Home | History | Annotate | Download | only in flate
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package flate
      6 
      7 import (
      8 	"math"
      9 	"math/bits"
     10 	"sort"
     11 )
     12 
     13 // hcode is a huffman code with a bit code and bit length.
     14 type hcode struct {
     15 	code, len uint16
     16 }
     17 
     18 type huffmanEncoder struct {
     19 	codes     []hcode
     20 	freqcache []literalNode
     21 	bitCount  [17]int32
     22 	lns       byLiteral // stored to avoid repeated allocation in generate
     23 	lfs       byFreq    // stored to avoid repeated allocation in generate
     24 }
     25 
     26 type literalNode struct {
     27 	literal uint16
     28 	freq    int32
     29 }
     30 
     31 // A levelInfo describes the state of the constructed tree for a given depth.
     32 type levelInfo struct {
     33 	// Our level.  for better printing
     34 	level int32
     35 
     36 	// The frequency of the last node at this level
     37 	lastFreq int32
     38 
     39 	// The frequency of the next character to add to this level
     40 	nextCharFreq int32
     41 
     42 	// The frequency of the next pair (from level below) to add to this level.
     43 	// Only valid if the "needed" value of the next lower level is 0.
     44 	nextPairFreq int32
     45 
     46 	// The number of chains remaining to generate for this level before moving
     47 	// up to the next level
     48 	needed int32
     49 }
     50 
     51 // set sets the code and length of an hcode.
     52 func (h *hcode) set(code uint16, length uint16) {
     53 	h.len = length
     54 	h.code = code
     55 }
     56 
     57 func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
     58 
     59 func newHuffmanEncoder(size int) *huffmanEncoder {
     60 	return &huffmanEncoder{codes: make([]hcode, size)}
     61 }
     62 
     63 // Generates a HuffmanCode corresponding to the fixed literal table
     64 func generateFixedLiteralEncoding() *huffmanEncoder {
     65 	h := newHuffmanEncoder(maxNumLit)
     66 	codes := h.codes
     67 	var ch uint16
     68 	for ch = 0; ch < maxNumLit; ch++ {
     69 		var bits uint16
     70 		var size uint16
     71 		switch {
     72 		case ch < 144:
     73 			// size 8, 000110000  .. 10111111
     74 			bits = ch + 48
     75 			size = 8
     76 			break
     77 		case ch < 256:
     78 			// size 9, 110010000 .. 111111111
     79 			bits = ch + 400 - 144
     80 			size = 9
     81 			break
     82 		case ch < 280:
     83 			// size 7, 0000000 .. 0010111
     84 			bits = ch - 256
     85 			size = 7
     86 			break
     87 		default:
     88 			// size 8, 11000000 .. 11000111
     89 			bits = ch + 192 - 280
     90 			size = 8
     91 		}
     92 		codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size}
     93 	}
     94 	return h
     95 }
     96 
     97 func generateFixedOffsetEncoding() *huffmanEncoder {
     98 	h := newHuffmanEncoder(30)
     99 	codes := h.codes
    100 	for ch := range codes {
    101 		codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5}
    102 	}
    103 	return h
    104 }
    105 
    106 var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
    107 var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
    108 
    109 func (h *huffmanEncoder) bitLength(freq []int32) int {
    110 	var total int
    111 	for i, f := range freq {
    112 		if f != 0 {
    113 			total += int(f) * int(h.codes[i].len)
    114 		}
    115 	}
    116 	return total
    117 }
    118 
    119 const maxBitsLimit = 16
    120 
    121 // Return the number of literals assigned to each bit size in the Huffman encoding
    122 //
    123 // This method is only called when list.length >= 3
    124 // The cases of 0, 1, and 2 literals are handled by special case code.
    125 //
    126 // list  An array of the literals with non-zero frequencies
    127 //             and their associated frequencies. The array is in order of increasing
    128 //             frequency, and has as its last element a special element with frequency
    129 //             MaxInt32
    130 // maxBits     The maximum number of bits that should be used to encode any literal.
    131 //             Must be less than 16.
    132 // return      An integer array in which array[i] indicates the number of literals
    133 //             that should be encoded in i bits.
    134 func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
    135 	if maxBits >= maxBitsLimit {
    136 		panic("flate: maxBits too large")
    137 	}
    138 	n := int32(len(list))
    139 	list = list[0 : n+1]
    140 	list[n] = maxNode()
    141 
    142 	// The tree can't have greater depth than n - 1, no matter what. This
    143 	// saves a little bit of work in some small cases
    144 	if maxBits > n-1 {
    145 		maxBits = n - 1
    146 	}
    147 
    148 	// Create information about each of the levels.
    149 	// A bogus "Level 0" whose sole purpose is so that
    150 	// level1.prev.needed==0.  This makes level1.nextPairFreq
    151 	// be a legitimate value that never gets chosen.
    152 	var levels [maxBitsLimit]levelInfo
    153 	// leafCounts[i] counts the number of literals at the left
    154 	// of ancestors of the rightmost node at level i.
    155 	// leafCounts[i][j] is the number of literals at the left
    156 	// of the level j ancestor.
    157 	var leafCounts [maxBitsLimit][maxBitsLimit]int32
    158 
    159 	for level := int32(1); level <= maxBits; level++ {
    160 		// For every level, the first two items are the first two characters.
    161 		// We initialize the levels as if we had already figured this out.
    162 		levels[level] = levelInfo{
    163 			level:        level,
    164 			lastFreq:     list[1].freq,
    165 			nextCharFreq: list[2].freq,
    166 			nextPairFreq: list[0].freq + list[1].freq,
    167 		}
    168 		leafCounts[level][level] = 2
    169 		if level == 1 {
    170 			levels[level].nextPairFreq = math.MaxInt32
    171 		}
    172 	}
    173 
    174 	// We need a total of 2*n - 2 items at top level and have already generated 2.
    175 	levels[maxBits].needed = 2*n - 4
    176 
    177 	level := maxBits
    178 	for {
    179 		l := &levels[level]
    180 		if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
    181 			// We've run out of both leafs and pairs.
    182 			// End all calculations for this level.
    183 			// To make sure we never come back to this level or any lower level,
    184 			// set nextPairFreq impossibly large.
    185 			l.needed = 0
    186 			levels[level+1].nextPairFreq = math.MaxInt32
    187 			level++
    188 			continue
    189 		}
    190 
    191 		prevFreq := l.lastFreq
    192 		if l.nextCharFreq < l.nextPairFreq {
    193 			// The next item on this row is a leaf node.
    194 			n := leafCounts[level][level] + 1
    195 			l.lastFreq = l.nextCharFreq
    196 			// Lower leafCounts are the same of the previous node.
    197 			leafCounts[level][level] = n
    198 			l.nextCharFreq = list[n].freq
    199 		} else {
    200 			// The next item on this row is a pair from the previous row.
    201 			// nextPairFreq isn't valid until we generate two
    202 			// more values in the level below
    203 			l.lastFreq = l.nextPairFreq
    204 			// Take leaf counts from the lower level, except counts[level] remains the same.
    205 			copy(leafCounts[level][:level], leafCounts[level-1][:level])
    206 			levels[l.level-1].needed = 2
    207 		}
    208 
    209 		if l.needed--; l.needed == 0 {
    210 			// We've done everything we need to do for this level.
    211 			// Continue calculating one level up. Fill in nextPairFreq
    212 			// of that level with the sum of the two nodes we've just calculated on
    213 			// this level.
    214 			if l.level == maxBits {
    215 				// All done!
    216 				break
    217 			}
    218 			levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
    219 			level++
    220 		} else {
    221 			// If we stole from below, move down temporarily to replenish it.
    222 			for levels[level-1].needed > 0 {
    223 				level--
    224 			}
    225 		}
    226 	}
    227 
    228 	// Somethings is wrong if at the end, the top level is null or hasn't used
    229 	// all of the leaves.
    230 	if leafCounts[maxBits][maxBits] != n {
    231 		panic("leafCounts[maxBits][maxBits] != n")
    232 	}
    233 
    234 	bitCount := h.bitCount[:maxBits+1]
    235 	bits := 1
    236 	counts := &leafCounts[maxBits]
    237 	for level := maxBits; level > 0; level-- {
    238 		// chain.leafCount gives the number of literals requiring at least "bits"
    239 		// bits to encode.
    240 		bitCount[bits] = counts[level] - counts[level-1]
    241 		bits++
    242 	}
    243 	return bitCount
    244 }
    245 
    246 // Look at the leaves and assign them a bit count and an encoding as specified
    247 // in RFC 1951 3.2.2
    248 func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
    249 	code := uint16(0)
    250 	for n, bits := range bitCount {
    251 		code <<= 1
    252 		if n == 0 || bits == 0 {
    253 			continue
    254 		}
    255 		// The literals list[len(list)-bits] .. list[len(list)-bits]
    256 		// are encoded using "bits" bits, and get the values
    257 		// code, code + 1, ....  The code values are
    258 		// assigned in literal order (not frequency order).
    259 		chunk := list[len(list)-int(bits):]
    260 
    261 		h.lns.sort(chunk)
    262 		for _, node := range chunk {
    263 			h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)}
    264 			code++
    265 		}
    266 		list = list[0 : len(list)-int(bits)]
    267 	}
    268 }
    269 
    270 // Update this Huffman Code object to be the minimum code for the specified frequency count.
    271 //
    272 // freq  An array of frequencies, in which frequency[i] gives the frequency of literal i.
    273 // maxBits  The maximum number of bits to use for any literal.
    274 func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
    275 	if h.freqcache == nil {
    276 		// Allocate a reusable buffer with the longest possible frequency table.
    277 		// Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit.
    278 		// The largest of these is maxNumLit, so we allocate for that case.
    279 		h.freqcache = make([]literalNode, maxNumLit+1)
    280 	}
    281 	list := h.freqcache[:len(freq)+1]
    282 	// Number of non-zero literals
    283 	count := 0
    284 	// Set list to be the set of all non-zero literals and their frequencies
    285 	for i, f := range freq {
    286 		if f != 0 {
    287 			list[count] = literalNode{uint16(i), f}
    288 			count++
    289 		} else {
    290 			list[count] = literalNode{}
    291 			h.codes[i].len = 0
    292 		}
    293 	}
    294 	list[len(freq)] = literalNode{}
    295 
    296 	list = list[:count]
    297 	if count <= 2 {
    298 		// Handle the small cases here, because they are awkward for the general case code. With
    299 		// two or fewer literals, everything has bit length 1.
    300 		for i, node := range list {
    301 			// "list" is in order of increasing literal value.
    302 			h.codes[node.literal].set(uint16(i), 1)
    303 		}
    304 		return
    305 	}
    306 	h.lfs.sort(list)
    307 
    308 	// Get the number of literals for each bit count
    309 	bitCount := h.bitCounts(list, maxBits)
    310 	// And do the assignment
    311 	h.assignEncodingAndSize(bitCount, list)
    312 }
    313 
    314 type byLiteral []literalNode
    315 
    316 func (s *byLiteral) sort(a []literalNode) {
    317 	*s = byLiteral(a)
    318 	sort.Sort(s)
    319 }
    320 
    321 func (s byLiteral) Len() int { return len(s) }
    322 
    323 func (s byLiteral) Less(i, j int) bool {
    324 	return s[i].literal < s[j].literal
    325 }
    326 
    327 func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
    328 
    329 type byFreq []literalNode
    330 
    331 func (s *byFreq) sort(a []literalNode) {
    332 	*s = byFreq(a)
    333 	sort.Sort(s)
    334 }
    335 
    336 func (s byFreq) Len() int { return len(s) }
    337 
    338 func (s byFreq) Less(i, j int) bool {
    339 	if s[i].freq == s[j].freq {
    340 		return s[i].literal < s[j].literal
    341 	}
    342 	return s[i].freq < s[j].freq
    343 }
    344 
    345 func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
    346 
    347 func reverseBits(number uint16, bitLength byte) uint16 {
    348 	return bits.Reverse16(number << (16 - bitLength))
    349 }
    350