1 // Copyright 2016 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 import ( 8 "cmd/compile/internal/types" 9 "fmt" 10 ) 11 12 // an edgeMem records a backedge, together with the memory 13 // phi functions at the target of the backedge that must 14 // be updated when a rescheduling check replaces the backedge. 15 type edgeMem struct { 16 e Edge 17 m *Value // phi for memory at dest of e 18 } 19 20 // a rewriteTarget is a value-argindex pair indicating 21 // where a rewrite is applied. Note that this is for values, 22 // not for block controls, because block controls are not targets 23 // for the rewrites performed in inserting rescheduling checks. 24 type rewriteTarget struct { 25 v *Value 26 i int 27 } 28 29 type rewrite struct { 30 before, after *Value // before is the expected value before rewrite, after is the new value installed. 31 rewrites []rewriteTarget // all the targets for this rewrite. 32 } 33 34 func (r *rewrite) String() string { 35 s := "\n\tbefore=" + r.before.String() + ", after=" + r.after.String() 36 for _, rw := range r.rewrites { 37 s += ", (i=" + fmt.Sprint(rw.i) + ", v=" + rw.v.LongString() + ")" 38 } 39 s += "\n" 40 return s 41 } 42 43 // insertLoopReschedChecks inserts rescheduling checks on loop backedges. 44 func insertLoopReschedChecks(f *Func) { 45 // TODO: when split information is recorded in export data, insert checks only on backedges that can be reached on a split-call-free path. 46 47 // Loop reschedule checks compare the stack pointer with 48 // the per-g stack bound. If the pointer appears invalid, 49 // that means a reschedule check is needed. 50 // 51 // Steps: 52 // 1. locate backedges. 53 // 2. Record memory definitions at block end so that 54 // the SSA graph for mem can be properly modified. 55 // 3. Ensure that phi functions that will-be-needed for mem 56 // are present in the graph, initially with trivial inputs. 57 // 4. Record all to-be-modified uses of mem; 58 // apply modifications (split into two steps to simplify and 59 // avoided nagging order-dependences). 60 // 5. Rewrite backedges to include reschedule check, 61 // and modify destination phi function appropriately with new 62 // definitions for mem. 63 64 if f.NoSplit { // nosplit functions don't reschedule. 65 return 66 } 67 68 backedges := backedges(f) 69 if len(backedges) == 0 { // no backedges means no rescheduling checks. 70 return 71 } 72 73 lastMems := findLastMems(f) 74 75 idom := f.Idom() 76 po := f.postorder() 77 // The ordering in the dominator tree matters; it's important that 78 // the walk of the dominator tree also be a preorder (i.e., a node is 79 // visited only after all its non-backedge predecessors have been visited). 80 sdom := newSparseOrderedTree(f, idom, po) 81 82 if f.pass.debug > 1 { 83 fmt.Printf("before %s = %s\n", f.Name, sdom.treestructure(f.Entry)) 84 } 85 86 tofixBackedges := []edgeMem{} 87 88 for _, e := range backedges { // TODO: could filter here by calls in loops, if declared and inferred nosplit are recorded in export data. 89 tofixBackedges = append(tofixBackedges, edgeMem{e, nil}) 90 } 91 92 // It's possible that there is no memory state (no global/pointer loads/stores or calls) 93 if lastMems[f.Entry.ID] == nil { 94 lastMems[f.Entry.ID] = f.Entry.NewValue0(f.Entry.Pos, OpInitMem, types.TypeMem) 95 } 96 97 memDefsAtBlockEnds := make([]*Value, f.NumBlocks()) // For each block, the mem def seen at its bottom. Could be from earlier block. 98 99 // Propagate last mem definitions forward through successor blocks. 100 for i := len(po) - 1; i >= 0; i-- { 101 b := po[i] 102 mem := lastMems[b.ID] 103 for j := 0; mem == nil; j++ { // if there's no def, then there's no phi, so the visible mem is identical in all predecessors. 104 // loop because there might be backedges that haven't been visited yet. 105 mem = memDefsAtBlockEnds[b.Preds[j].b.ID] 106 } 107 memDefsAtBlockEnds[b.ID] = mem 108 if f.pass.debug > 2 { 109 fmt.Printf("memDefsAtBlockEnds[%s] = %s\n", b, mem) 110 } 111 } 112 113 // Maps from block to newly-inserted phi function in block. 114 newmemphis := make(map[*Block]rewrite) 115 116 // Insert phi functions as necessary for future changes to flow graph. 117 for i, emc := range tofixBackedges { 118 e := emc.e 119 h := e.b 120 121 // find the phi function for the memory input at "h", if there is one. 122 var headerMemPhi *Value // look for header mem phi 123 124 for _, v := range h.Values { 125 if v.Op == OpPhi && v.Type.IsMemory() { 126 headerMemPhi = v 127 } 128 } 129 130 if headerMemPhi == nil { 131 // if the header is nil, make a trivial phi from the dominator 132 mem0 := memDefsAtBlockEnds[idom[h.ID].ID] 133 headerMemPhi = newPhiFor(h, mem0) 134 newmemphis[h] = rewrite{before: mem0, after: headerMemPhi} 135 addDFphis(mem0, h, h, f, memDefsAtBlockEnds, newmemphis, sdom) 136 137 } 138 tofixBackedges[i].m = headerMemPhi 139 140 } 141 if f.pass.debug > 0 { 142 for b, r := range newmemphis { 143 fmt.Printf("before b=%s, rewrite=%s\n", b, r.String()) 144 } 145 } 146 147 // dfPhiTargets notes inputs to phis in dominance frontiers that should not 148 // be rewritten as part of the dominated children of some outer rewrite. 149 dfPhiTargets := make(map[rewriteTarget]bool) 150 151 rewriteNewPhis(f.Entry, f.Entry, f, memDefsAtBlockEnds, newmemphis, dfPhiTargets, sdom) 152 153 if f.pass.debug > 0 { 154 for b, r := range newmemphis { 155 fmt.Printf("after b=%s, rewrite=%s\n", b, r.String()) 156 } 157 } 158 159 // Apply collected rewrites. 160 for _, r := range newmemphis { 161 for _, rw := range r.rewrites { 162 rw.v.SetArg(rw.i, r.after) 163 } 164 } 165 166 // Rewrite backedges to include reschedule checks. 167 for _, emc := range tofixBackedges { 168 e := emc.e 169 headerMemPhi := emc.m 170 h := e.b 171 i := e.i 172 p := h.Preds[i] 173 bb := p.b 174 mem0 := headerMemPhi.Args[i] 175 // bb e->p h, 176 // Because we're going to insert a rare-call, make sure the 177 // looping edge still looks likely. 178 likely := BranchLikely 179 if p.i != 0 { 180 likely = BranchUnlikely 181 } 182 bb.Likely = likely 183 184 // rewrite edge to include reschedule check 185 // existing edges: 186 // 187 // bb.Succs[p.i] == Edge{h, i} 188 // h.Preds[i] == p == Edge{bb,p.i} 189 // 190 // new block(s): 191 // test: 192 // if sp < g.limit { goto sched } 193 // goto join 194 // sched: 195 // mem1 := call resched (mem0) 196 // goto join 197 // join: 198 // mem2 := phi(mem0, mem1) 199 // goto h 200 // 201 // and correct arg i of headerMemPhi and headerCtrPhi 202 // 203 // EXCEPT: join block containing only phi functions is bad 204 // for the register allocator. Therefore, there is no 205 // join, and branches targeting join must instead target 206 // the header, and the other phi functions within header are 207 // adjusted for the additional input. 208 209 test := f.NewBlock(BlockIf) 210 sched := f.NewBlock(BlockPlain) 211 212 test.Pos = bb.Pos 213 sched.Pos = bb.Pos 214 215 // if sp < g.limit { goto sched } 216 // goto header 217 218 cfgtypes := &f.Config.Types 219 pt := cfgtypes.Uintptr 220 g := test.NewValue1(bb.Pos, OpGetG, pt, mem0) 221 sp := test.NewValue0(bb.Pos, OpSP, pt) 222 cmpOp := OpLess64U 223 if pt.Size() == 4 { 224 cmpOp = OpLess32U 225 } 226 limaddr := test.NewValue1I(bb.Pos, OpOffPtr, pt, 2*pt.Size(), g) 227 lim := test.NewValue2(bb.Pos, OpLoad, pt, limaddr, mem0) 228 cmp := test.NewValue2(bb.Pos, cmpOp, cfgtypes.Bool, sp, lim) 229 test.SetControl(cmp) 230 231 // if true, goto sched 232 test.AddEdgeTo(sched) 233 234 // if false, rewrite edge to header. 235 // do NOT remove+add, because that will perturb all the other phi functions 236 // as well as messing up other edges to the header. 237 test.Succs = append(test.Succs, Edge{h, i}) 238 h.Preds[i] = Edge{test, 1} 239 headerMemPhi.SetArg(i, mem0) 240 241 test.Likely = BranchUnlikely 242 243 // sched: 244 // mem1 := call resched (mem0) 245 // goto header 246 resched := f.fe.Syslook("goschedguarded") 247 mem1 := sched.NewValue1A(bb.Pos, OpStaticCall, types.TypeMem, resched, mem0) 248 sched.AddEdgeTo(h) 249 headerMemPhi.AddArg(mem1) 250 251 bb.Succs[p.i] = Edge{test, 0} 252 test.Preds = append(test.Preds, Edge{bb, p.i}) 253 254 // Must correct all the other phi functions in the header for new incoming edge. 255 // Except for mem phis, it will be the same value seen on the original 256 // backedge at index i. 257 for _, v := range h.Values { 258 if v.Op == OpPhi && v != headerMemPhi { 259 v.AddArg(v.Args[i]) 260 } 261 } 262 } 263 264 f.invalidateCFG() 265 266 if f.pass.debug > 1 { 267 sdom = newSparseTree(f, f.Idom()) 268 fmt.Printf("after %s = %s\n", f.Name, sdom.treestructure(f.Entry)) 269 } 270 } 271 272 // newPhiFor inserts a new Phi function into b, 273 // with all inputs set to v. 274 func newPhiFor(b *Block, v *Value) *Value { 275 phiV := b.NewValue0(b.Pos, OpPhi, v.Type) 276 277 for range b.Preds { 278 phiV.AddArg(v) 279 } 280 return phiV 281 } 282 283 // rewriteNewPhis updates newphis[h] to record all places where the new phi function inserted 284 // in block h will replace a previous definition. Block b is the block currently being processed; 285 // if b has its own phi definition then it takes the place of h. 286 // defsForUses provides information about other definitions of the variable that are present 287 // (and if nil, indicates that the variable is no longer live) 288 // sdom must yield a preorder of the flow graph if recursively walked, root-to-children. 289 // The result of newSparseOrderedTree with order supplied by a dfs-postorder satisfies this 290 // requirement. 291 func rewriteNewPhis(h, b *Block, f *Func, defsForUses []*Value, newphis map[*Block]rewrite, dfPhiTargets map[rewriteTarget]bool, sdom SparseTree) { 292 // If b is a block with a new phi, then a new rewrite applies below it in the dominator tree. 293 if _, ok := newphis[b]; ok { 294 h = b 295 } 296 change := newphis[h] 297 x := change.before 298 y := change.after 299 300 // Apply rewrites to this block 301 if x != nil { // don't waste time on the common case of no definition. 302 p := &change.rewrites 303 for _, v := range b.Values { 304 if v == y { // don't rewrite self -- phi inputs are handled below. 305 continue 306 } 307 for i, w := range v.Args { 308 if w != x { 309 continue 310 } 311 tgt := rewriteTarget{v, i} 312 313 // It's possible dominated control flow will rewrite this instead. 314 // Visiting in preorder (a property of how sdom was constructed) 315 // ensures that these are seen in the proper order. 316 if dfPhiTargets[tgt] { 317 continue 318 } 319 *p = append(*p, tgt) 320 if f.pass.debug > 1 { 321 fmt.Printf("added block target for h=%v, b=%v, x=%v, y=%v, tgt.v=%s, tgt.i=%d\n", 322 h, b, x, y, v, i) 323 } 324 } 325 } 326 327 // Rewrite appropriate inputs of phis reached in successors 328 // in dominance frontier, self, and dominated. 329 // If the variable def reaching uses in b is itself defined in b, then the new phi function 330 // does not reach the successors of b. (This assumes a bit about the structure of the 331 // phi use-def graph, but it's true for memory.) 332 if dfu := defsForUses[b.ID]; dfu != nil && dfu.Block != b { 333 for _, e := range b.Succs { 334 s := e.b 335 336 for _, v := range s.Values { 337 if v.Op == OpPhi && v.Args[e.i] == x { 338 tgt := rewriteTarget{v, e.i} 339 *p = append(*p, tgt) 340 dfPhiTargets[tgt] = true 341 if f.pass.debug > 1 { 342 fmt.Printf("added phi target for h=%v, b=%v, s=%v, x=%v, y=%v, tgt.v=%s, tgt.i=%d\n", 343 h, b, s, x, y, v.LongString(), e.i) 344 } 345 break 346 } 347 } 348 } 349 } 350 newphis[h] = change 351 } 352 353 for c := sdom[b.ID].child; c != nil; c = sdom[c.ID].sibling { 354 rewriteNewPhis(h, c, f, defsForUses, newphis, dfPhiTargets, sdom) // TODO: convert to explicit stack from recursion. 355 } 356 } 357 358 // addDFphis creates new trivial phis that are necessary to correctly reflect (within SSA) 359 // a new definition for variable "x" inserted at h (usually but not necessarily a phi). 360 // These new phis can only occur at the dominance frontier of h; block s is in the dominance 361 // frontier of h if h does not strictly dominate s and if s is a successor of a block b where 362 // either b = h or h strictly dominates b. 363 // These newly created phis are themselves new definitions that may require addition of their 364 // own trivial phi functions in their own dominance frontier, and this is handled recursively. 365 func addDFphis(x *Value, h, b *Block, f *Func, defForUses []*Value, newphis map[*Block]rewrite, sdom SparseTree) { 366 oldv := defForUses[b.ID] 367 if oldv != x { // either a new definition replacing x, or nil if it is proven that there are no uses reachable from b 368 return 369 } 370 idom := f.Idom() 371 outer: 372 for _, e := range b.Succs { 373 s := e.b 374 // check phi functions in the dominance frontier 375 if sdom.isAncestor(h, s) { 376 continue // h dominates s, successor of b, therefore s is not in the frontier. 377 } 378 if _, ok := newphis[s]; ok { 379 continue // successor s of b already has a new phi function, so there is no need to add another. 380 } 381 if x != nil { 382 for _, v := range s.Values { 383 if v.Op == OpPhi && v.Args[e.i] == x { 384 continue outer // successor s of b has an old phi function, so there is no need to add another. 385 } 386 } 387 } 388 389 old := defForUses[idom[s.ID].ID] // new phi function is correct-but-redundant, combining value "old" on all inputs. 390 headerPhi := newPhiFor(s, old) 391 // the new phi will replace "old" in block s and all blocks dominated by s. 392 newphis[s] = rewrite{before: old, after: headerPhi} // record new phi, to have inputs labeled "old" rewritten to "headerPhi" 393 addDFphis(old, s, s, f, defForUses, newphis, sdom) // the new definition may also create new phi functions. 394 } 395 for c := sdom[b.ID].child; c != nil; c = sdom[c.ID].sibling { 396 addDFphis(x, h, c, f, defForUses, newphis, sdom) // TODO: convert to explicit stack from recursion. 397 } 398 } 399 400 // findLastMems maps block ids to last memory-output op in a block, if any 401 func findLastMems(f *Func) []*Value { 402 403 var stores []*Value 404 lastMems := make([]*Value, f.NumBlocks()) 405 storeUse := f.newSparseSet(f.NumValues()) 406 defer f.retSparseSet(storeUse) 407 for _, b := range f.Blocks { 408 // Find all the stores in this block. Categorize their uses: 409 // storeUse contains stores which are used by a subsequent store. 410 storeUse.clear() 411 stores = stores[:0] 412 var memPhi *Value 413 for _, v := range b.Values { 414 if v.Op == OpPhi { 415 if v.Type.IsMemory() { 416 memPhi = v 417 } 418 continue 419 } 420 if v.Type.IsMemory() { 421 stores = append(stores, v) 422 for _, a := range v.Args { 423 if a.Block == b && a.Type.IsMemory() { 424 storeUse.add(a.ID) 425 } 426 } 427 } 428 } 429 if len(stores) == 0 { 430 lastMems[b.ID] = memPhi 431 continue 432 } 433 434 // find last store in the block 435 var last *Value 436 for _, v := range stores { 437 if storeUse.contains(v.ID) { 438 continue 439 } 440 if last != nil { 441 b.Fatalf("two final stores - simultaneous live stores %s %s", last, v) 442 } 443 last = v 444 } 445 if last == nil { 446 b.Fatalf("no last store found - cycle?") 447 } 448 lastMems[b.ID] = last 449 } 450 return lastMems 451 } 452 453 type backedgesState struct { 454 b *Block 455 i int 456 } 457 458 // backedges returns a slice of successor edges that are back 459 // edges. For reducible loops, edge.b is the header. 460 func backedges(f *Func) []Edge { 461 edges := []Edge{} 462 mark := make([]markKind, f.NumBlocks()) 463 stack := []backedgesState{} 464 465 mark[f.Entry.ID] = notExplored 466 stack = append(stack, backedgesState{f.Entry, 0}) 467 468 for len(stack) > 0 { 469 l := len(stack) 470 x := stack[l-1] 471 if x.i < len(x.b.Succs) { 472 e := x.b.Succs[x.i] 473 stack[l-1].i++ 474 s := e.b 475 if mark[s.ID] == notFound { 476 mark[s.ID] = notExplored 477 stack = append(stack, backedgesState{s, 0}) 478 } else if mark[s.ID] == notExplored { 479 edges = append(edges, e) 480 } 481 } else { 482 mark[x.b.ID] = done 483 stack = stack[0 : l-1] 484 } 485 } 486 return edges 487 } 488