Home | History | Annotate | Download | only in heap
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Package heap provides heap operations for any type that implements
      6 // heap.Interface. A heap is a tree with the property that each node is the
      7 // minimum-valued node in its subtree.
      8 //
      9 // The minimum element in the tree is the root, at index 0.
     10 //
     11 // A heap is a common way to implement a priority queue. To build a priority
     12 // queue, implement the Heap interface with the (negative) priority as the
     13 // ordering for the Less method, so Push adds items while Pop removes the
     14 // highest-priority item from the queue. The Examples include such an
     15 // implementation; the file example_pq_test.go has the complete source.
     16 //
     17 package heap
     18 
     19 import "sort"
     20 
     21 // Any type that implements heap.Interface may be used as a
     22 // min-heap with the following invariants (established after
     23 // Init has been called or if the data is empty or sorted):
     24 //
     25 //	!h.Less(j, i) for 0 <= i < h.Len() and 2*i+1 <= j <= 2*i+2 and j < h.Len()
     26 //
     27 // Note that Push and Pop in this interface are for package heap's
     28 // implementation to call. To add and remove things from the heap,
     29 // use heap.Push and heap.Pop.
     30 type Interface interface {
     31 	sort.Interface
     32 	Push(x interface{}) // add x as element Len()
     33 	Pop() interface{}   // remove and return element Len() - 1.
     34 }
     35 
     36 // A heap must be initialized before any of the heap operations
     37 // can be used. Init is idempotent with respect to the heap invariants
     38 // and may be called whenever the heap invariants may have been invalidated.
     39 // Its complexity is O(n) where n = h.Len().
     40 //
     41 func Init(h Interface) {
     42 	// heapify
     43 	n := h.Len()
     44 	for i := n/2 - 1; i >= 0; i-- {
     45 		down(h, i, n)
     46 	}
     47 }
     48 
     49 // Push pushes the element x onto the heap. The complexity is
     50 // O(log(n)) where n = h.Len().
     51 //
     52 func Push(h Interface, x interface{}) {
     53 	h.Push(x)
     54 	up(h, h.Len()-1)
     55 }
     56 
     57 // Pop removes the minimum element (according to Less) from the heap
     58 // and returns it. The complexity is O(log(n)) where n = h.Len().
     59 // It is equivalent to Remove(h, 0).
     60 //
     61 func Pop(h Interface) interface{} {
     62 	n := h.Len() - 1
     63 	h.Swap(0, n)
     64 	down(h, 0, n)
     65 	return h.Pop()
     66 }
     67 
     68 // Remove removes the element at index i from the heap.
     69 // The complexity is O(log(n)) where n = h.Len().
     70 //
     71 func Remove(h Interface, i int) interface{} {
     72 	n := h.Len() - 1
     73 	if n != i {
     74 		h.Swap(i, n)
     75 		if !down(h, i, n) {
     76 			up(h, i)
     77 		}
     78 	}
     79 	return h.Pop()
     80 }
     81 
     82 // Fix re-establishes the heap ordering after the element at index i has changed its value.
     83 // Changing the value of the element at index i and then calling Fix is equivalent to,
     84 // but less expensive than, calling Remove(h, i) followed by a Push of the new value.
     85 // The complexity is O(log(n)) where n = h.Len().
     86 func Fix(h Interface, i int) {
     87 	if !down(h, i, h.Len()) {
     88 		up(h, i)
     89 	}
     90 }
     91 
     92 func up(h Interface, j int) {
     93 	for {
     94 		i := (j - 1) / 2 // parent
     95 		if i == j || !h.Less(j, i) {
     96 			break
     97 		}
     98 		h.Swap(i, j)
     99 		j = i
    100 	}
    101 }
    102 
    103 func down(h Interface, i0, n int) bool {
    104 	i := i0
    105 	for {
    106 		j1 := 2*i + 1
    107 		if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
    108 			break
    109 		}
    110 		j := j1 // left child
    111 		if j2 := j1 + 1; j2 < n && h.Less(j2, j1) {
    112 			j = j2 // = 2*i + 2  // right child
    113 		}
    114 		if !h.Less(j, i) {
    115 			break
    116 		}
    117 		h.Swap(i, j)
    118 		i = j
    119 	}
    120 	return i > i0
    121 }
    122