Home | History | Annotate | Download | only in flate
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package flate
      6 
      7 import (
      8 	"io"
      9 )
     10 
     11 const (
     12 	// The largest offset code.
     13 	offsetCodeCount = 30
     14 
     15 	// The special code used to mark the end of a block.
     16 	endBlockMarker = 256
     17 
     18 	// The first length code.
     19 	lengthCodesStart = 257
     20 
     21 	// The number of codegen codes.
     22 	codegenCodeCount = 19
     23 	badCode          = 255
     24 
     25 	// bufferFlushSize indicates the buffer size
     26 	// after which bytes are flushed to the writer.
     27 	// Should preferably be a multiple of 6, since
     28 	// we accumulate 6 bytes between writes to the buffer.
     29 	bufferFlushSize = 240
     30 
     31 	// bufferSize is the actual output byte buffer size.
     32 	// It must have additional headroom for a flush
     33 	// which can contain up to 8 bytes.
     34 	bufferSize = bufferFlushSize + 8
     35 )
     36 
     37 // The number of extra bits needed by length code X - LENGTH_CODES_START.
     38 var lengthExtraBits = []int8{
     39 	/* 257 */ 0, 0, 0,
     40 	/* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
     41 	/* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
     42 	/* 280 */ 4, 5, 5, 5, 5, 0,
     43 }
     44 
     45 // The length indicated by length code X - LENGTH_CODES_START.
     46 var lengthBase = []uint32{
     47 	0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
     48 	12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
     49 	64, 80, 96, 112, 128, 160, 192, 224, 255,
     50 }
     51 
     52 // offset code word extra bits.
     53 var offsetExtraBits = []int8{
     54 	0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
     55 	4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
     56 	9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
     57 }
     58 
     59 var offsetBase = []uint32{
     60 	0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
     61 	0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
     62 	0x000020, 0x000030, 0x000040, 0x000060, 0x000080,
     63 	0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300,
     64 	0x000400, 0x000600, 0x000800, 0x000c00, 0x001000,
     65 	0x001800, 0x002000, 0x003000, 0x004000, 0x006000,
     66 }
     67 
     68 // The odd order in which the codegen code sizes are written.
     69 var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
     70 
     71 type huffmanBitWriter struct {
     72 	// writer is the underlying writer.
     73 	// Do not use it directly; use the write method, which ensures
     74 	// that Write errors are sticky.
     75 	writer io.Writer
     76 
     77 	// Data waiting to be written is bytes[0:nbytes]
     78 	// and then the low nbits of bits.
     79 	bits            uint64
     80 	nbits           uint
     81 	bytes           [bufferSize]byte
     82 	codegenFreq     [codegenCodeCount]int32
     83 	nbytes          int
     84 	literalFreq     []int32
     85 	offsetFreq      []int32
     86 	codegen         []uint8
     87 	literalEncoding *huffmanEncoder
     88 	offsetEncoding  *huffmanEncoder
     89 	codegenEncoding *huffmanEncoder
     90 	err             error
     91 }
     92 
     93 func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
     94 	return &huffmanBitWriter{
     95 		writer:          w,
     96 		literalFreq:     make([]int32, maxNumLit),
     97 		offsetFreq:      make([]int32, offsetCodeCount),
     98 		codegen:         make([]uint8, maxNumLit+offsetCodeCount+1),
     99 		literalEncoding: newHuffmanEncoder(maxNumLit),
    100 		codegenEncoding: newHuffmanEncoder(codegenCodeCount),
    101 		offsetEncoding:  newHuffmanEncoder(offsetCodeCount),
    102 	}
    103 }
    104 
    105 func (w *huffmanBitWriter) reset(writer io.Writer) {
    106 	w.writer = writer
    107 	w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
    108 	w.bytes = [bufferSize]byte{}
    109 }
    110 
    111 func (w *huffmanBitWriter) flush() {
    112 	if w.err != nil {
    113 		w.nbits = 0
    114 		return
    115 	}
    116 	n := w.nbytes
    117 	for w.nbits != 0 {
    118 		w.bytes[n] = byte(w.bits)
    119 		w.bits >>= 8
    120 		if w.nbits > 8 { // Avoid underflow
    121 			w.nbits -= 8
    122 		} else {
    123 			w.nbits = 0
    124 		}
    125 		n++
    126 	}
    127 	w.bits = 0
    128 	w.write(w.bytes[:n])
    129 	w.nbytes = 0
    130 }
    131 
    132 func (w *huffmanBitWriter) write(b []byte) {
    133 	if w.err != nil {
    134 		return
    135 	}
    136 	_, w.err = w.writer.Write(b)
    137 }
    138 
    139 func (w *huffmanBitWriter) writeBits(b int32, nb uint) {
    140 	if w.err != nil {
    141 		return
    142 	}
    143 	w.bits |= uint64(b) << w.nbits
    144 	w.nbits += nb
    145 	if w.nbits >= 48 {
    146 		bits := w.bits
    147 		w.bits >>= 48
    148 		w.nbits -= 48
    149 		n := w.nbytes
    150 		bytes := w.bytes[n : n+6]
    151 		bytes[0] = byte(bits)
    152 		bytes[1] = byte(bits >> 8)
    153 		bytes[2] = byte(bits >> 16)
    154 		bytes[3] = byte(bits >> 24)
    155 		bytes[4] = byte(bits >> 32)
    156 		bytes[5] = byte(bits >> 40)
    157 		n += 6
    158 		if n >= bufferFlushSize {
    159 			w.write(w.bytes[:n])
    160 			n = 0
    161 		}
    162 		w.nbytes = n
    163 	}
    164 }
    165 
    166 func (w *huffmanBitWriter) writeBytes(bytes []byte) {
    167 	if w.err != nil {
    168 		return
    169 	}
    170 	n := w.nbytes
    171 	if w.nbits&7 != 0 {
    172 		w.err = InternalError("writeBytes with unfinished bits")
    173 		return
    174 	}
    175 	for w.nbits != 0 {
    176 		w.bytes[n] = byte(w.bits)
    177 		w.bits >>= 8
    178 		w.nbits -= 8
    179 		n++
    180 	}
    181 	if n != 0 {
    182 		w.write(w.bytes[:n])
    183 	}
    184 	w.nbytes = 0
    185 	w.write(bytes)
    186 }
    187 
    188 // RFC 1951 3.2.7 specifies a special run-length encoding for specifying
    189 // the literal and offset lengths arrays (which are concatenated into a single
    190 // array).  This method generates that run-length encoding.
    191 //
    192 // The result is written into the codegen array, and the frequencies
    193 // of each code is written into the codegenFreq array.
    194 // Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
    195 // information. Code badCode is an end marker
    196 //
    197 //  numLiterals      The number of literals in literalEncoding
    198 //  numOffsets       The number of offsets in offsetEncoding
    199 //  litenc, offenc   The literal and offset encoder to use
    200 func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int, litEnc, offEnc *huffmanEncoder) {
    201 	for i := range w.codegenFreq {
    202 		w.codegenFreq[i] = 0
    203 	}
    204 	// Note that we are using codegen both as a temporary variable for holding
    205 	// a copy of the frequencies, and as the place where we put the result.
    206 	// This is fine because the output is always shorter than the input used
    207 	// so far.
    208 	codegen := w.codegen // cache
    209 	// Copy the concatenated code sizes to codegen. Put a marker at the end.
    210 	cgnl := codegen[:numLiterals]
    211 	for i := range cgnl {
    212 		cgnl[i] = uint8(litEnc.codes[i].len)
    213 	}
    214 
    215 	cgnl = codegen[numLiterals : numLiterals+numOffsets]
    216 	for i := range cgnl {
    217 		cgnl[i] = uint8(offEnc.codes[i].len)
    218 	}
    219 	codegen[numLiterals+numOffsets] = badCode
    220 
    221 	size := codegen[0]
    222 	count := 1
    223 	outIndex := 0
    224 	for inIndex := 1; size != badCode; inIndex++ {
    225 		// INVARIANT: We have seen "count" copies of size that have not yet
    226 		// had output generated for them.
    227 		nextSize := codegen[inIndex]
    228 		if nextSize == size {
    229 			count++
    230 			continue
    231 		}
    232 		// We need to generate codegen indicating "count" of size.
    233 		if size != 0 {
    234 			codegen[outIndex] = size
    235 			outIndex++
    236 			w.codegenFreq[size]++
    237 			count--
    238 			for count >= 3 {
    239 				n := 6
    240 				if n > count {
    241 					n = count
    242 				}
    243 				codegen[outIndex] = 16
    244 				outIndex++
    245 				codegen[outIndex] = uint8(n - 3)
    246 				outIndex++
    247 				w.codegenFreq[16]++
    248 				count -= n
    249 			}
    250 		} else {
    251 			for count >= 11 {
    252 				n := 138
    253 				if n > count {
    254 					n = count
    255 				}
    256 				codegen[outIndex] = 18
    257 				outIndex++
    258 				codegen[outIndex] = uint8(n - 11)
    259 				outIndex++
    260 				w.codegenFreq[18]++
    261 				count -= n
    262 			}
    263 			if count >= 3 {
    264 				// count >= 3 && count <= 10
    265 				codegen[outIndex] = 17
    266 				outIndex++
    267 				codegen[outIndex] = uint8(count - 3)
    268 				outIndex++
    269 				w.codegenFreq[17]++
    270 				count = 0
    271 			}
    272 		}
    273 		count--
    274 		for ; count >= 0; count-- {
    275 			codegen[outIndex] = size
    276 			outIndex++
    277 			w.codegenFreq[size]++
    278 		}
    279 		// Set up invariant for next time through the loop.
    280 		size = nextSize
    281 		count = 1
    282 	}
    283 	// Marker indicating the end of the codegen.
    284 	codegen[outIndex] = badCode
    285 }
    286 
    287 // dynamicSize returns the size of dynamically encoded data in bits.
    288 func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
    289 	numCodegens = len(w.codegenFreq)
    290 	for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
    291 		numCodegens--
    292 	}
    293 	header := 3 + 5 + 5 + 4 + (3 * numCodegens) +
    294 		w.codegenEncoding.bitLength(w.codegenFreq[:]) +
    295 		int(w.codegenFreq[16])*2 +
    296 		int(w.codegenFreq[17])*3 +
    297 		int(w.codegenFreq[18])*7
    298 	size = header +
    299 		litEnc.bitLength(w.literalFreq) +
    300 		offEnc.bitLength(w.offsetFreq) +
    301 		extraBits
    302 
    303 	return size, numCodegens
    304 }
    305 
    306 // fixedSize returns the size of dynamically encoded data in bits.
    307 func (w *huffmanBitWriter) fixedSize(extraBits int) int {
    308 	return 3 +
    309 		fixedLiteralEncoding.bitLength(w.literalFreq) +
    310 		fixedOffsetEncoding.bitLength(w.offsetFreq) +
    311 		extraBits
    312 }
    313 
    314 // storedSize calculates the stored size, including header.
    315 // The function returns the size in bits and whether the block
    316 // fits inside a single block.
    317 func (w *huffmanBitWriter) storedSize(in []byte) (int, bool) {
    318 	if in == nil {
    319 		return 0, false
    320 	}
    321 	if len(in) <= maxStoreBlockSize {
    322 		return (len(in) + 5) * 8, true
    323 	}
    324 	return 0, false
    325 }
    326 
    327 func (w *huffmanBitWriter) writeCode(c hcode) {
    328 	if w.err != nil {
    329 		return
    330 	}
    331 	w.bits |= uint64(c.code) << w.nbits
    332 	w.nbits += uint(c.len)
    333 	if w.nbits >= 48 {
    334 		bits := w.bits
    335 		w.bits >>= 48
    336 		w.nbits -= 48
    337 		n := w.nbytes
    338 		bytes := w.bytes[n : n+6]
    339 		bytes[0] = byte(bits)
    340 		bytes[1] = byte(bits >> 8)
    341 		bytes[2] = byte(bits >> 16)
    342 		bytes[3] = byte(bits >> 24)
    343 		bytes[4] = byte(bits >> 32)
    344 		bytes[5] = byte(bits >> 40)
    345 		n += 6
    346 		if n >= bufferFlushSize {
    347 			w.write(w.bytes[:n])
    348 			n = 0
    349 		}
    350 		w.nbytes = n
    351 	}
    352 }
    353 
    354 // Write the header of a dynamic Huffman block to the output stream.
    355 //
    356 //  numLiterals  The number of literals specified in codegen
    357 //  numOffsets   The number of offsets specified in codegen
    358 //  numCodegens  The number of codegens used in codegen
    359 func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) {
    360 	if w.err != nil {
    361 		return
    362 	}
    363 	var firstBits int32 = 4
    364 	if isEof {
    365 		firstBits = 5
    366 	}
    367 	w.writeBits(firstBits, 3)
    368 	w.writeBits(int32(numLiterals-257), 5)
    369 	w.writeBits(int32(numOffsets-1), 5)
    370 	w.writeBits(int32(numCodegens-4), 4)
    371 
    372 	for i := 0; i < numCodegens; i++ {
    373 		value := uint(w.codegenEncoding.codes[codegenOrder[i]].len)
    374 		w.writeBits(int32(value), 3)
    375 	}
    376 
    377 	i := 0
    378 	for {
    379 		var codeWord int = int(w.codegen[i])
    380 		i++
    381 		if codeWord == badCode {
    382 			break
    383 		}
    384 		w.writeCode(w.codegenEncoding.codes[uint32(codeWord)])
    385 
    386 		switch codeWord {
    387 		case 16:
    388 			w.writeBits(int32(w.codegen[i]), 2)
    389 			i++
    390 			break
    391 		case 17:
    392 			w.writeBits(int32(w.codegen[i]), 3)
    393 			i++
    394 			break
    395 		case 18:
    396 			w.writeBits(int32(w.codegen[i]), 7)
    397 			i++
    398 			break
    399 		}
    400 	}
    401 }
    402 
    403 func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
    404 	if w.err != nil {
    405 		return
    406 	}
    407 	var flag int32
    408 	if isEof {
    409 		flag = 1
    410 	}
    411 	w.writeBits(flag, 3)
    412 	w.flush()
    413 	w.writeBits(int32(length), 16)
    414 	w.writeBits(int32(^uint16(length)), 16)
    415 }
    416 
    417 func (w *huffmanBitWriter) writeFixedHeader(isEof bool) {
    418 	if w.err != nil {
    419 		return
    420 	}
    421 	// Indicate that we are a fixed Huffman block
    422 	var value int32 = 2
    423 	if isEof {
    424 		value = 3
    425 	}
    426 	w.writeBits(value, 3)
    427 }
    428 
    429 // writeBlock will write a block of tokens with the smallest encoding.
    430 // The original input can be supplied, and if the huffman encoded data
    431 // is larger than the original bytes, the data will be written as a
    432 // stored block.
    433 // If the input is nil, the tokens will always be Huffman encoded.
    434 func (w *huffmanBitWriter) writeBlock(tokens []token, eof bool, input []byte) {
    435 	if w.err != nil {
    436 		return
    437 	}
    438 
    439 	tokens = append(tokens, endBlockMarker)
    440 	numLiterals, numOffsets := w.indexTokens(tokens)
    441 
    442 	var extraBits int
    443 	storedSize, storable := w.storedSize(input)
    444 	if storable {
    445 		// We only bother calculating the costs of the extra bits required by
    446 		// the length of offset fields (which will be the same for both fixed
    447 		// and dynamic encoding), if we need to compare those two encodings
    448 		// against stored encoding.
    449 		for lengthCode := lengthCodesStart + 8; lengthCode < numLiterals; lengthCode++ {
    450 			// First eight length codes have extra size = 0.
    451 			extraBits += int(w.literalFreq[lengthCode]) * int(lengthExtraBits[lengthCode-lengthCodesStart])
    452 		}
    453 		for offsetCode := 4; offsetCode < numOffsets; offsetCode++ {
    454 			// First four offset codes have extra size = 0.
    455 			extraBits += int(w.offsetFreq[offsetCode]) * int(offsetExtraBits[offsetCode])
    456 		}
    457 	}
    458 
    459 	// Figure out smallest code.
    460 	// Fixed Huffman baseline.
    461 	var literalEncoding = fixedLiteralEncoding
    462 	var offsetEncoding = fixedOffsetEncoding
    463 	var size = w.fixedSize(extraBits)
    464 
    465 	// Dynamic Huffman?
    466 	var numCodegens int
    467 
    468 	// Generate codegen and codegenFrequencies, which indicates how to encode
    469 	// the literalEncoding and the offsetEncoding.
    470 	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
    471 	w.codegenEncoding.generate(w.codegenFreq[:], 7)
    472 	dynamicSize, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits)
    473 
    474 	if dynamicSize < size {
    475 		size = dynamicSize
    476 		literalEncoding = w.literalEncoding
    477 		offsetEncoding = w.offsetEncoding
    478 	}
    479 
    480 	// Stored bytes?
    481 	if storable && storedSize < size {
    482 		w.writeStoredHeader(len(input), eof)
    483 		w.writeBytes(input)
    484 		return
    485 	}
    486 
    487 	// Huffman.
    488 	if literalEncoding == fixedLiteralEncoding {
    489 		w.writeFixedHeader(eof)
    490 	} else {
    491 		w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
    492 	}
    493 
    494 	// Write the tokens.
    495 	w.writeTokens(tokens, literalEncoding.codes, offsetEncoding.codes)
    496 }
    497 
    498 // writeBlockDynamic encodes a block using a dynamic Huffman table.
    499 // This should be used if the symbols used have a disproportionate
    500 // histogram distribution.
    501 // If input is supplied and the compression savings are below 1/16th of the
    502 // input size the block is stored.
    503 func (w *huffmanBitWriter) writeBlockDynamic(tokens []token, eof bool, input []byte) {
    504 	if w.err != nil {
    505 		return
    506 	}
    507 
    508 	tokens = append(tokens, endBlockMarker)
    509 	numLiterals, numOffsets := w.indexTokens(tokens)
    510 
    511 	// Generate codegen and codegenFrequencies, which indicates how to encode
    512 	// the literalEncoding and the offsetEncoding.
    513 	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
    514 	w.codegenEncoding.generate(w.codegenFreq[:], 7)
    515 	size, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, 0)
    516 
    517 	// Store bytes, if we don't get a reasonable improvement.
    518 	if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
    519 		w.writeStoredHeader(len(input), eof)
    520 		w.writeBytes(input)
    521 		return
    522 	}
    523 
    524 	// Write Huffman table.
    525 	w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
    526 
    527 	// Write the tokens.
    528 	w.writeTokens(tokens, w.literalEncoding.codes, w.offsetEncoding.codes)
    529 }
    530 
    531 // indexTokens indexes a slice of tokens, and updates
    532 // literalFreq and offsetFreq, and generates literalEncoding
    533 // and offsetEncoding.
    534 // The number of literal and offset tokens is returned.
    535 func (w *huffmanBitWriter) indexTokens(tokens []token) (numLiterals, numOffsets int) {
    536 	for i := range w.literalFreq {
    537 		w.literalFreq[i] = 0
    538 	}
    539 	for i := range w.offsetFreq {
    540 		w.offsetFreq[i] = 0
    541 	}
    542 
    543 	for _, t := range tokens {
    544 		if t < matchType {
    545 			w.literalFreq[t.literal()]++
    546 			continue
    547 		}
    548 		length := t.length()
    549 		offset := t.offset()
    550 		w.literalFreq[lengthCodesStart+lengthCode(length)]++
    551 		w.offsetFreq[offsetCode(offset)]++
    552 	}
    553 
    554 	// get the number of literals
    555 	numLiterals = len(w.literalFreq)
    556 	for w.literalFreq[numLiterals-1] == 0 {
    557 		numLiterals--
    558 	}
    559 	// get the number of offsets
    560 	numOffsets = len(w.offsetFreq)
    561 	for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 {
    562 		numOffsets--
    563 	}
    564 	if numOffsets == 0 {
    565 		// We haven't found a single match. If we want to go with the dynamic encoding,
    566 		// we should count at least one offset to be sure that the offset huffman tree could be encoded.
    567 		w.offsetFreq[0] = 1
    568 		numOffsets = 1
    569 	}
    570 	w.literalEncoding.generate(w.literalFreq, 15)
    571 	w.offsetEncoding.generate(w.offsetFreq, 15)
    572 	return
    573 }
    574 
    575 // writeTokens writes a slice of tokens to the output.
    576 // codes for literal and offset encoding must be supplied.
    577 func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) {
    578 	if w.err != nil {
    579 		return
    580 	}
    581 	for _, t := range tokens {
    582 		if t < matchType {
    583 			w.writeCode(leCodes[t.literal()])
    584 			continue
    585 		}
    586 		// Write the length
    587 		length := t.length()
    588 		lengthCode := lengthCode(length)
    589 		w.writeCode(leCodes[lengthCode+lengthCodesStart])
    590 		extraLengthBits := uint(lengthExtraBits[lengthCode])
    591 		if extraLengthBits > 0 {
    592 			extraLength := int32(length - lengthBase[lengthCode])
    593 			w.writeBits(extraLength, extraLengthBits)
    594 		}
    595 		// Write the offset
    596 		offset := t.offset()
    597 		offsetCode := offsetCode(offset)
    598 		w.writeCode(oeCodes[offsetCode])
    599 		extraOffsetBits := uint(offsetExtraBits[offsetCode])
    600 		if extraOffsetBits > 0 {
    601 			extraOffset := int32(offset - offsetBase[offsetCode])
    602 			w.writeBits(extraOffset, extraOffsetBits)
    603 		}
    604 	}
    605 }
    606 
    607 // huffOffset is a static offset encoder used for huffman only encoding.
    608 // It can be reused since we will not be encoding offset values.
    609 var huffOffset *huffmanEncoder
    610 
    611 func init() {
    612 	w := newHuffmanBitWriter(nil)
    613 	w.offsetFreq[0] = 1
    614 	huffOffset = newHuffmanEncoder(offsetCodeCount)
    615 	huffOffset.generate(w.offsetFreq, 15)
    616 }
    617 
    618 // writeBlockHuff encodes a block of bytes as either
    619 // Huffman encoded literals or uncompressed bytes if the
    620 // results only gains very little from compression.
    621 func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte) {
    622 	if w.err != nil {
    623 		return
    624 	}
    625 
    626 	// Clear histogram
    627 	for i := range w.literalFreq {
    628 		w.literalFreq[i] = 0
    629 	}
    630 
    631 	// Add everything as literals
    632 	histogram(input, w.literalFreq)
    633 
    634 	w.literalFreq[endBlockMarker] = 1
    635 
    636 	const numLiterals = endBlockMarker + 1
    637 	const numOffsets = 1
    638 
    639 	w.literalEncoding.generate(w.literalFreq, 15)
    640 
    641 	// Figure out smallest code.
    642 	// Always use dynamic Huffman or Store
    643 	var numCodegens int
    644 
    645 	// Generate codegen and codegenFrequencies, which indicates how to encode
    646 	// the literalEncoding and the offsetEncoding.
    647 	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset)
    648 	w.codegenEncoding.generate(w.codegenFreq[:], 7)
    649 	size, numCodegens := w.dynamicSize(w.literalEncoding, huffOffset, 0)
    650 
    651 	// Store bytes, if we don't get a reasonable improvement.
    652 	if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
    653 		w.writeStoredHeader(len(input), eof)
    654 		w.writeBytes(input)
    655 		return
    656 	}
    657 
    658 	// Huffman.
    659 	w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
    660 	encoding := w.literalEncoding.codes[:257]
    661 	n := w.nbytes
    662 	for _, t := range input {
    663 		// Bitwriting inlined, ~30% speedup
    664 		c := encoding[t]
    665 		w.bits |= uint64(c.code) << w.nbits
    666 		w.nbits += uint(c.len)
    667 		if w.nbits < 48 {
    668 			continue
    669 		}
    670 		// Store 6 bytes
    671 		bits := w.bits
    672 		w.bits >>= 48
    673 		w.nbits -= 48
    674 		bytes := w.bytes[n : n+6]
    675 		bytes[0] = byte(bits)
    676 		bytes[1] = byte(bits >> 8)
    677 		bytes[2] = byte(bits >> 16)
    678 		bytes[3] = byte(bits >> 24)
    679 		bytes[4] = byte(bits >> 32)
    680 		bytes[5] = byte(bits >> 40)
    681 		n += 6
    682 		if n < bufferFlushSize {
    683 			continue
    684 		}
    685 		w.write(w.bytes[:n])
    686 		if w.err != nil {
    687 			return // Return early in the event of write failures
    688 		}
    689 		n = 0
    690 	}
    691 	w.nbytes = n
    692 	w.writeCode(encoding[endBlockMarker])
    693 }
    694 
    695 // histogram accumulates a histogram of b in h.
    696 //
    697 // len(h) must be >= 256, and h's elements must be all zeroes.
    698 func histogram(b []byte, h []int32) {
    699 	h = h[:256]
    700 	for _, t := range b {
    701 		h[t]++
    702 	}
    703 }
    704