value <code>t</code>
   4775 of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>.
   4776 </p>
   4777 
   4778 <p>
   4779 In other words, the switch expression is treated as if it were used to declare and
   4780 initialize a temporary variable <code>t</code> without explicit type; it is that
   4781 value of <code>t</code> against which each case expression <code>x</code> is tested
   4782 for equality.
   4783 </p>
   4784 
   4785 <p>
   4786 In a case or default clause, the last non-empty statement
   4787 may be a (possibly <a href="#Labeled_statements">labeled</a>)
   4788 <a href="#Fallthrough_statements">"fallthrough" statement</a> to
   4789 indicate that control should flow from the end of this clause to
   4790 the first statement of the next clause.
   4791 Otherwise control flows to the end of the "switch" statement.
   4792 A "fallthrough" statement may appear as the last statement of all
   4793 but the last clause of an expression switch.
   4794 </p>
   4795 
   4796 <p>
   4797 The switch expression may be preceded by a simple statement, which
   4798 executes before the expression is evaluated.
   4799 </p>
   4800 
   4801 <pre>
   4802 switch tag {
   4803 default: s3()
   4804 case 0, 1, 2, 3: s1()
   4805 case 4, 5, 6, 7: s2()
   4806 }
   4807 
   4808 switch x := f(); {  // missing switch expression means "true"
   4809 case x &lt; 0: return -x
   4810 default: return x
   4811 }
   4812 
   4813 switch {
   4814 case x &lt; y: f1()
   4815 case x &lt; z: f2()
   4816 case x == 4: f3()
   4817 }
   4818 </pre>
   4819 
   4820 <p>
   4821 Implementation restriction: A compiler may disallow multiple case
   4822 expressions evaluating to the same constant.
   4823 For instance, the current compilers disallow duplicate integer,
   4824 floating point, or string constants in case expressions.
   4825 </p>
   4826 
   4827 <h4 id="Type_switches">Type switches</h4>
   4828 
   4829 <p>
   4830 A type switch compares types rather than values. It is otherwise similar
   4831 to an expression switch. It is marked by a special switch expression that
   4832 has the form of a <a href="#Type_assertions">type assertion</a>
   4833 using the reserved word <code>type</code> rather than an actual type:
   4834 </p>
   4835 
   4836 <pre>
   4837 switch x.(type) {
   4838 // cases
   4839 }
   4840 </pre>
   4841 
   4842 <p>
   4843 Cases then match actual types <code>T</code> against the dynamic type of the
   4844 expression <code>x</code>. As with type assertions, <code>x</code> must be of
   4845 <a href="#Interface_types">interface type</a>, and each non-interface type
   4846 <code>T</code> listed in a case must implement the type of <code>x</code>.
   4847 The types listed in the cases of a type switch must all be
   4848 <a href="#Type_identity">different</a>.
   4849 </p>
   4850 
   4851 <pre class="ebnf">
   4852 TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
   4853 TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
   4854 TypeCaseClause  = TypeSwitchCase ":" StatementList .
   4855 TypeSwitchCase  = "case" TypeList | "default" .
   4856 TypeList        = Type { "," Type } .
   4857 </pre>
   4858 
   4859 <p>
   4860 The TypeSwitchGuard may include a
   4861 <a href="#Short_variable_declarations">short variable declaration</a>.
   4862 When that form is used, the variable is declared at the end of the
   4863 TypeSwitchCase in the <a href="#Blocks">implicit block</a> of each clause.
   4864 In clauses with a case listing exactly one type, the variable
   4865 has that type; otherwise, the variable has the type of the expression
   4866 in the TypeSwitchGuard.
   4867 </p>
   4868 
   4869 <p>
   4870 Instead of a type, a case may use the predeclared identifier
   4871 <a href="#Predeclared_identifiers"><code>nil</code></a>;
   4872 that case is selected when the expression in the TypeSwitchGuard
   4873 is a <code>nil</code> interface value.
   4874 There may be at most one <code>nil</code> case.
   4875 </p>
   4876 
   4877 <p>
   4878 Given an expression <code>x</code> of type <code>interface{}</code>,
   4879 the following type switch:
   4880 </p>
   4881 
   4882 <pre>
   4883 switch i := x.(type) {
   4884 case nil:
   4885 	printString("x is nil")                // type of i is type of x (interface{})
   4886 case int:
   4887 	printInt(i)                            // type of i is int
   4888 case float64:
   4889 	printFloat64(i)                        // type of i is float64
   4890 case func(int) float64:
   4891 	printFunction(i)                       // type of i is func(int) float64
   4892 case bool, string:
   4893 	printString("type is bool or string")  // type of i is type of x (interface{})
   4894 default:
   4895 	printString("don't know the type")     // type of i is type of x (interface{})
   4896 }
   4897 </pre>
   4898 
   4899 <p>
   4900 could be rewritten:
   4901 </p>
   4902 
   4903 <pre>
   4904 v := x  // x is evaluated exactly once
   4905 if v == nil {
   4906 	i := v                                 // type of i is type of x (interface{})
   4907 	printString("x is nil")
   4908 } else if i, isInt := v.(int); isInt {
   4909 	printInt(i)                            // type of i is int
   4910 } else if i, isFloat64 := v.(float64); isFloat64 {
   4911 	printFloat64(i)                        // type of i is float64
   4912 } else if i, isFunc := v.(func(int) float64); isFunc {
   4913 	printFunction(i)                       // type of i is func(int) float64
   4914 } else {
   4915 	_, isBool := v.(bool)
   4916 	_, isString := v.(string)
   4917 	if isBool || isString {
   4918 		i := v                         // type of i is type of x (interface{})
   4919 		printString("type is bool or string")
   4920 	} else {
   4921 		i := v                         // type of i is type of x (interface{})
   4922 		printString("don't know the type")
   4923 	}
   4924 }
   4925 </pre>
   4926 
   4927 <p>
   4928 The type switch guard may be preceded by a simple statement, which
   4929 executes before the guard is evaluated.
   4930 </p>
   4931 
   4932 <p>
   4933 The "fallthrough" statement is not permitted in a type switch.
   4934 </p>
   4935 
   4936 <h3 id="For_statements">For statements</h3>
   4937 
   4938 <p>
   4939 A "for" statement specifies repeated execution of a block. There are three forms:
   4940 The iteration may be controlled by a single condition, a "for" clause, or a "range" clause.
   4941 </p>
   4942 
   4943 <pre class="ebnf">
   4944 ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
   4945 Condition = Expression .
   4946 </pre>
   4947 
   4948 <h4 id="For_condition">For statements with single condition</h4>
   4949 
   4950 <p>
   4951 In its simplest form, a "for" statement specifies the repeated execution of
   4952 a block as long as a boolean condition evaluates to true.
   4953 The condition is evaluated before each iteration.
   4954 If the condition is absent, it is equivalent to the boolean value
   4955 <code>true</code>.
   4956 </p>
   4957 
   4958 <pre>
   4959 for a &lt; b {
   4960 	a *= 2
   4961 }
   4962 </pre>
   4963 
   4964 <h4 id="For_clause">For statements with <code>for</code> clause</h4>
   4965 
   4966 <p>
   4967 A "for" statement with a ForClause is also controlled by its condition, but
   4968 additionally it may specify an <i>init</i>
   4969 and a <i>post</i> statement, such as an assignment,
   4970 an increment or decrement statement. The init statement may be a
   4971 <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
   4972 Variables declared by the init statement are re-used in each iteration.
   4973 </p>
   4974 
   4975 <pre class="ebnf">
   4976 ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
   4977 InitStmt = SimpleStmt .
   4978 PostStmt = SimpleStmt .
   4979 </pre>
   4980 
   4981 <pre>
   4982 for i := 0; i &lt; 10; i++ {
   4983 	f(i)
   4984 }
   4985 </pre>
   4986 
   4987 <p>
   4988 If non-empty, the init statement is executed once before evaluating the
   4989 condition for the first iteration;
   4990 the post statement is executed after each execution of the block (and
   4991 only if the block was executed).
   4992 Any element of the ForClause may be empty but the
   4993 <a href="#Semicolons">semicolons</a> are
   4994 required unless there is only a condition.
   4995 If the condition is absent, it is equivalent to the boolean value
   4996 <code>true</code>.
   4997 </p>
   4998 
   4999 <pre>
   5000 for cond { S() }    is the same as    for ; cond ; { S() }
   5001 for      { S() }    is the same as    for true     { S() }
   5002 </pre>
   5003 
   5004 <h4 id="For_range">For statements with <code>range</code> clause</h4>
   5005 
   5006 <p>
   5007 A "for" statement with a "range" clause
   5008 iterates through all entries of an array, slice, string or map,
   5009 or values received on a channel. For each entry it assigns <i>iteration values</i>
   5010 to corresponding <i>iteration variables</i> if present and then executes the block.
   5011 </p>
   5012 
   5013 <pre class="ebnf">
   5014 RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .
   5015 </pre>
   5016 
   5017 <p>
   5018 The expression on the right in the "range" clause is called the <i>range expression</i>,
   5019 which may be an array, pointer to an array, slice, string, map, or channel permitting
   5020 <a href="#Receive_operator">receive operations</a>.
   5021 As with an assignment, if present the operands on the left must be
   5022 <a href="#Address_operators">addressable</a> or map index expressions; they
   5023 denote the iteration variables. If the range expression is a channel, at most
   5024 one iteration variable is permitted, otherwise there may be up to two.
   5025 If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
   5026 the range clause is equivalent to the same clause without that identifier.
   5027 </p>
   5028 
   5029 <p>
   5030 The range expression <code>x</code> is evaluated once before beginning the loop,
   5031 with one exception: if at most one iteration variable is present and
   5032 <code>len(x)</code> is <a href="#Length_and_capacity">constant</a>,
   5033 the range expression is not evaluated.
   5034 </p>
   5035 
   5036 <p>
   5037 Function calls on the left are evaluated once per iteration.
   5038 For each iteration, iteration values are produced as follows
   5039 if the respective iteration variables are present:
   5040 </p>
   5041 
   5042 <pre class="grammar">
   5043 Range expression                          1st value          2nd value
   5044 
   5045 array or slice  a  [n]E, *[n]E, or []E    index    i  int    a[i]       E
   5046 string          s  string type            index    i  int    see below  rune
   5047 map             m  map[K]V                key      k  K      m[k]       V
   5048 channel         c  chan E, &lt;-chan E       element  e  E
   5049 </pre>
   5050 
   5051 <ol>
   5052 <li>
   5053 For an array, pointer to array, or slice value <code>a</code>, the index iteration
   5054 values are produced in increasing order, starting at element index 0.
   5055 If at most one iteration variable is present, the range loop produces
   5056 iteration values from 0 up to <code>len(a)-1</code> and does not index into the array
   5057 or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
   5058 </li>
   5059 
   5060 <li>
   5061 For a string value, the "range" clause iterates over the Unicode code points
   5062 in the string starting at byte index 0.  On successive iterations, the index value will be the
   5063 index of the first byte of successive UTF-8-encoded code points in the string,
   5064 and the second value, of type <code>rune</code>, will be the value of
   5065 the corresponding code point.  If the iteration encounters an invalid
   5066 UTF-8 sequence, the second value will be <code>0xFFFD</code>,
   5067 the Unicode replacement character, and the next iteration will advance
   5068 a single byte in the string.
   5069 </li>
   5070 
   5071 <li>
   5072 The iteration order over maps is not specified
   5073 and is not guaranteed to be the same from one iteration to the next.
   5074 If a map entry that has not yet been reached is removed during iteration,
   5075 the corresponding iteration value will not be produced. If a map entry is
   5076 created during iteration, that entry may be produced during the iteration or
   5077 may be skipped. The choice may vary for each entry created and from one
   5078 iteration to the next.
   5079 If the map is <code>nil</code>, the number of iterations is 0.
   5080 </li>
   5081 
   5082 <li>
   5083 For channels, the iteration values produced are the successive values sent on
   5084 the channel until the channel is <a href="#Close">closed</a>. If the channel
   5085 is <code>nil</code>, the range expression blocks forever.
   5086 </li>
   5087 </ol>
   5088 
   5089 <p>
   5090 The iteration values are assigned to the respective
   5091 iteration variables as in an <a href="#Assignments">assignment statement</a>.
   5092 </p>
   5093 
   5094 <p>
   5095 The iteration variables may be declared by the "range" clause using a form of
   5096 <a href="#Short_variable_declarations">short variable declaration</a>
   5097 (<code>:=</code>).
   5098 In this case their types are set to the types of the respective iteration values
   5099 and their <a href="#Declarations_and_scope">scope</a> is the block of the "for"
   5100 statement; they are re-used in each iteration.
   5101 If the iteration variables are declared outside the "for" statement,
   5102 after execution their values will be those of the last iteration.
   5103 </p>
   5104 
   5105 <pre>
   5106 var testdata *struct {
   5107 	a *[7]int
   5108 }
   5109 for i, _ := range testdata.a {
   5110 	// testdata.a is never evaluated; len(testdata.a) is constant
   5111 	// i ranges from 0 to 6
   5112 	f(i)
   5113 }
   5114 
   5115 var a [10]string
   5116 for i, s := range a {
   5117 	// type of i is int
   5118 	// type of s is string
   5119 	// s == a[i]
   5120 	g(i, s)
   5121 }
   5122 
   5123 var key string
   5124 var val interface {}  // element type of m is assignable to val
   5125 m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
   5126 for key, val = range m {
   5127 	h(key, val)
   5128 }
   5129 // key == last map key encountered in iteration
   5130 // val == map[key]
   5131 
   5132 var ch chan Work = producer()
   5133 for w := range ch {
   5134 	doWork(w)
   5135 }
   5136 
   5137 // empty a channel
   5138 for range ch {}
   5139 </pre>
   5140 
   5141 
   5142 <h3 id="Go_statements">Go statements</h3>
   5143 
   5144 <p>
   5145 A "go" statement starts the execution of a function call
   5146 as an independent concurrent thread of control, or <i>goroutine</i>,
   5147 within the same address space.
   5148 </p>
   5149 
   5150 <pre class="ebnf">
   5151 GoStmt = "go" Expression .
   5152 </pre>
   5153 
   5154 <p>
   5155 The expression must be a function or method call; it cannot be parenthesized.
   5156 Calls of built-in functions are restricted as for
   5157 <a href="#Expression_statements">expression statements</a>.
   5158 </p>
   5159 
   5160 <p>
   5161 The function value and parameters are
   5162 <a href="#Calls">evaluated as usual</a>
   5163 in the calling goroutine, but
   5164 unlike with a regular call, program execution does not wait
   5165 for the invoked function to complete.
   5166 Instead, the function begins executing independently
   5167 in a new goroutine.
   5168 When the function terminates, its goroutine also terminates.
   5169 If the function has any return values, they are discarded when the
   5170 function completes.
   5171 </p>
   5172 
   5173 <pre>
   5174 go Server()
   5175 go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true }} (c)
   5176 </pre>
   5177 
   5178 
   5179 <h3 id="Select_statements">Select statements</h3>
   5180 
   5181 <p>
   5182 A "select" statement chooses which of a set of possible
   5183 <a href="#Send_statements">send</a> or
   5184 <a href="#Receive_operator">receive</a>
   5185 operations will proceed.
   5186 It looks similar to a
   5187 <a href="#Switch_statements">"switch"</a> statement but with the
   5188 cases all referring to communication operations.
   5189 </p>
   5190 
   5191 <pre class="ebnf">
   5192 SelectStmt = "select" "{" { CommClause } "}" .
   5193 CommClause = CommCase ":" StatementList .
   5194 CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
   5195 RecvStmt   = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
   5196 RecvExpr   = Expression .
   5197 </pre>
   5198 
   5199 <p>
   5200 A case with a RecvStmt may assign the result of a RecvExpr to one or
   5201 two variables, which may be declared using a
   5202 <a href="#Short_variable_declarations">short variable declaration</a>.
   5203 The RecvExpr must be a (possibly parenthesized) receive operation.
   5204 There can be at most one default case and it may appear anywhere
   5205 in the list of cases.
   5206 </p>
   5207 
   5208 <p>
   5209 Execution of a "select" statement proceeds in several steps:
   5210 </p>
   5211 
   5212 <ol>
   5213 <li>
   5214 For all the cases in the statement, the channel operands of receive operations
   5215 and the channel and right-hand-side expressions of send statements are
   5216 evaluated exactly once, in source order, upon entering the "select" statement.
   5217 The result is a set of channels to receive from or send to,
   5218 and the corresponding values to send.
   5219 Any side effects in that evaluation will occur irrespective of which (if any)
   5220 communication operation is selected to proceed.
   5221 Expressions on the left-hand side of a RecvStmt with a short variable declaration
   5222 or assignment are not yet evaluated.
   5223 </li>
   5224 
   5225 <li>
   5226 If one or more of the communications can proceed,
   5227 a single one that can proceed is chosen via a uniform pseudo-random selection.
   5228 Otherwise, if there is a default case, that case is chosen.
   5229 If there is no default case, the "select" statement blocks until
   5230 at least one of the communications can proceed.
   5231 </li>
   5232 
   5233 <li>
   5234 Unless the selected case is the default case, the respective communication
   5235 operation is executed.
   5236 </li>
   5237 
   5238 <li>
   5239 If the selected case is a RecvStmt with a short variable declaration or
   5240 an assignment, the left-hand side expressions are evaluated and the
   5241 received value (or values) are assigned.
   5242 </li>
   5243 
   5244 <li>
   5245 The statement list of the selected case is executed.
   5246 </li>
   5247 </ol>
   5248 
   5249 <p>
   5250 Since communication on <code>nil</code> channels can never proceed,
   5251 a select with only <code>nil</code> channels and no default case blocks forever.
   5252 </p>
   5253 
   5254 <pre>
   5255 var a []int
   5256 var c, c1, c2, c3, c4 chan int
   5257 var i1, i2 int
   5258 select {
   5259 case i1 = &lt;-c1:
   5260 	print("received ", i1, " from c1\n")
   5261 case c2 &lt;- i2:
   5262 	print("sent ", i2, " to c2\n")
   5263 case i3, ok := (&lt;-c3):  // same as: i3, ok := &lt;-c3
   5264 	if ok {
   5265 		print("received ", i3, " from c3\n")
   5266 	} else {
   5267 		print("c3 is closed\n")
   5268 	}
   5269 case a[f()] = &lt;-c4:
   5270 	// same as:
   5271 	// case t := &lt;-c4
   5272 	//	a[f()] = t
   5273 default:
   5274 	print("no communication\n")
   5275 }
   5276 
   5277 for {  // send random sequence of bits to c
   5278 	select {
   5279 	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
   5280 	case c &lt;- 1:
   5281 	}
   5282 }
   5283 
   5284 select {}  // block forever
   5285 </pre>
   5286 
   5287 
   5288 <h3 id="Return_statements">Return statements</h3>
   5289 
   5290 <p>
   5291 A "return" statement in a function <code>F</code> terminates the execution
   5292 of <code>F</code>, and optionally provides one or more result values.
   5293 Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
   5294 are executed before <code>F</code> returns to its caller.
   5295 </p>
   5296 
   5297 <pre class="ebnf">
   5298 ReturnStmt = "return" [ ExpressionList ] .
   5299 </pre>
   5300 
   5301 <p>
   5302 In a function without a result type, a "return" statement must not
   5303 specify any result values.
   5304 </p>
   5305 <pre>
   5306 func noResult() {
   5307 	return
   5308 }
   5309 </pre>
   5310 
   5311 <p>
   5312 There are three ways to return values from a function with a result
   5313 type:
   5314 </p>
   5315 
   5316 <ol>
   5317 	<li>The return value or values may be explicitly listed
   5318 		in the "return" statement. Each expression must be single-valued
   5319 		and <a href="#Assignability">assignable</a>
   5320 		to the corresponding element of the function's result type.
   5321 <pre>
   5322 func simpleF() int {
   5323 	return 2
   5324 }
   5325 
   5326 func complexF1() (re float64, im float64) {
   5327 	return -7.0, -4.0
   5328 }
   5329 </pre>
   5330 	</li>
   5331 	<li>The expression list in the "return" statement may be a single
   5332 		call to a multi-valued function. The effect is as if each value
   5333 		returned from that function were assigned to a temporary
   5334 		variable with the type of the respective value, followed by a
   5335 		"return" statement listing these variables, at which point the
   5336 		rules of the previous case apply.
   5337 <pre>
   5338 func complexF2() (re float64, im float64) {
   5339 	return complexF1()
   5340 }
   5341 </pre>
   5342 	</li>
   5343 	<li>The expression list may be empty if the function's result
   5344 		type specifies names for its <a href="#Function_types">result parameters</a>.
   5345 		The result parameters act as ordinary local variables
   5346 		and the function may assign values to them as necessary.
   5347 		The "return" statement returns the values of these variables.
   5348 <pre>
   5349 func complexF3() (re float64, im float64) {
   5350 	re = 7.0
   5351 	im = 4.0
   5352 	return
   5353 }
   5354 
   5355 func (devnull) Write(p []byte) (n int, _ error) {
   5356 	n = len(p)
   5357 	return
   5358 }
   5359 </pre>
   5360 	</li>
   5361 </ol>
   5362 
   5363 <p>
   5364 Regardless of how they are declared, all the result values are initialized to
   5365 the <a href="#The_zero_value">zero values</a> for their type upon entry to the
   5366 function. A "return" statement that specifies results sets the result parameters before
   5367 any deferred functions are executed.
   5368 </p>
   5369 
   5370 <p>
   5371 Implementation restriction: A compiler may disallow an empty expression list
   5372 in a "return" statement if a different entity (constant, type, or variable)
   5373 with the same name as a result parameter is in
   5374 <a href="#Declarations_and_scope">scope</a> at the place of the return.
   5375 </p>
   5376 
   5377 <pre>
   5378 func f(n int) (res int, err error) {
   5379 	if _, err := f(n-1); err != nil {
   5380 		return  // invalid return statement: err is shadowed
   5381 	}
   5382 	return
   5383 }
   5384 </pre>
   5385 
   5386 <h3 id="Break_statements">Break statements</h3>
   5387 
   5388 <p>
   5389 A "break" statement terminates execution of the innermost
   5390 <a href="#For_statements">"for"</a>,
   5391 <a href="#Switch_statements">"switch"</a>, or
   5392 <a href="#Select_statements">"select"</a> statement
   5393 within the same function.
   5394 </p>
   5395 
   5396 <pre class="ebnf">
   5397 BreakStmt = "break" [ Label ] .
   5398 </pre>
   5399 
   5400 <p>
   5401 If there is a label, it must be that of an enclosing
   5402 "for", "switch", or "select" statement,
   5403 and that is the one whose execution terminates.
   5404 </p>
   5405 
   5406 <pre>
   5407 OuterLoop:
   5408 	for i = 0; i &lt; n; i++ {
   5409 		for j = 0; j &lt; m; j++ {
   5410 			switch a[i][j] {
   5411 			case nil:
   5412 				state = Error
   5413 				break OuterLoop
   5414 			case item:
   5415 				state = Found
   5416 				break OuterLoop
   5417 			}
   5418 		}
   5419 	}
   5420 </pre>
   5421 
   5422 <h3 id="Continue_statements">Continue statements</h3>
   5423 
   5424 <p>
   5425 A "continue" statement begins the next iteration of the
   5426 innermost <a href="#For_statements">"for" loop</a> at its post statement.
   5427 The "for" loop must be within the same function.
   5428 </p>
   5429 
   5430 <pre class="ebnf">
   5431 ContinueStmt = "continue" [ Label ] .
   5432 </pre>
   5433 
   5434 <p>
   5435 If there is a label, it must be that of an enclosing
   5436 "for" statement, and that is the one whose execution
   5437 advances.
   5438 </p>
   5439 
   5440 <pre>
   5441 RowLoop:
   5442 	for y, row := range rows {
   5443 		for x, data := range row {
   5444 			if data == endOfRow {
   5445 				continue RowLoop
   5446 			}
   5447 			row[x] = data + bias(x, y)
   5448 		}
   5449 	}
   5450 </pre>
   5451 
   5452 <h3 id="Goto_statements">Goto statements</h3>
   5453 
   5454 <p>
   5455 A "goto" statement transfers control to the statement with the corresponding label
   5456 within the same function.
   5457 </p>
   5458 
   5459 <pre class="ebnf">
   5460 GotoStmt = "goto" Label .
   5461 </pre>
   5462 
   5463 <pre>
   5464 goto Error
   5465 </pre>
   5466 
   5467 <p>
   5468 Executing the "goto" statement must not cause any variables to come into
   5469 <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
   5470 For instance, this example:
   5471 </p>
   5472 
   5473 <pre>
   5474 	goto L  // BAD
   5475 	v := 3
   5476 L:
   5477 </pre>
   5478 
   5479 <p>
   5480 is erroneous because the jump to label <code>L</code> skips
   5481 the creation of <code>v</code>.
   5482 </p>
   5483 
   5484 <p>
   5485 A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
   5486 For instance, this example:
   5487 </p>
   5488 
   5489 <pre>
   5490 if n%2 == 1 {
   5491 	goto L1
   5492 }
   5493 for n &gt; 0 {
   5494 	f()
   5495 	n--
   5496 L1:
   5497 	f()
   5498 	n--
   5499 }
   5500 </pre>
   5501 
   5502 <p>
   5503 is erroneous because the label <code>L1</code> is inside
   5504 the "for" statement's block but the <code>goto</code> is not.
   5505 </p>
   5506 
   5507 <h3 id="Fallthrough_statements">Fallthrough statements</h3>
   5508 
   5509 <p>
   5510 A "fallthrough" statement transfers control to the first statement of the
   5511 next case clause in an <a href="#Expression_switches">expression "switch" statement</a>.
   5512 It may be used only as the final non-empty statement in such a clause.
   5513 </p>
   5514 
   5515 <pre class="ebnf">
   5516 FallthroughStmt = "fallthrough" .
   5517 </pre>
   5518 
   5519 
   5520 <h3 id="Defer_statements">Defer statements</h3>
   5521 
   5522 <p>
   5523 A "defer" statement invokes a function whose execution is deferred
   5524 to the moment the surrounding function returns, either because the
   5525 surrounding function executed a <a href="#Return_statements">return statement</a>,
   5526 reached the end of its <a href="#Function_declarations">function body</a>,
   5527 or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>.
   5528 </p>
   5529 
   5530 <pre class="ebnf">
   5531 DeferStmt = "defer" Expression .
   5532 </pre>
   5533 
   5534 <p>
   5535 The expression must be a function or method call; it cannot be parenthesized.
   5536 Calls of built-in functions are restricted as for
   5537 <a href="#Expression_statements">expression statements</a>.
   5538 </p>
   5539 
   5540 <p>
   5541 Each time a "defer" statement
   5542 executes, the function value and parameters to the call are
   5543 <a href="#Calls">evaluated as usual</a>
   5544 and saved anew but the actual function is not invoked.
   5545 Instead, deferred functions are invoked immediately before
   5546 the surrounding function returns, in the reverse order
   5547 they were deferred.
   5548 If a deferred function value evaluates
   5549 to <code>nil</code>, execution <a href="#Handling_panics">panics</a>
   5550 when the function is invoked, not when the "defer" statement is executed.
   5551 </p>
   5552 
   5553 <p>
   5554 For instance, if the deferred function is
   5555 a <a href="#Function_literals">function literal</a> and the surrounding
   5556 function has <a href="#Function_types">named result parameters</a> that
   5557 are in scope within the literal, the deferred function may access and modify
   5558 the result parameters before they are returned.
   5559 If the deferred function has any return values, they are discarded when
   5560 the function completes.
   5561 (See also the section on <a href="#Handling_panics">handling panics</a>.)
   5562 </p>
   5563 
   5564 <pre>
   5565 lock(l)
   5566 defer unlock(l)  // unlocking happens before surrounding function returns
   5567 
   5568 // prints 3 2 1 0 before surrounding function returns
   5569 for i := 0; i &lt;= 3; i++ {
   5570 	defer fmt.Print(i)
   5571 }
   5572 
   5573 // f returns 1
   5574 func f() (result int) {
   5575 	defer func() {
   5576 		result++
   5577 	}()
   5578 	return 0
   5579 }
   5580 </pre>
   5581 
   5582 <h2 id="Built-in_functions">Built-in functions</h2>
   5583 
   5584 <p>
   5585 Built-in functions are
   5586 <a href="#Predeclared_identifiers">predeclared</a>.
   5587 They are called like any other function but some of them
   5588 accept a type instead of an expression as the first argument.
   5589 </p>
   5590 
   5591 <p>
   5592 The built-in functions do not have standard Go types,
   5593 so they can only appear in <a href="#Calls">call expressions</a>;
   5594 they cannot be used as function values.
   5595 </p>
   5596 
   5597 <h3 id="Close">Close</h3>
   5598 
   5599 <p>
   5600 For a channel <code>c</code>, the built-in function <code>close(c)</code>
   5601 records that no more values will be sent on the channel.
   5602 It is an error if <code>c</code> is a receive-only channel.
   5603 Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
   5604 Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>.
   5605 After calling <code>close</code>, and after any previously
   5606 sent values have been received, receive operations will return
   5607 the zero value for the channel's type without blocking.
   5608 The multi-valued <a href="#Receive_operator">receive operation</a>
   5609 returns a received value along with an indication of whether the channel is closed.
   5610 </p>
   5611 
   5612 
   5613 <h3 id="Length_and_capacity">Length and capacity</h3>
   5614 
   5615 <p>
   5616 The built-in functions <code>len</code> and <code>cap</code> take arguments
   5617 of various types and return a result of type <code>int</code>.
   5618 The implementation guarantees that the result always fits into an <code>int</code>.
   5619 </p>
   5620 
   5621 <pre class="grammar">
   5622 Call      Argument type    Result
   5623 
   5624 len(s)    string type      string length in bytes
   5625           [n]T, *[n]T      array length (== n)
   5626           []T              slice length
   5627           map[K]T          map length (number of defined keys)
   5628           chan T           number of elements queued in channel buffer
   5629 
   5630 cap(s)    [n]T, *[n]T      array length (== n)
   5631           []T              slice capacity
   5632           chan T           channel buffer capacity
   5633 </pre>
   5634 
   5635 <p>
   5636 The capacity of a slice is the number of elements for which there is
   5637 space allocated in the underlying array.
   5638 At any time the following relationship holds:
   5639 </p>
   5640 
   5641 <pre>
   5642 0 &lt;= len(s) &lt;= cap(s)
   5643 </pre>
   5644 
   5645 <p>
   5646 The length of a <code>nil</code> slice, map or channel is 0.
   5647 The capacity of a <code>nil</code> slice or channel is 0.
   5648 </p>
   5649 
   5650 <p>
   5651 The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
   5652 <code>s</code> is a string constant. The expressions <code>len(s)</code> and
   5653 <code>cap(s)</code> are constants if the type of <code>s</code> is an array
   5654 or pointer to an array and the expression <code>s</code> does not contain
   5655 <a href="#Receive_operator">channel receives</a> or (non-constant)
   5656 <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
   5657 Otherwise, invocations of <code>len</code> and <code>cap</code> are not
   5658 constant and <code>s</code> is evaluated.
   5659 </p>
   5660 
   5661 <pre>
   5662 const (
   5663 	c1 = imag(2i)                    // imag(2i) = 2.0 is a constant
   5664 	c2 = len([10]float64{2})         // [10]float64{2} contains no function calls
   5665 	c3 = len([10]float64{c1})        // [10]float64{c1} contains no function calls
   5666 	c4 = len([10]float64{imag(2i)})  // imag(2i) is a constant and no function call is issued
   5667 	c5 = len([10]float64{imag(z)})   // invalid: imag(z) is a (non-constant) function call
   5668 )
   5669 var z complex128
   5670 </pre>
   5671 
   5672 <h3 id="Allocation">Allocation</h3>
   5673 
   5674 <p>
   5675 The built-in function <code>new</code> takes a type <code>T</code>,
   5676 allocates storage for a <a href="#Variables">variable</a> of that type
   5677 at run time, and returns a value of type <code>*T</code>
   5678 <a href="#Pointer_types">pointing</a> to it.
   5679 The variable is initialized as described in the section on
   5680 <a href="#The_zero_value">initial values</a>.
   5681 </p>
   5682 
   5683 <pre class="grammar">
   5684 new(T)
   5685 </pre>
   5686 
   5687 <p>
   5688 For instance
   5689 </p>
   5690 
   5691 <pre>
   5692 type S struct { a int; b float64 }
   5693 new(S)
   5694 </pre>
   5695 
   5696 <p>
   5697 allocates storage for a variable of type <code>S</code>,
   5698 initializes it (<code>a=0</code>, <code>b=0.0</code>),
   5699 and returns a value of type <code>*S</code> containing the address
   5700 of the location.
   5701 </p>
   5702 
   5703 <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>
   5704 
   5705 <p>
   5706 The built-in function <code>make</code> takes a type <code>T</code>,
   5707 which must be a slice, map or channel type,
   5708 optionally followed by a type-specific list of expressions.
   5709 It returns a value of type <code>T</code> (not <code>*T</code>).
   5710 The memory is initialized as described in the section on
   5711 <a href="#The_zero_value">initial values</a>.
   5712 </p>
   5713 
   5714 <pre class="grammar">
   5715 Call             Type T     Result
   5716 
   5717 make(T, n)       slice      slice of type T with length n and capacity n
   5718 make(T, n, m)    slice      slice of type T with length n and capacity m
   5719 
   5720 make(T)          map        map of type T
   5721 make(T, n)       map        map of type T with initial space for approximately n elements
   5722 
   5723 make(T)          channel    unbuffered channel of type T
   5724 make(T, n)       channel    buffered channel of type T, buffer size n
   5725 </pre>
   5726 
   5727 
   5728 <p>
   5729 Each of the size arguments <code>n</code> and <code>m</code> must be of integer type
   5730 or an untyped <a href="#Constants">constant</a>.
   5731 A constant size argument must be non-negative and <a href="#Representability">representable</a>
   5732 by a value of type <code>int</code>; if it is an untyped constant it is given type <code>int</code>.
   5733 If both <code>n</code> and <code>m</code> are provided and are constant, then
   5734 <code>n</code> must be no larger than <code>m</code>.
   5735 If <code>n</code> is negative or larger than <code>m</code> at run time,
   5736 a <a href="#Run_time_panics">run-time panic</a> occurs.
   5737 </p>
   5738 
   5739 <pre>
   5740 s := make([]int, 10, 100)       // slice with len(s) == 10, cap(s) == 100
   5741 s := make([]int, 1e3)           // slice with len(s) == cap(s) == 1000
   5742 s := make([]int, 1&lt;&lt;63)         // illegal: len(s) is not representable by a value of type int
   5743 s := make([]int, 10, 0)         // illegal: len(s) > cap(s)
   5744 c := make(chan int, 10)         // channel with a buffer size of 10
   5745 m := make(map[string]int, 100)  // map with initial space for approximately 100 elements
   5746 </pre>
   5747 
   5748 <p>
   5749 Calling <code>make</code> with a map type and size hint <code>n</code> will
   5750 create a map with initial space to hold <code>n</code> map elements.
   5751 The precise behavior is implementation-dependent.
   5752 </p>
   5753 
   5754 
   5755 <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>
   5756 
   5757 <p>
   5758 The built-in functions <code>append</code> and <code>copy</code> assist in
   5759 common slice operations.
   5760 For both functions, the result is independent of whether the memory referenced
   5761 by the arguments overlaps.
   5762 </p>
   5763 
   5764 <p>
   5765 The <a href="#Function_types">variadic</a> function <code>append</code>
   5766 appends zero or more values <code>x</code>
   5767 to <code>s</code> of type <code>S</code>, which must be a slice type, and
   5768 returns the resulting slice, also of type <code>S</code>.
   5769 The values <code>x</code> are passed to a parameter of type <code>...T</code>
   5770 where <code>T</code> is the <a href="#Slice_types">element type</a> of
   5771 <code>S</code> and the respective
   5772 <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply.
   5773 As a special case, <code>append</code> also accepts a first argument
   5774 assignable to type <code>[]byte</code> with a second argument of
   5775 string type followed by <code>...</code>. This form appends the
   5776 bytes of the string.
   5777 </p>
   5778 
   5779 <pre class="grammar">
   5780 append(s S, x ...T) S  // T is the element type of S
   5781 </pre>
   5782 
   5783 <p>
   5784 If the capacity of <code>s</code> is not large enough to fit the additional
   5785 values, <code>append</code> allocates a new, sufficiently large underlying
   5786 array that fits both the existing slice elements and the additional values.
   5787 Otherwise, <code>append</code> re-uses the underlying array.
   5788 </p>
   5789 
   5790 <pre>
   5791 s0 := []int{0, 0}
   5792 s1 := append(s0, 2)                // append a single element     s1 == []int{0, 0, 2}
   5793 s2 := append(s1, 3, 5, 7)          // append multiple elements    s2 == []int{0, 0, 2, 3, 5, 7}
   5794 s3 := append(s2, s0...)            // append a slice              s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
   5795 s4 := append(s3[3:6], s3[2:]...)   // append overlapping slice    s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0}
   5796 
   5797 var t []interface{}
   5798 t = append(t, 42, 3.1415, "foo")   //                             t == []interface{}{42, 3.1415, "foo"}
   5799 
   5800 var b []byte
   5801 b = append(b, "bar"...)            // append string contents      b == []byte{'b', 'a', 'r' }
   5802 </pre>
   5803 
   5804 <p>
   5805 The function <code>copy</code> copies slice elements from
   5806 a source <code>src</code> to a destination <code>dst</code> and returns the
   5807 number of elements copied.
   5808 Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be
   5809 <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>.
   5810 The number of elements copied is the minimum of
   5811 <code>len(src)</code> and <code>len(dst)</code>.
   5812 As a special case, <code>copy</code> also accepts a destination argument assignable
   5813 to type <code>[]byte</code> with a source argument of a string type.
   5814 This form copies the bytes from the string into the byte slice.
   5815 </p>
   5816 
   5817 <pre class="grammar">
   5818 copy(dst, src []T) int
   5819 copy(dst []byte, src string) int
   5820 </pre>
   5821 
   5822 <p>
   5823 Examples:
   5824 </p>
   5825 
   5826 <pre>
   5827 var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
   5828 var s = make([]int, 6)
   5829 var b = make([]byte, 5)
   5830 n1 := copy(s, a[0:])            // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
   5831 n2 := copy(s, s[2:])            // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
   5832 n3 := copy(b, "Hello, World!")  // n3 == 5, b == []byte("Hello")
   5833 </pre>
   5834 
   5835 
   5836 <h3 id="Deletion_of_map_elements">Deletion of map elements</h3>
   5837 
   5838 <p>
   5839 The built-in function <code>delete</code> removes the element with key
   5840 <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The
   5841 type of <code>k</code> must be <a href="#Assignability">assignable</a>
   5842 to the key type of <code>m</code>.
   5843 </p>
   5844 
   5845 <pre class="grammar">
   5846 delete(m, k)  // remove element m[k] from map m
   5847 </pre>
   5848 
   5849 <p>
   5850 If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code>
   5851 does not exist, <code>delete</code> is a no-op.
   5852 </p>
   5853 
   5854 
   5855 <h3 id="Complex_numbers">Manipulating complex numbers</h3>
   5856 
   5857 <p>
   5858 Three functions assemble and disassemble complex numbers.
   5859 The built-in function <code>complex</code> constructs a complex
   5860 value from a floating-point real and imaginary part, while
   5861 <code>real</code> and <code>imag</code>
   5862 extract the real and imaginary parts of a complex value.
   5863 </p>
   5864 
   5865 <pre class="grammar">
   5866 complex(realPart, imaginaryPart floatT) complexT
   5867 real(complexT) floatT
   5868 imag(complexT) floatT
   5869 </pre>
   5870 
   5871 <p>
   5872 The type of the arguments and return value correspond.
   5873 For <code>complex</code>, the two arguments must be of the same
   5874 floating-point type and the return type is the complex type
   5875 with the corresponding floating-point constituents:
   5876 <code>complex64</code> for <code>float32</code> arguments, and
   5877 <code>complex128</code> for <code>float64</code> arguments.
   5878 If one of the arguments evaluates to an untyped constant, it is first
   5879 <a href="#Conversions">converted</a> to the type of the other argument.
   5880 If both arguments evaluate to untyped constants, they must be non-complex
   5881 numbers or their imaginary parts must be zero, and the return value of
   5882 the function is an untyped complex constant.
   5883 </p>
   5884 
   5885 <p>
   5886 For <code>real</code> and <code>imag</code>, the argument must be
   5887 of complex type, and the return type is the corresponding floating-point
   5888 type: <code>float32</code> for a <code>complex64</code> argument, and
   5889 <code>float64</code> for a <code>complex128</code> argument.
   5890 If the argument evaluates to an untyped constant, it must be a number,
   5891 and the return value of the function is an untyped floating-point constant.
   5892 </p>
   5893 
   5894 <p>
   5895 The <code>real</code> and <code>imag</code> functions together form the inverse of
   5896 <code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>,
   5897 <code>z&nbsp;==&nbsp;Z(complex(real(z),&nbsp;imag(z)))</code>.
   5898 </p>
   5899 
   5900 <p>
   5901 If the operands of these functions are all constants, the return
   5902 value is a constant.
   5903 </p>
   5904 
   5905 <pre>
   5906 var a = complex(2, -2)             // complex128
   5907 const b = complex(1.0, -1.4)       // untyped complex constant 1 - 1.4i
   5908 x := float32(math.Cos(math.Pi/2))  // float32
   5909 var c64 = complex(5, -x)           // complex64
   5910 var s uint = complex(1, 0)         // untyped complex constant 1 + 0i can be converted to uint
   5911 _ = complex(1, 2&lt;&lt;s)               // illegal: 2 assumes floating-point type, cannot shift
   5912 var rl = real(c64)                 // float32
   5913 var im = imag(a)                   // float64
   5914 const c = imag(b)                  // untyped constant -1.4
   5915 _ = imag(3 &lt;&lt; s)                   // illegal: 3 assumes complex type, cannot shift
   5916 </pre>
   5917 
   5918 <h3 id="Handling_panics">Handling panics</h3>
   5919 
   5920 <p> Two built-in functions, <code>panic</code> and <code>recover</code>,
   5921 assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
   5922 and program-defined error conditions.
   5923 </p>
   5924 
   5925 <pre class="grammar">
   5926 func panic(interface{})
   5927 func recover() interface{}
   5928 </pre>
   5929 
   5930 <p>
   5931 While executing a function <code>F</code>,
   5932 an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a>
   5933 terminates the execution of <code>F</code>.
   5934 Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
   5935 are then executed as usual.
   5936 Next, any deferred functions run by <code>F's</code> caller are run,
   5937 and so on up to any deferred by the top-level function in the executing goroutine.
   5938 At that point, the program is terminated and the error
   5939 condition is reported, including the value of the argument to <code>panic</code>.
   5940 This termination sequence is called <i>panicking</i>.
   5941 </p>
   5942 
   5943 <pre>
   5944 panic(42)
   5945 panic("unreachable")
   5946 panic(Error("cannot parse"))
   5947 </pre>
   5948 
   5949 <p>
   5950 The <code>recover</code> function allows a program to manage behavior
   5951 of a panicking goroutine.
   5952 Suppose a function <code>G</code> defers a function <code>D</code> that calls
   5953 <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code>
   5954 is executing.
   5955 When the running of deferred functions reaches <code>D</code>,
   5956 the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>.
   5957 If <code>D</code> returns normally, without starting a new
   5958 <code>panic</code>, the panicking sequence stops. In that case,
   5959 the state of functions called between <code>G</code> and the call to <code>panic</code>
   5960 is discarded, and normal execution resumes.
   5961 Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s
   5962 execution terminates by returning to its caller.
   5963 </p>
   5964 
   5965 <p>
   5966 The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds:
   5967 </p>
   5968 <ul>
   5969 <li>
   5970 <code>panic</code>'s argument was <code>nil</code>;
   5971 </li>
   5972 <li>
   5973 the goroutine is not panicking;
   5974 </li>
   5975 <li>
   5976 <code>recover</code> was not called directly by a deferred function.
   5977 </li>
   5978 </ul>
   5979 
   5980 <p>
   5981 The <code>protect</code> function in the example below invokes
   5982 the function argument <code>g</code> and protects callers from
   5983 run-time panics raised by <code>g</code>.
   5984 </p>
   5985 
   5986 <pre>
   5987 func protect(g func()) {
   5988 	defer func() {
   5989 		log.Println("done")  // Println executes normally even if there is a panic
   5990 		if x := recover(); x != nil {
   5991 			log.Printf("run time panic: %v", x)
   5992 		}
   5993 	}()
   5994 	log.Println("start")
   5995 	g()
   5996 }
   5997 </pre>
   5998 
   5999 
   6000 <h3 id="Bootstrapping">Bootstrapping</h3>
   6001 
   6002 <p>
   6003 Current implementations provide several built-in functions useful during
   6004 bootstrapping. These functions are documented for completeness but are not
   6005 guaranteed to stay in the language. They do not return a result.
   6006 </p>
   6007 
   6008 <pre class="grammar">
   6009 Function   Behavior
   6010 
   6011 print      prints all arguments; formatting of arguments is implementation-specific
   6012 println    like print but prints spaces between arguments and a newline at the end
   6013 </pre>
   6014 
   6015 <p>
   6016 Implementation restriction: <code>print</code> and <code>println</code> need not
   6017 accept arbitrary argument types, but printing of boolean, numeric, and string
   6018 <a href="#Types">types</a> must be supported.
   6019 </p>
   6020 
   6021 <h2 id="Packages">Packages</h2>
   6022 
   6023 <p>
   6024 Go programs are constructed by linking together <i>packages</i>.
   6025 A package in turn is constructed from one or more source files
   6026 that together declare constants, types, variables and functions
   6027 belonging to the package and which are accessible in all files
   6028 of the same package. Those elements may be
   6029 <a href="#Exported_identifiers">exported</a> and used in another package.
   6030 </p>
   6031 
   6032 <h3 id="Source_file_organization">Source file organization</h3>
   6033 
   6034 <p>
   6035 Each source file consists of a package clause defining the package
   6036 to which it belongs, followed by a possibly empty set of import
   6037 declarations that declare packages whose contents it wishes to use,
   6038 followed by a possibly empty set of declarations of functions,
   6039 types, variables, and constants.
   6040 </p>
   6041 
   6042 <pre class="ebnf">
   6043 SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
   6044 </pre>
   6045 
   6046 <h3 id="Package_clause">Package clause</h3>
   6047 
   6048 <p>
   6049 A package clause begins each source file and defines the package
   6050 to which the file belongs.
   6051 </p>
   6052 
   6053 <pre class="ebnf">
   6054 PackageClause  = "package" PackageName .
   6055 PackageName    = identifier .
   6056 </pre>
   6057 
   6058 <p>
   6059 The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
   6060 </p>
   6061 
   6062 <pre>
   6063 package math
   6064 </pre>
   6065 
   6066 <p>
   6067 A set of files sharing the same PackageName form the implementation of a package.
   6068 An implementation may require that all source files for a package inhabit the same directory.
   6069 </p>
   6070 
   6071 <h3 id="Import_declarations">Import declarations</h3>
   6072 
   6073 <p>
   6074 An import declaration states that the source file containing the declaration
   6075 depends on functionality of the <i>imported</i> package
   6076 (<a href="#Program_initialization_and_execution">Program initialization and execution</a>)
   6077 and enables access to <a href="#Exported_identifiers">exported</a> identifiers
   6078 of that package.
   6079 The import names an identifier (PackageName) to be used for access and an ImportPath
   6080 that specifies the package to be imported.
   6081 </p>
   6082 
   6083 <pre class="ebnf">
   6084 ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
   6085 ImportSpec       = [ "." | PackageName ] ImportPath .
   6086 ImportPath       = string_lit .
   6087 </pre>
   6088 
   6089 <p>
   6090 The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
   6091 to access exported identifiers of the package within the importing source file.
   6092 It is declared in the <a href="#Blocks">file block</a>.
   6093 If the PackageName is omitted, it defaults to the identifier specified in the
   6094 <a href="#Package_clause">package clause</a> of the imported package.
   6095 If an explicit period (<code>.</code>) appears instead of a name, all the
   6096 package's exported identifiers declared in that package's
   6097 <a href="#Blocks">package block</a> will be declared in the importing source
   6098 file's file block and must be accessed without a qualifier.
   6099 </p>
   6100 
   6101 <p>
   6102 The interpretation of the ImportPath is implementation-dependent but
   6103 it is typically a substring of the full file name of the compiled
   6104 package and may be relative to a repository of installed packages.
   6105 </p>
   6106 
   6107 <p>
   6108 Implementation restriction: A compiler may restrict ImportPaths to
   6109 non-empty strings using only characters belonging to
   6110 <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a>
   6111 L, M, N, P, and S general categories (the Graphic characters without
   6112 spaces) and may also exclude the characters
   6113 <code>!"#$%&amp;'()*,:;&lt;=&gt;?[\]^`{|}</code>
   6114 and the Unicode replacement character U+FFFD.
   6115 </p>
   6116 
   6117 <p>
   6118 Assume we have compiled a package containing the package clause
   6119 <code>package math</code>, which exports function <code>Sin</code>, and
   6120 installed the compiled package in the file identified by
   6121 <code>"lib/math"</code>.
   6122 This table illustrates how <code>Sin</code> is accessed in files
   6123 that import the package after the
   6124 various types of import declaration.
   6125 </p>
   6126 
   6127 <pre class="grammar">
   6128 Import declaration          Local name of Sin
   6129 
   6130 import   "lib/math"         math.Sin
   6131 import m "lib/math"         m.Sin
   6132 import . "lib/math"         Sin
   6133 </pre>
   6134 
   6135 <p>
   6136 An import declaration declares a dependency relation between
   6137 the importing and imported package.
   6138 It is illegal for a package to import itself, directly or indirectly,
   6139 or to directly import a package without
   6140 referring to any of its exported identifiers. To import a package solely for
   6141 its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
   6142 identifier as explicit package name:
   6143 </p>
   6144 
   6145 <pre>
   6146 import _ "lib/math"
   6147 </pre>
   6148 
   6149 
   6150 <h3 id="An_example_package">An example package</h3>
   6151 
   6152 <p>
   6153 Here is a complete Go package that implements a concurrent prime sieve.
   6154 </p>
   6155 
   6156 <pre>
   6157 package main
   6158 
   6159 import "fmt"
   6160 
   6161 // Send the sequence 2, 3, 4,  to channel 'ch'.
   6162 func generate(ch chan&lt;- int) {
   6163 	for i := 2; ; i++ {
   6164 		ch &lt;- i  // Send 'i' to channel 'ch'.
   6165 	}
   6166 }
   6167 
   6168 // Copy the values from channel 'src' to channel 'dst',
   6169 // removing those divisible by 'prime'.
   6170 func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
   6171 	for i := range src {  // Loop over values received from 'src'.
   6172 		if i%prime != 0 {
   6173 			dst &lt;- i  // Send 'i' to channel 'dst'.
   6174 		}
   6175 	}
   6176 }
   6177 
   6178 // The prime sieve: Daisy-chain filter processes together.
   6179 func sieve() {
   6180 	ch := make(chan int)  // Create a new channel.
   6181 	go generate(ch)       // Start generate() as a subprocess.
   6182 	for {
   6183 		prime := &lt;-ch
   6184 		fmt.Print(prime, "\n")
   6185 		ch1 := make(chan int)
   6186 		go filter(ch, ch1, prime)
   6187 		ch = ch1
   6188 	}
   6189 }
   6190 
   6191 func main() {
   6192 	sieve()
   6193 }
   6194 </pre>
   6195 
   6196 <h2 id="Program_initialization_and_execution">Program initialization and execution</h2>
   6197 
   6198 <h3 id="The_zero_value">The zero value</h3>
   6199 <p>
   6200 When storage is allocated for a <a href="#Variables">variable</a>,
   6201 either through a declaration or a call of <code>new</code>, or when
   6202 a new value is created, either through a composite literal or a call
   6203 of <code>make</code>,
   6204 and no explicit initialization is provided, the variable or value is
   6205 given a default value.  Each element of such a variable or value is
   6206 set to the <i>zero value</i> for its type: <code>false</code> for booleans,
   6207 <code>0</code> for numeric types, <code>""</code>
   6208 for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
   6209 This initialization is done recursively, so for instance each element of an
   6210 array of structs will have its fields zeroed if no value is specified.
   6211 </p>
   6212 <p>
   6213 These two simple declarations are equivalent:
   6214 </p>
   6215 
   6216 <pre>
   6217 var i int
   6218 var i int = 0
   6219 </pre>
   6220 
   6221 <p>
   6222 After
   6223 </p>
   6224 
   6225 <pre>
   6226 type T struct { i int; f float64; next *T }
   6227 t := new(T)
   6228 </pre>
   6229 
   6230 <p>
   6231 the following holds:
   6232 </p>
   6233 
   6234 <pre>
   6235 t.i == 0
   6236 t.f == 0.0
   6237 t.next == nil
   6238 </pre>
   6239 
   6240 <p>
   6241 The same would also be true after
   6242 </p>
   6243 
   6244 <pre>
   6245 var t T
   6246 </pre>
   6247 
   6248 <h3 id="Package_initialization">Package initialization</h3>
   6249 
   6250 <p>
   6251 Within a package, package-level variables are initialized in
   6252 <i>declaration order</i> but after any of the variables
   6253 they <i>depend</i> on.
   6254 </p>
   6255 
   6256 <p>
   6257 More precisely, a package-level variable is considered <i>ready for
   6258 initialization</i> if it is not yet initialized and either has
   6259 no <a href="#Variable_declarations">initialization expression</a> or
   6260 its initialization expression has no dependencies on uninitialized variables.
   6261 Initialization proceeds by repeatedly initializing the next package-level
   6262 variable that is earliest in declaration order and ready for initialization,
   6263 until there are no variables ready for initialization.
   6264 </p>
   6265 
   6266 <p>
   6267 If any variables are still uninitialized when this
   6268 process ends, those variables are part of one or more initialization cycles,
   6269 and the program is not valid.
   6270 </p>
   6271 
   6272 <p>
   6273 The declaration order of variables declared in multiple files is determined
   6274 by the order in which the files are presented to the compiler: Variables
   6275 declared in the first file are declared before any of the variables declared
   6276 in the second file, and so on.
   6277 </p>
   6278 
   6279 <p>
   6280 Dependency analysis does not rely on the actual values of the
   6281 variables, only on lexical <i>references</i> to them in the source,
   6282 analyzed transitively. For instance, if a variable <code>x</code>'s
   6283 initialization expression refers to a function whose body refers to
   6284 variable <code>y</code> then <code>x</code> depends on <code>y</code>.
   6285 Specifically:
   6286 </p>
   6287 
   6288 <ul>
   6289 <li>
   6290 A reference to a variable or function is an identifier denoting that
   6291 variable or function.
   6292 </li>
   6293 
   6294 <li>
   6295 A reference to a method <code>m</code> is a
   6296 <a href="#Method_values">method value</a> or
   6297 <a href="#Method_expressions">method expression</a> of the form
   6298 <code>t.m</code>, where the (static) type of <code>t</code> is
   6299 not an interface type, and the method <code>m</code> is in the
   6300 <a href="#Method_sets">method set</a> of <code>t</code>.
   6301 It is immaterial whether the resulting function value
   6302 <code>t.m</code> is invoked.
   6303 </li>
   6304 
   6305 <li>
   6306 A variable, function, or method <code>x</code> depends on a variable
   6307 <code>y</code> if <code>x</code>'s initialization expression or body
   6308 (for functions and methods) contains a reference to <code>y</code>
   6309 or to a function or method that depends on <code>y</code>.
   6310 </li>
   6311 </ul>
   6312 
   6313 <p>
   6314 Dependency analysis is performed per package; only references referring
   6315 to variables, functions, and methods declared in the current package
   6316 are considered.
   6317 </p>
   6318 
   6319 <p>
   6320 For example, given the declarations
   6321 </p>
   6322 
   6323 <pre>
   6324 var (
   6325 	a = c + b
   6326 	b = f()
   6327 	c = f()
   6328 	d = 3
   6329 )
   6330 
   6331 func f() int {
   6332 	d++
   6333 	return d
   6334 }
   6335 </pre>
   6336 
   6337 <p>
   6338 the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>.
   6339 </p>
   6340 
   6341 <p>
   6342 Variables may also be initialized using functions named <code>init</code>
   6343 declared in the package block, with no arguments and no result parameters.
   6344 </p>
   6345 
   6346 <pre>
   6347 func init() {  }
   6348 </pre>
   6349 
   6350 <p>
   6351 Multiple such functions may be defined per package, even within a single
   6352 source file. In the package block, the <code>init</code> identifier can
   6353 be used only to declare <code>init</code> functions, yet the identifier
   6354 itself is not <a href="#Declarations_and_scope">declared</a>. Thus
   6355 <code>init</code> functions cannot be referred to from anywhere
   6356 in a program.
   6357 </p>
   6358 
   6359 <p>
   6360 A package with no imports is initialized by assigning initial values
   6361 to all its package-level variables followed by calling all <code>init</code>
   6362 functions in the order they appear in the source, possibly in multiple files,
   6363 as presented to the compiler.
   6364 If a package has imports, the imported packages are initialized
   6365 before initializing the package itself. If multiple packages import
   6366 a package, the imported package will be initialized only once.
   6367 The importing of packages, by construction, guarantees that there
   6368 can be no cyclic initialization dependencies.
   6369 </p>
   6370 
   6371 <p>
   6372 Package initialization&mdash;variable initialization and the invocation of
   6373 <code>init</code> functions&mdash;happens in a single goroutine,
   6374 sequentially, one package at a time.
   6375 An <code>init</code> function may launch other goroutines, which can run
   6376 concurrently with the initialization code. However, initialization
   6377 always sequences
   6378 the <code>init</code> functions: it will not invoke the next one
   6379 until the previous one has returned.
   6380 </p>
   6381 
   6382 <p>
   6383 To ensure reproducible initialization behavior, build systems are encouraged
   6384 to present multiple files belonging to the same package in lexical file name
   6385 order to a compiler.
   6386 </p>
   6387 
   6388 
   6389 <h3 id="Program_execution">Program execution</h3>
   6390 <p>
   6391 A complete program is created by linking a single, unimported package
   6392 called the <i>main package</i> with all the packages it imports, transitively.
   6393 The main package must
   6394 have package name <code>main</code> and
   6395 declare a function <code>main</code> that takes no
   6396 arguments and returns no value.
   6397 </p>
   6398 
   6399 <pre>
   6400 func main() {  }
   6401 </pre>
   6402 
   6403 <p>
   6404 Program execution begins by initializing the main package and then
   6405 invoking the function <code>main</code>.
   6406 When that function invocation returns, the program exits.
   6407 It does not wait for other (non-<code>main</code>) goroutines to complete.
   6408 </p>
   6409 
   6410 <h2 id="Errors">Errors</h2>
   6411 
   6412 <p>
   6413 The predeclared type <code>error</code> is defined as
   6414 </p>
   6415 
   6416 <pre>
   6417 type error interface {
   6418 	Error() string
   6419 }
   6420 </pre>
   6421 
   6422 <p>
   6423 It is the conventional interface for representing an error condition,
   6424 with the nil value representing no error.
   6425 For instance, a function to read data from a file might be defined:
   6426 </p>
   6427 
   6428 <pre>
   6429 func Read(f *File, b []byte) (n int, err error)
   6430 </pre>
   6431 
   6432 <h2 id="Run_time_panics">Run-time panics</h2>
   6433 
   6434 <p>
   6435 Execution errors such as attempting to index an array out
   6436 of bounds trigger a <i>run-time panic</i> equivalent to a call of
   6437 the built-in function <a href="#Handling_panics"><code>panic</code></a>
   6438 with a value of the implementation-defined interface type <code>runtime.Error</code>.
   6439 That type satisfies the predeclared interface type
   6440 <a href="#Errors"><code>error</code></a>.
   6441 The exact error values that
   6442 represent distinct run-time error conditions are unspecified.
   6443 </p>
   6444 
   6445 <pre>
   6446 package runtime
   6447 
   6448 type Error interface {
   6449 	error
   6450 	// and perhaps other methods
   6451 }
   6452 </pre>
   6453 
   6454 <h2 id="System_considerations">System considerations</h2>
   6455 
   6456 <h3 id="Package_unsafe">Package <code>unsafe</code></h3>
   6457 
   6458 <p>
   6459 The built-in package <code>unsafe</code>, known to the compiler
   6460 and accessible through the <a href="#Import_declarations">import path</a> <code>"unsafe"</code>,
   6461 provides facilities for low-level programming including operations
   6462 that violate the type system. A package using <code>unsafe</code>
   6463 must be vetted manually for type safety and may not be portable.
   6464 The package provides the following interface:
   6465 </p>
   6466 
   6467 <pre class="grammar">
   6468 package unsafe
   6469 
   6470 type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
   6471 type Pointer *ArbitraryType
   6472 
   6473 func Alignof(variable ArbitraryType) uintptr
   6474 func Offsetof(selector ArbitraryType) uintptr
   6475 func Sizeof(variable ArbitraryType) uintptr
   6476 </pre>
   6477 
   6478 <p>
   6479 A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code>
   6480 value may not be <a href="#Address_operators">dereferenced</a>.
   6481 Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to
   6482 a type of underlying type <code>Pointer</code> and vice versa.
   6483 The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined.
   6484 </p>
   6485 
   6486 <pre>
   6487 var f float64
   6488 bits = *(*uint64)(unsafe.Pointer(&amp;f))
   6489 
   6490 type ptr unsafe.Pointer
   6491 bits = *(*uint64)(ptr(&amp;f))
   6492 
   6493 var p ptr = nil
   6494 </pre>
   6495 
   6496 <p>
   6497 The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code>
   6498 of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code>
   6499 as if <code>v</code> was declared via <code>var v = x</code>.
   6500 </p>
   6501 <p>
   6502 The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a>
   6503 <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code>
   6504 or <code>*s</code>, and returns the field offset in bytes relative to the struct's address.
   6505 If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable
   6506 without pointer indirections through fields of the struct.
   6507 For a struct <code>s</code> with field <code>f</code>:
   6508 </p>
   6509 
   6510 <pre>
   6511 uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
   6512 </pre>
   6513 
   6514 <p>
   6515 Computer architectures may require memory addresses to be <i>aligned</i>;
   6516 that is, for addresses of a variable to be a multiple of a factor,
   6517 the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
   6518 takes an expression denoting a variable of any type and returns the
   6519 alignment of the (type of the) variable in bytes.  For a variable
   6520 <code>x</code>:
   6521 </p>
   6522 
   6523 <pre>
   6524 uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
   6525 </pre>
   6526 
   6527 <p>
   6528 Calls to <code>Alignof</code>, <code>Offsetof</code>, and
   6529 <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>.
   6530 </p>
   6531 
   6532 <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>
   6533 
   6534 <p>
   6535 For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed:
   6536 </p>
   6537 
   6538 <pre class="grammar">
   6539 type                                 size in bytes
   6540 
   6541 byte, uint8, int8                     1
   6542 uint16, int16                         2
   6543 uint32, int32, float32                4
   6544 uint64, int64, float64, complex64     8
   6545 complex128                           16
   6546 </pre>
   6547 
   6548 <p>
   6549 The following minimal alignment properties are guaranteed:
   6550 </p>
   6551 <ol>
   6552 <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
   6553 </li>
   6554 
   6555 <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
   6556    all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
   6557 </li>
   6558 
   6559 <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
   6560 	the alignment of a variable of the array's element type.
   6561 </li>
   6562 </ol>
   6563 
   6564 <p>
   6565 A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
   6566 </p>
   6567